喷气发动机的种类及其原理
喷气式发动机工作原理

喷气式发动机工作原理
喷气式发动机是一种常见的内燃机,主要用于飞机、导弹和一些特殊车辆上。
它的工作原理是通过燃烧燃料和氧气产生高温高压气体,然后将气体高速喷出,产生反作用力推动飞机等物体向前运动。
喷气式发动机通常由进气系统、压缩系统、燃烧系统、喷射系统和排气系统组成。
进气系统通过进气口将大量空气引入发动机,然后经过滤清除杂质,调节进气量。
进入压缩系统之前,空气通过多级压缩机被压缩成高压气体,这样可以提高燃烧效率。
在燃烧系统中,高压气体经过燃烧室,与燃料混合并点燃。
燃料可以是航空煤油或者喷气燃料。
燃烧所产生的高温高压气体能够释放出大量能量。
喷射系统将燃烧后的高温高压气体喷射出来,通过喷嘴的喷口加速,并与外界空气迅速混合。
喷气的速度越大,产生的推力就越大。
排气系统将喷出的废气排出,避免对燃烧室形成干扰,并降低发动机运行过程中的噪音。
通过以上几个系统的协调工作,喷气式发动机能够产生大量的推力,为飞机等物体提供足够的动力。
同时,喷气式发动机还
具有高效率、可靠性高和使用范围广等优点,在现代航空交通中发挥着重要作用。
飞机的发动机的原理

飞机的发动机的原理飞机的发动机是飞行器的重要部件,它负责提供动力来推动飞机飞行。
飞机发动机的原理可以分为喷气式发动机和螺旋桨发动机两种。
以下将分别介绍它们的工作原理。
1. 喷气式发动机原理:喷气式发动机利用喷出高速气流产生的反作用力来推动飞机。
它由进气系统、压气系统、燃烧系统和喷口系统组成。
- 进气系统:进气系统的作用是将外界空气引入发动机以供燃烧和压缩。
进气系统中有一个叶轮机,它利用高速旋转的叶片将空气压缩进入燃烧室。
- 压气系统:压气系统包括压气机和高压涡轮。
压气机通过旋转的叶片将空气进行进一步的压缩,使其具有足够的能量用以燃烧。
高压涡轮从燃烧室排出的废气中获得能量,进而驱动压气机。
- 燃烧系统:燃烧系统由燃烧室和燃烧器组成。
在燃烧室内,压缩后的空气与燃料混合后点燃,产生高温高压的气体。
燃烧过程中产生的废气会通过高压涡轮排出。
- 喷口系统:废气从高压涡轮排出后,会经过喷管,通过喷嘴以高速喷出。
当高速气流喷出时,产生的反作用力推动了飞机向前飞行。
2. 螺旋桨发动机原理:螺旋桨发动机通过螺旋桨的旋转产生推力。
它由气缸、曲轴和螺旋桨组成。
- 气缸:气缸是螺旋桨发动机的关键部件,它由一个或多个气缸组成。
每个气缸内都有活塞,活塞以往复运动形式压缩和释放燃气。
- 曲轴:曲轴连接活塞,将活塞来回的线性运动转化为旋转运动。
曲轴的旋转产生的动力被传递给螺旋桨,推动其旋转。
- 螺旋桨:螺旋桨由一系列叶片组成,它们形成螺旋状排列。
当发动机运转时,曲轴的旋转将动力传递给螺旋桨,引起其旋转。
螺旋桨的旋转会引起周围空气的流动,产生气流,进而产生推力,推动飞机向前飞行。
综上所述,喷气式发动机通过排出高速废气产生反作用力来推动飞机,而螺旋桨发动机则利用螺旋桨的旋转产生推力。
两种发动机各有优势,喷气式发动机通常用于大型喷气式客机,而螺旋桨发动机多用于小型飞机。
随着科技的发展,各种新型发动机的研发也在不断进行,以进一步提高飞机的性能和效率。
飞机发动机工作原理

飞机发动机工作原理飞机发动机是飞机的核心装置,通过将燃料燃烧转化为推力,驱动飞机飞行。
本文将详细介绍飞机发动机的工作原理,让我们一起来了解吧。
一、引言飞机发动机是指将燃料转化为推力的装置,用于驱动飞机运行。
根据不同的工作原理和结构特点,常见的飞机发动机主要包括喷气发动机和涡轮螺旋桨发动机。
接下来,我们将分别介绍这两种发动机的工作原理。
