等比数列测试题百度文库

等比数列测试题百度文库
等比数列测试题百度文库

一、等比数列选择题

1.数列{a n }满足2

1

1232222

n n n

a a a a -+++?+=

(n ∈N *),数列{a n }前n 和为S n ,则S 10等于( )

A .55

12?? ???

B .10

112??- ???

C .9

112??- ??? D .66

12?? ???

2.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则91078

a a a a +=+( ) A

1 B

1

C

.3- D

.3+3.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )

A .-3+(n +1)×2n

B .3+(n +1)×2n

C .1+(n +1)×2n

D .1+(n -1)×2n

4.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个

单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于六个单音的频率为f ,则( ) A .第四个单音的频率为1

122f - B .第三个单音的频率为1

42f - C .第五个单音的频率为162f

D .第八个单音的频率为1

122f

5.设n S 为等比数列{}n a 的前n 项和,若11

0,,22

n n a a S >=<,则等比数列{}n a 的公比的取值范围是( )

A .30,4?? ???

B .20,3?? ???

C .30,4?? ???

D .20,3?? ???

6.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-

B .3-

C .3

D .8

7.在等比数列{}n a 中,11a =,427a =,则352a a +=( ) A .45

B .54

C .99

D .81

8.明代数学家程大位编著的《算法统宗》是中国数学史上的一座丰碑.其中有一段著述“远望巍巍塔七层,红光点点倍加增,共灯三百八十一”.注:“倍加增”意为“从塔顶到塔底,相比于上一层,每一层灯的盏数成倍增加”,则该塔正中间一层的灯的盏数为( )

A .3

B .12

C .24

D .48

9.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12

B .18

C .24

D .32

10.已知{}n a 是各项均为正数的等比数列,121a a +=,344a a +=,则

5678a a a a +++=( )

A .80

B .20

C .32

D .

255

3

11.已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a ++

+=,

则k =( ) A .2

B .3

C .4

D .5

12.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009

B .1010

C .1011

D .2020

13.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3

分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于

9

10

,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)

A .4

B .5

C .6

D .7

14.设数列{}n a ,下列判断一定正确的是( )

A .若对任意正整数n ,都有24n

n a =成立,则{}n a 为等比数列

B .若对任意正整数n ,都有12n n n a a a ++=?成立,则{}n a 为等比数列

C .若对任意正整数m ,n ,都有2m n

m n a a +?=成立,则{}n a 为等比数列

D .若对任意正整数n ,都有

312

11

n n n n a a a a +++=??成立,则{}n a 为等比数列

15.若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1

B .2

C .4

D .8

16.已知等比数列{}n a 的n 项和2n n S a =-,则22

212n a a a ++

+=( )

A .()2

21n -

B .

()1213

n

- C .41n -

D .

()1413

n

- 17.在等比数列{}n a 中,首项11,2a =11

,,232

n q a ==则项数n 为( ) A .3 B .4 C .5 D .6

18.已知正项等比数列{}n a 满足11

2

a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,

则5S =( ) A .

312

或112

B .

31

2 C .15

D .6

19.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092

B .2047

C .2046

D .1023

20.设数列{}n a 的前n 项和为n S ,且()*

2n n S a n n N =+∈,则3

a

=( )

A .7-

B .3-

C .3

D .7

二、多选题21.题目文件丢失! 22.题目文件丢失! 23.题目文件丢失!

24.在数列{}n a 中,如果对任意*n N ∈都有

21

1n n n n

a a k a a +++-=-(k 为常数),则称{}n a 为等

差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0

C .若32n

n a =-+,则数列{}n a 是等差比数列

D .若等比数列是等差比数列,则其公比等于公差比

25.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,

2()n n n n n a a n b b n N +++=?=∈,则下列结论正确的是( )