二、喷气发动机喷气发动机是现代飞机主要采用的发动机类型,其工作原理是通过压缩空气、混合燃料并燃烧产生高温高压气流,然后将气流排出,产生推力。
下面是喷气发动机的工作原理的详细介绍:1. 压气机喷气发动机的核心部件是压气机,它通过旋转的叶片将进气口的空气压缩。
当大量空气被压缩到高压状态时,空气中的氧气浓度增加,为后续的燃烧提供条件。
2. 燃烧室在压气机将空气压缩后,被送入燃烧室。
燃烧室内混合了燃料和压缩空气,点燃燃料后产生高温高压气流,这个过程称为燃烧。
燃烧室的设计十分关键,它能够保证高效的燃烧并控制燃烧产生的温度。
3. 喷嘴燃烧产生的高温高压气流被送入喷嘴,喷嘴具有特殊的形状和结构,能够将气流加速并改变其流动方向。
当高温高压气流从喷嘴喷出后,由于动量守恒定律,飞机会产生与气流相反的推力,推动飞机向前飞行。
三、涡轮螺旋桨发动机涡轮螺旋桨发动机是另一种常见的飞机发动机类型,它通过喷气发动机的工作原理,将燃料燃烧后的高温高压气流驱动涡轮转动,从而驱动螺旋桨旋转。
下面是涡轮螺旋桨发动机的工作原理的详细介绍:1. 压气机和燃烧室涡轮螺旋桨发动机的工作原理与喷气发动机相似,其主要部件包括压气机和燃烧室。
通过压气机将进气口的空气压缩,然后进入燃烧室与燃料混合并燃烧,产生高温高压气流。
2. 涡轮和螺旋桨高温高压气流进入涡轮部分,通过涡轮的叶片驱动涡轮旋转。
涡轮与螺旋桨轴相连,涡轮旋转的动力被传递到螺旋桨上,使其旋转,进而产生推力。
四、总结飞机发动机是飞机运行的核心装置,喷气发动机和涡轮螺旋桨发动机是两种常见的发动机类型。
喷气式发动机工作原理

喷气式发动机工作原理喷气式发动机是一种采用喷气推力原理产生动力的发动机,广泛应用于航空领域。
它通过将空气吸入并与燃料混合后燃烧,产生高温高压气体,并通过喷嘴以高速喷射出去,从而产生反作用力推动飞机前进。
以下将详细介绍喷气式发动机的工作原理。
1. 气流压缩喷气式发动机开始工作时,它会吸入周围的空气。
空气首先通过进气口进入压气机。
压气机由一系列的叶片组成,通过旋转将空气压缩,使得空气分子之间更加紧密,体积变小,压力增加。
2. 燃料混合在压气机压缩后的空气进入燃烧室前,燃料会被喷射进来与空气混合。
燃烧室内有一个或多个喷油嘴,通过喷油嘴将燃料喷入燃烧室。
燃料与空气混合后,在燃烧室内发生可控的燃烧反应。
3. 高温高压气体释放当燃料燃烧时,产生的高温高压气体会迅速膨胀,提供动力。
这部分气体被称为燃烧产物。
燃烧产物通过喷嘴排出,产生的冲击波以极高速度推出喷气管。
4. 反作用力与推力根据牛顿第三定律,对每个作用力都会产生一个等量、反向的反作用力。
当高速喷出的燃烧产物离开喷气管时,它们会产生一个向后的反作用力。
而这个反作用力就是喷气式发动机产生的推力,推动飞机向前运动。
5. 导向喷管为了提高喷气式发动机产生的推力和提高燃烧效率,发动机设计者还会在后部加装一个导向喷管。
导向喷管通过调整喷气的方向和速度,可以将喷气的冲击波更好地利用,产生更大的推力。
这样做不仅提高了发动机的效率,还能减少噪音。
喷气式发动机的工作原理是相对复杂的,但是这个基本流程能够很好地解释它的原理。
通过不断的改进和创新,现代喷气式发动机已经成为航空工业中的重要组成部分,推动了飞机的快速发展与进步。
随着技术的不断进步,相信未来的喷气式发动机会更加高效、环保,为人们带来更好的航空出行体验。
各种喷气式发动机简介

涡轮喷气发动机的诞生二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。
但到了三十年代末,航空技术的发展使得这一组合达到了极限。
螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。