A .101a <<

B

.11b <<

C .22n n S T <

D .22n n S T ≥

26.计算机病毒危害很大,一直是计算机学家研究的对象.当计算机内某文件被病毒感染后,该病毒文件就不断地感染其他未被感染文件.计算机学家们研究的一个数字为计算机病毒传染指数0,C 即一个病毒文件在一分钟内平均所传染的文件数,某计算机病毒的传染指数02,C =若一台计算机有510个可能被感染的文件,如果该台计算机有一半以上文件被感染,则该计算机将处于瘫疾状态.该计算机现只有一个病毒文件,如果未经防毒和杀毒处理,则下列说法中正确的是( )

A .在第3分钟内,该计算机新感染了18个文件

B .经过5分钟,该计算机共有243个病毒文件

C .10分钟后,该计算机处于瘫痪状态

D .该计算机瘫痪前,每分钟内新被感染的文件数成公比为2的等比数列 27.对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,5a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列

D .3a ,6a ,9a 成等比数列

28.设n S 为等比数列{}n a 的前n 项和,满足13a =,且1a ,22a -,34a 成等差数列,则下列结论正确的是( ) A .1

13()2

n n a -=?-

B .36n

n S a =+

C .若数列{}n a 中存在两项p a ,s a

3a =,则19p s +的最小值为83

D .若1n n t S m S ≤-

≤恒成立,则m t -的最小值为116

29.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )

A .1

12n n n S S ++-= B .12n n a

C .21n

n S =-

D .1

21n n S -=-

30.在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( ) A .8 B .12 C .-8

D .-12

31.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件

11a >,66771

1,

01

a a a a -><-,则下列结论正确的是( ) A .01q <<

B .681a a >

C .n S 的最大值为7S

D .n T 的最大值为6T

32.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ??

????

的前n 项和,则下列结论中正确的是( ) A .()21121n n

S n a -=-? B .212

n n S S =

C .2311222

n n n S S ≥

-+ D .212

n n S S ≥+

33.已知数列{}n a 的首项为4,且满足(

)*

12(1)0n n n a na n N ++-=∈,则( )

A .n a n ??

?

???

为等差数列 B .{}n a 为递增数列

C .{}n a 的前n 项和1

(1)24n n S n +=-?+

D .12n n a +??????的前n 项和2

2

n n n T +=

34.已知正项等比数列{}n a 满足12a =,4232a a a =+,若设其公比为q ,前n 项和为

n S ,则( )

A .2q

B .2n

n a = C .102047S = D .12n n n a a a +++<

35.对于数列{}n a ,若存在数列{}n b 满足1

n n n

b a a =-

(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;

B .若31n a n =-,则其“倒差数列”有最大值;

C .若31n a n =-,则其“倒差数列”有最小值;

D .若112n

n a ??=-- ???,则其“倒差数列”有最大值.

【参考答案】***试卷处理标记,请不要删除

一、等比数列选择题 1.B 【分析】

根据题意得到2

212311

2222

n n n a a a a ---+++

+=

,(2n ≥),与条件两式作差,得到12n n a =

,(2n ≥),再验证112a =满足12n n a =,得到12n

n

a =()*

n N ∈,进而可求出结果. 【详解】 因为数列{}n a 满足2

11232222

n n n a a a a -+++

+=

, 2212311

2222

n n n a a a a ---+++

+=

,(2n ≥) 则1

112

222--=

-=n n n n a ,则12

n n a =,(2n ≥), 又112a =

满足12n n a =,所以12

n n a =()*

n N ∈, 因此10102

10123101011111

112211222212

S a a a a ??- ?????++=

+++==- ?+?-=?.

故选:B 2.D 【分析】 根据1a ,

312a ,22a 成等差数列可得3121

222

a a a ?=+,转化为关于1a 和q 的方程,求出q 的值,将

910

78

a a a a ++化简即可求解.

【详解】

因为{}n a 是正项等比数列且1a ,31

2

a ,22

a 成等差数列, 所以

3121

222

a a a ?=+,即21112

a q a a q =+

,所以2210q q --=, 解得:1q =+1q =

(22

2

2910787878

13a a a q a q q a a a a ++====+++,

故选:D 3.D 【分析】

利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】

设等比数列{a n}的公比为q,易知q≠1,

所以由题设得

()

()

3

1

3

6

1

6

1

7

1

1

63

1

a q

S

q

a q

S

q

?-

?==

-

?