螺旋桨的迎风面积大,阻力也大,极大阻碍了飞行速度的提高。
同时随着飞行高度提高,大气稀薄,活塞式发动机的功率也会减小。
这促生了全新的喷气发动机推进体系。
喷气发动机吸入大量的空气,燃烧后高速喷出,对发动机产生反作用力,推动飞机向前飞行。
早在1913年,法国工程师雷恩·洛兰就提出了冲压喷气发动机的设计,并获得专利。
但当时没有相应的助推手段和相应材料,喷气推进只是一个空想。
1930年,英国人弗兰克·惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。
11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。
涡轮喷气发动机的原理涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。
部分军用发动机的涡轮和尾喷管间还有加力燃烧室。
涡喷发动机属于热机,做功原则同样为:高压下输入能量,低压下释放能量。
工作时,发动机首先从进气道吸入空气。
这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。
压气机顾名思义,用于提高吸入的空气的的压力。
压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。
随后高压气流进入燃烧室。
燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温高压燃气,向后排出。
高温高压燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化为机械能,驱动涡轮旋转。
由于高温涡轮同压气机装在同一条轴上,因此也驱动压气机旋转,从而反复的压缩吸入的空气。
从高温涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速从尾部喷口向后排出。
喷气式发动机原理

喷气式发动机原理喷气式发动机是一种内燃机,通过燃烧燃料产生高压热气体,并通过喷嘴将热气体喷出,产生向后的推力。
这种类型的发动机广泛应用于飞机和火箭等领域。
本文将介绍喷气式发动机的工作原理及其组成部分。
工作原理喷气式发动机的工作原理基于牛顿第三定律,即每个作用力都有一个相等大小但方向相反的反作用力。
喷气式发动机通过将燃料和氧气混合,并在燃烧室中燃烧,产生高温高压的燃烧气体。
燃烧气体通过喷嘴喷出,产生一个向后的喷流,根据牛顿第三定律,喷流的反作用力将推动发动机向前运动。
喷气式发动机的工作过程可以分为四个阶段:进气、压缩、燃烧和喷射。
1.进气:外部空气通过进气口进入发动机。
进气口通常位于发动机的前部,利用飞行速度将空气压缩到更高压力。
2.压缩:经过进气口进入发动机的空气被压缩机压缩。
压缩机由多个转子组成,通过旋转将空气压缩,使气体增加密度和压力。
3.燃烧:压缩后的空气进入燃烧室,在燃烧室中与燃料混合并燃烧。
燃烧产生的高温高压气体通过喷嘴喷射出去。
4.喷射:燃烧气体通过喷嘴喷出,在喷射过程中产生一个向后的喷流,推动发动机向前运动。
组成部分喷气式发动机由多个关键组成部分构成,包括压缩机、燃烧室和涡轮。
下面将介绍每个部分的功能和作用。
1.压缩机:压缩机是喷气式发动机的核心组件之一,负责将空气压缩。
压缩机通常由多个转子组成,通过旋转将进入发动机的空气逐渐压缩到更高密度和压力。
压缩机的性能直接影响发动机的效能和性能。
2.燃烧室:燃烧室是燃烧燃料和空气混合燃烧的空间。
燃烧室中的燃料和空气混合并燃烧,产生高温高压的燃烧气体。
燃烧室的设计使得燃料能够充分燃烧,提供足够的能量给发动机。