?

-

?

==

?

-

?

两式相除得1+q3=9,解得q=2,进而可得a1=1,

所以a n=a1q n-1=2n-1,

所以na n=n×2n-1.

设数列{na n}的前n项和为T n,则T n=1×20+2×21+3×22+…+n×2n-1,2T n=1×21+2×22+3×23+…+n×2n,

两式作差得-T n=1+2+22+…+2n-1-n×2n=12

12

n

-

-

-n×2n=-1+(1-n)×2n,

故T n=1+(n-1)×2n.

故选:D.

【点睛】

本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 4.B

【分析】

根据题意得该单音构成公比为

四、五、八项即可得答案.

【详解】

解:根据题意得该单音构成公比为

因为第六个单音的频率为f,

1

4

1

4

2

2

f

f

-

==.

6

6

1

1

2

2

f

f

-

==.

所以第五个单音的频率为112

2f

=.

所以第八个单音的频率为

1

2

6

2

f f

=

故选:B.

5.A

【分析】

设等比数列{}n a的公比为q,依题意可得1

q≠.即可得到不等式1

1

2

n

q-

?>,

1

(1)

221n q q

-<-,即可求出参数q 的取值范围;

【详解】

解:设等比数列{}n a 的公比为q ,依题意可得1q ≠.

11

0,2

n a a >=

,2n S <, ∴1

102n q -?>,1

(1)221n q q

-<-, 10q ∴>>. 144q ∴-,解得3

4

q

. 综上可得:{}n a 的公比的取值范围是:30,4

?? ??

?

故选:A . 【点睛】

等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程. 6.A 【分析】

根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】

设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2

326a a a =,

即2

(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)

661(2)2422

S a d ?-?-=+=?+?-=-. 故选:A 7.C 【分析】

利用等比数列的通项与基本性质,列方程求解即可 【详解】

设数列{}n a 的公比为q ,因为3

41a a q =,所以3q =,所以24

352299a a q q +=+=.

故选C 8.C 【分析】

题意说明从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为1a ,由

系数前n 项和公式求得1a ,再由通项公式计算出中间项. 【详解】

根据题意,可知从塔顶到塔底,每层的灯盏数构成公比为2的等比数列,设塔顶灯盏数为

1a ,则有()717

1238112

a S ?-=

=-,解得13a =,中间层灯盏数3

4124a a q ==,

故选:C. 9.C 【分析】

将已知条件整理为()()2

2

121328a q q q -+=,可得()

2

218

3221q q a q +=

-,进而可得

()44

2

7612249633221

q a a a q q q q +=+=-,分子分母同时除以4

q ,利用二次函数的性质即

可求出最值. 【详解】

因为{}n a 是等比数列,543264328a a a a +--=,

所以432

111164328a q a q a q a q +--=,

()()222

1232328a q q q q q ??+-+=??,

即()()2

2

121328a q q q -+=,所以()

2

218

3221q q a q +=

-,

()()46

5

4

2

4

7611112

2124

82424

9696332321

2121q a a a q a q a q q q a q q a q q q +=+=+=?==---, 令210t q =>,则()22

2421211t t t q q

-=-=--+, 所以211t q

==,即1q =时2421

q q -最大为1,此时24

24

21q q -最小为24, 所以7696a a +的最小值为24, 故选:C 【点睛】

易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;

(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;

(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限

制条件的转化. 10.A 【分析】

由条件求出公比q ,再利用前4项和和公比求5678a a a a +++的值. 【详解】

根据题意,由于{}n a 是各项均为正数的等比数列,

121a a +=,()234124a a q a a +==+,∴24q =,0q >,2q

则()()4

56781234161480a a a a q a a a a +++=+++=+=.