3.涡轮:涡轮是喷气式发动机的另一个重要组成部分,由高压涡轮和低压涡轮组成。
高压涡轮由燃烧室排出的燃气驱动,低压涡轮则由高压涡轮驱动。
涡轮的旋转产生工作介质的动能,推动压缩机和燃烧室的运转。
4.喷嘴:喷嘴是喷气式发动机用于喷射燃烧气体的孔道。
喷气式发动机原理

喷气式发动机原理1. 引言喷气式发动机是一种常见的航空发动机,被广泛应用于飞行器和航天器中。
它以空气和燃料的混合物产生推力,并将飞行器推进到空中。
本文将介绍喷气式发动机的原理和工作过程。
2. 喷气式发动机的组成喷气式发动机一般由以下几个主要部分组成:•进气道:用于将空气引入发动机中。
•压缩机:将进入发动机的空气进行压缩,提高空气的密度和压力。
•燃烧室:将压缩后的空气与燃料混合并燃烧,产生高温高压的燃气。
•高压涡轮:利用燃气驱动涡轮,驱动压缩机和燃气发生器。
•喷管:将高速高温的燃气喷出,产生推力。
3. 工作原理喷气式发动机的工作原理可以分为以下几个阶段:3.1 进气过程进气道将外部空气引入发动机中,经过压缩机进行压缩。
压缩机的叶片会旋转,将空气压缩到较高的密度和压力,这提供了后续燃烧过程所需的高温高压燃气。
3.2 燃烧过程压缩机压缩后的空气进入燃烧室,与燃料混合并点燃。
在燃烧过程中,燃料和空气的能量被释放出来,产生高温高压的燃气。
3.3 推力产生高温高压的燃气驱动高压涡轮旋转,高压涡轮通过轴将其动力传递给压缩机,使其继续工作。
此外,燃气的能量也驱动喷管前的涡轮旋转,带动涡轮后的喷嘴产生高速喷气。
根据牛顿第三定律,高速喷出的气体会带动发动机产生反作用力,从而产生推力。
3.4 余热利用喷气式发动机还可以利用燃气的余热进行热交换。
例如,喷气式发动机的燃气可以被用来加热飞行器的内部空气,从而提供舱内供暖或空调系统所需要的热能。
4. 喷气式发动机的优缺点喷气式发动机具有以下优点:•高推力:喷气式发动机能够产生较大的推力,适用于大型飞行器和航天器。
•高效率:喷气式发动机的热效率相对较高,能够更有效地将燃料转化为推力。
•较高的飞行高度:由于喷气式发动机具有较高的推力和效率,飞行器可以飞行在较高的高度,从而减少大气阻力和燃料消耗。
然而,喷气式发动机也存在一些缺点:•高成本:喷气式发动机的制造和维护成本较高。
•污染:喷气式发动机排放的燃气中含有一些有害物质,对环境造成污染。
喷气机的工作原理

喷气机的工作原理喷气机(Jet engine)是一种常见的航空发动机,它以喷射高速气流来产生推力,从而推动飞机前进。
喷气机的工作原理可以分为以下几个方面:1. 早期喷气机的原理:早期的喷气机发动机采用了离心式压气机的原理。
它由一个或多个离心轮组成,压缩进入发动机的空气,并将其加速到高速,然后喷出产生推力。
这种原理在二战期间的德国喷气式战斗机上得到了广泛应用。
2. 现代喷气机的原理:现代的喷气机发动机多采用了涡轮式压气机的原理。
涡轮压气机由一系列转子和定子组成。
空气被大型的风扇吸入,经过压缩后进入压气机。
压气机中有许多旋转的涡轮叶片和定子叶片,它们以高速旋转。
空气经过这些叶片时,不断被加速并压缩,从而形成高压气流。
3. 燃烧室和喷嘴:在涡轮压气机后面是燃烧室。
燃烧室中注入燃料,并与压缩空气混合。
燃料在高温下燃烧,释放出大量的热能,使气流温度急剧上升。
高温高压气流通过喷嘴喷出,产生高速的喷气流,从而形成推力。
4. 动力和推力产生:喷嘴产生的高速喷气流动量与空气流动量相对应。
根据牛顿第三定律,喷出的高速气流产生了反作用力,即推力。
推力使飞机向前推进,并克服空气阻力,使飞机加速飞行。
5. 辅助系统:喷气机还有一些辅助系统,如燃料供应系统、润滑系统和冷却系统等。
这些系统保证发动机正常运行,并且对其进行维护和保养。
6. 喷气机的优势与不足:喷气机具有高效率、高推力和较低的噪音水平等优点,适用于大型民用和军用飞机。
然而,喷气机的运行成本较高,对环境造成了一定的污染,同时需要大量的燃料。
总结:喷气机的工作原理是通过涡轮式压气机将空气压缩和加速,然后在燃烧室中燃烧燃料,产生高温高压气流,通过喷嘴喷出产生推力。
喷气机的优势在于高效率和高推力,但其不足之处在于高成本和对环境的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弗兰克·惠特尔喷气发动机(Jet engine)是一种通过加速和排出的高速流体做功的热机或电机。
它既可以输出推力,也可以输出轴功率。
大部分喷气发动机都是依靠牛顿第三定律工作的内燃机[编辑]涡轮喷气式发动机完全采用燃气喷气产生推力的喷气发动机是涡轮喷气发动机。
这种发动机的推力和油耗都很高。
适合于高速飞行。
也是最早的喷气发动机。
[编辑]离心式涡轮喷气发动机使用离心叶轮作为压气机。
这种压气机很简单,适合用比较差的材料制作,所以在早期应用很多。
但是这种压气机阻力很大,压缩比低,并且发动机直径也很大,所以现在已经不再使用这种压气机。
[编辑]轴流式涡轮喷气发动机使用扇叶作为压气机。
这样的发动机克服了离心式发动机的缺点,因此具有很高的性能。
缺点是制造工艺苛刻。
现在的高空高速飞机依然在使用轴流式涡喷发动机。
[编辑]涡轮风扇发动机一台涡扇发动机的一级压气机主条目:涡轮风扇发动机在轴流式涡喷发动机的一级压气机上安装巨大的进气风扇的发动机。
一级压气机风扇因为体积大,除了可以压缩空气外,还能当作螺旋桨使用。
涡轮风扇发动机的燃油效率在跨音速附近比涡轮喷气发动机要高。
[编辑]涡轮轴发动机主条目:涡轮轴发动机涡轮轴发动机类似涡桨发动机,但拥有更大的扭矩,并且他的输出轴和涡轮轴是不平行的(一般是垂直),输出轴减速器也不在发动机上。
所以他更类似于飞机上用的燃气轮机。
涡轴发动机的大扭矩使他经常用于需要带动大螺旋桨的直升机。
它的结构和车用燃气轮机区别不大。
涡轮喷气发动机(Turbojet)(简称涡喷发动机)[1]是一种涡轮发动机。
特点是完全依赖燃气流产生推力。
通常用作高速飞机的动力。
油耗比涡轮风扇发动机高。
涡喷发动机分为离心式与轴流式两种,离心式由英国人弗兰克·惠特尔爵士于1930年取得发明专利,但是直到1941年装有这种发动机的飞机才第一次上天,没有参加第二次世界大战,轴流式诞生在德国,并且作为第一种实用的喷气式战斗机Me-262的动力参加了1944年末的战斗。
相比起离心式涡喷发动机,轴流式具有横截面小,压缩比高的优点,但是需要较高品质的材料——这在1945年左右是不存在的。
当今的涡喷发动机均为轴流式。
一个典型的轴流式涡轮喷气发动机图解(浅蓝色箭头为气流流向)图片注释: 1 - 吸入, 2 - 低压压缩, 3 - 高压压缩, 4 - 燃烧, 5 - 排气, 6 - 热区域, 7 - 涡轮机, 8 - 燃烧室, 9 - 冷区域, 10 - 进气口目录[隐藏]• 1 结构o 1.1 进气道o 1.2 压气机o 1.3 燃烧室与涡轮o 1.4 喷管及加力燃烧室• 2 使用情况• 3 基本参数• 4 参见条目• 5 参考文献[编辑]结构离心式涡轮喷气发动机的原理示意图图片注释: 顺时针依次为: 离心叶轮(压缩机),轴,涡轮机,喷嘴,燃烧室轴流式涡轮喷气发动机的原理示意图图片注释: 顺时针依次为: 压缩机,涡轮机,喷嘴,轴,燃烧室[编辑]进气道轴流式涡喷发动机的主要结构如图,空气首先进入进气道,因为飞机飞行的状态是变化的,进气道需要保证空气最后能顺利的进入下一结构:压气机(compressor)。
进气道的主要作用就是将空气在进入压气机之前调整到发动机能正常运转的状态。
在超音速飞行时,机头与进气道口都会产生激波(shockwave),空气经过激波压力会升高,因此进气道能起一定的预压缩作用,但是激波位置不适当将造成局部压力的不均匀,甚至有可能损坏压气机。
所以一般超音速飞机的进气道口都有一个激波调节锥,根据空速的情况调节激波的位置。
两侧进气或机腹进气的飞机由于进气道紧贴机身,会受到附面层(boundary layer,或邊界層)的影响,还会附带一个附面层调节装置。
所谓附面层是指紧贴机身表面流动的一层空气,其流速远低于周围空气,但其静压比周围高,形成压力梯度。
因为其能量低,不适于进入发动机而需要排除。
当飞机有一定迎角(angle of attack,AOA)时由于压力梯度的变化,在压力梯度加大的部分(如背风面)将发生附面层分离的现象,即本来紧贴机身的附面层在某一点突然脱离,形成湍流。
湍流是相对层流来说的,简单说就是运动不规则的流体,严格的说所有的流动都是湍流。
湍流的发生机制、过程的模型化现在都不太清楚。
但是不是说湍流不好,在发动机中很多地方例如在燃烧过程就要充分利用湍流。
[编辑]压气机压气机由定子(stator)叶片与转子(rotor)叶片交错组成,一对定子叶片与转子叶片称为一级,定子固定在发动机框架上,转子由转子轴与涡轮相连。
现役涡喷发动机一般为8-12级压气机。
级数越多越往后压力越大,当战斗机突然做高机动时,流入压气机前级的空气压力骤降,而后级压力很高,此时会出现后级高压空气反向膨胀,发动机工作极不稳定的状况,工程上称为“喘振”,这是发动机最致命的事故,很有可能造成停车甚至结构毁坏。
防止“喘振”发生有几种办法。
经验表明喘振多发生在压气机的5,6级间,在次区间设置放气环,以使压力出现异常时及时泄压可避免喘振的发生。
或者将转子轴做成两层同心空筒,分别连接前级低压压气机与涡轮,后级高压压气机与另一组涡轮,两套转子组互相独立,在压力异常时自动调节转速,也可避免喘振。
[编辑]燃烧室与涡轮空气经过压气机压缩后进入燃烧室与煤油混合燃烧,膨胀做功;紧接着流过涡轮,推动涡轮高速转动。
因为涡轮与压气机转子连在一根轴上,所以压气机,压气机与涡轮的转速是一样的。
最后高温高速燃气经过喷管喷出,以反作用力提供动力。
燃烧室最初形式是几个围绕转子轴环状并列的圆筒小燃烧室,每个筒都不是密封的,而是在适当的地方开有孔,所以整个燃烧室是连通的,后来发展到环形燃烧室,结构紧凑,但是整个流体环境不如筒状燃烧室,还有结合二者优点的组合型燃烧室。
涡轮始终工作在极端条件下,对其材料、制造工艺有着极其苛刻的要求。
目前多采用粉末冶金的空心页片,整体铸造,即所有页片与页盘一次铸造成型。
相比起早期每个页片与页盘都涡轮风扇发动机维基百科,自由的百科全书(重定向自涡轮风扇发动机)跳转到:导航, 搜索用于空中客车A320系列的CFM56-5B涡扇发动机前端扇叶•进气道•风扇o低压压气机•高压压气机•燃烧室•高压涡轮(High pressure turbine)•低压涡轮(Low pressure turbine)•加力燃烧室(Afterburner,是一选用机构,较常见于高性能的战斗机上)•尾喷口(Nozzel)涡扇发动机的运作示意图涡轮风扇发动机(Turbofan Engine,亦称涡扇发动机、涡轮扇发动机)是航空发动机的一种,由涡轮喷气发动机(Turbojet,简称涡喷发动机)发展而成。
与涡喷比较,主要特点是其首级压缩扇叶的面积大很多,除了作为压缩空气的用途之外,同时也具有螺旋桨的作用,能将部分吸入的空气通过喷气发动机的外围向后推。
发动机核心部分空气经过的部分称为内涵道,仅有风扇空气经过的核心机外侧部分称为外涵道。
涡扇引擎最适合飞行速度为每小时400至2,000千米时使用,故此现在多数的喷气机引擎都是采用涡扇发动机作为动力来源。
涡扇引擎的涵道比(Bypass ratio)是单位时间内不经过燃烧室的空气质量,与通过燃烧室的空气质量的比例。
涵道比为零的涡扇引擎即是涡轮喷气发动机。
早期的涡扇引擎和现代战斗机使用的涡扇引擎涵道比都较低。
例如世界上第一款涡扇引擎,劳斯莱斯的Conway,其涵道比只有0.3。
现代多数民用飞机引擎的涵道比通常都在5以上。
涵道比高的涡轮扇引擎耗油较少,但推力却与涡轮喷气发动机相当,且运转时还宁静得多。
战斗机使用低涵道比发动机,主要是因为截面积与常用飞行速度与民航机不同:高涵道比的发动机截面积过大在超音速的时候阻力过大,另外在超音速的状况下效率也会比纯涡轮射喷甚至于低涵道比设计还低,所以战斗机皆使用低涵道比发动机(涵道比皆低于1)。
只在超音速飞行的协和号喷气客机,因为长时间处于超音速状态,为了提升效率与降低成本,就是使用纯涡轮喷气而无涵道比的发动机。
冲压式喷气发动机维基百科,自由的百科全书(重定向自冲压发动机)跳转到:导航, 搜索汉漢▼显示↓冲压发动机(Ramjet, stovepipe jet, athodyd)是喷气发动机的一种,他是利用高速气流在速度改变下产生的压力改变,达到气体压缩的目的原理来运作。
冲压发动机本身没有活动的部分,气流从前端进气口进入发动机之后,利用涵道截面积的变化,让高速气流降低速度,并且提高气体压力。
压缩过后的气体进入燃烧室,与燃料混合之后燃烧。
由于冲压发动机维持运作的一个重要条件就是高速气流源源不决的从前方进入,因此发动机无法在低速或者是静止下继续运作,只能在一定的速度以上才可以产生推力。
为了让冲压发动机加速到适合的工作速度,必须有其他的辅助动力系统自静止或者是低速下提高飞行速度,然后才点燃冲压发动机。
由于没有活动组件,冲压发动机与一般喷气发动机比较起来,重量较低,结构也比较简单,不过冲压发动机在低速时的气体压缩效果有限,因此低速时效率比较差。
冲压发动机适合的工作环境是在2马赫与以上的速度,最低启动速度也大约是此界线,随着速度逐渐增加,气体的冲压效应在3马赫时效率会大幅压过涡轮喷气发动机,而此时的涡轮喷气发动机受限于超温往往已经无法运作了,但是冲压发动机在燃烧的阶段,进气气流的速中国自己的涡扇发动机目前进展如何?估计国有军工体制不能调动人的积极性,是否可组织民间资本研发?涡轮风扇发动机是军机和民机都会用到的动力装置,我国在这方面还比较薄弱,战斗机如果不使用涡扇发动机,就不能算现代战斗机,涡扇发动机技术也可以用于研发民用运输机的动力,将来我们甚至可以向世界低价出售涡扇发动机,这是一项投入大,回报更大的技术产业。
不知我国在这方面进展的怎么样?投入如何?有哪些具体困难?中国人不笨,估计是现有体制抑制了研发人员的积极性。
如果引导民营资本搞军工,体制上有利于发挥人的才能和创造性,市场竞争出精品,不仅涡扇发动机可以民营企业搞,干线客机也可以民间搞,国家要有扶植政策。
涡扇-9是英国斯贝(SPEY)MK202发动机的国产衍生型,后者是英国皇家空军F-4“鬼怪”式战斗机的标准发动机。
MK202最大推力9,305公斤,推重比在6.5左右。
当时中国希望将MK202作为标准发动机装备,出资5亿英镑,于1975年12月13日与罗尔斯·罗伊斯公司签约引进了该发动机生产专利。
1976年3月,603所的中国红旗机械厂负责开始试制该发动机。
1979年7月25日第一台使用英国毛料制造的零组件、罗尔斯·罗伊斯外购件和附件的涡扇-9完成装配。
同年11月13日完成150小时持久试车,首批共制造4台。