故选:A 11.B 【分析】

本题首先可设公比为q ,然后根据132185k a a a ++++=得出()2284k q a a ++=,再

然后根据24242k a a a +++=求出2q

,最后根据等比数列前n 项和公式即可得出结

果. 【详解】

设等比数列{}n a 的公比为q , 则132112285k k a a a a a a q q +++++++==,

即()2285184k q a a +

+=-=,

因为24242k a a a +++=,所以2q

则()21123

221112854212712

k k k a a a a a ++?-+++++=+==

-,

即211282k +=,解得3k =, 故选:B. 【点睛】

关键点点睛:本题考查根据等比数列前n 项和求参数,能否根据等比数列项与项之间的关系求出公比是解决本题的关键,考查计算能力,是中档题. 12.C 【分析】

根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到2

10111a =,再利用

11,01a q ><<求解即可.

【详解】

根据题意:2022122022...a a a a =, 所以122021...1a a a =,

因为{a n }等比数列,设公比为q ,则0q >,

所以2

12021220201011...1a a a a a ====,

因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,

所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C. 【点睛】

关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关

键是根据定义和等比数列性质得出2

10111a =以及11,01a q ><<进行判断.

13.C 【分析】

依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】

第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19

的区间,长度和为2

9;第

三次操作去掉四个长度为

127的区间,长度和为427;…第n 次操作去掉12n -个长度为1

3

n 的区间,长度和为1

23

n n -,

于是进行了n 次操作后,所有去掉的区间长度之和为1

122213933n

n n n S -??

=++???+=- ???

由题意,90

2131n

??-≥ ???,即21lg lg

1031n ≤=-,即()lg3lg21n -≥,解得:11

5.679lg3lg 20.47710.3010

n ≥

=≈--,

又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】

本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题. 14.C 【分析】

根据等比数列的定义和判定方法逐一判断. 【详解】

对于A ,若24n n a =,则2n

n a =±,+1+12n n a =±,则

1

2n n

a a +=±,即后一项与前一项的比不一定是常数,故A 错误;

对于B ,当0n a =时,满足12n n n a a a ++=?,但数列{}n a 不为等比数列,故B 错误;

对于C ,由2

m n

m n a a +?=可得0n a ≠,则+1

+12

m n m n a a +?=,所以1+1

222

n n m n m n a a +++==,故{}n a 为公比为2的等比数列,故C 正确;

对于D ,由

312

11

n n n n a a a a +++=??可知0n a ≠,则312n n n n a a a a +++?=?,如1,2,6,12满

足312n n n n a a a a +++?=?,但不是等比数列,故D 错误. 故选:C. 【点睛】

方法点睛:证明或判断等比数列的方法,

(1)定义法:对于数列{}n a ,若()1

0,0n n n

a q q a a +=≠≠,则数列{}n a 为等比数列; (2)等比中项法:对于数列{}n a ,若()2

21

0n n n n a a a a ++=≠,则数列{}n a 为等比数列;

(3)通项公式法:若n n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列; (4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 15.C 【分析】

根据等比数列的性质,由题中条件,求出72a =,即可得出结果. 【详解】

因为数列{}n a 是等比数列,由17138a a a =,得3

78a =,

所以72a =,因此2

31174a a a ==.

故选:C. 16.D 【分析】

由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}

2

n a 也为等比数列,确定该数列的

首项和公比,利用等比数列的求和公式可求得所化简所求代数式.

【详解】

已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;

当2n ≥时,(

)(

)1

1122

2n

n n n n n a S S a a ---=-=---=.

由于数列{}n a 为等比数列,则12a a =-满足12n n

a ,所以,022a -=,解得1a =,

()1

2

n n a n N -*

∴=∈,则()

2

21

1

24

n n n

a --==,21

21444

n n n n a a +-∴==,且211a =,

所以,数列{}

2

n a 为等比数列,且首项为1,公比为4,

因此,22212

1441

143

n n n

a a a --+++==

-. 故选:D. 【点睛】

方法点睛:求数列通项公式常用的七种方法:

(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或1

1n n a a q -=进行

求解;

(2)前n 项和法:根据11,1

,2n n

n S n a S S n -=?=?-≥?进行求解;

(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;

(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法;

(5)累乘法:当数列{}n a 中有()1

n

n a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;

(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且

1k ≠,0k ≠).

一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1

b

m k =

-,可得出数列1n b a k ??+??-??

是以k 的等比数列,可求出n a ;

②取倒数法:这种方法适用于()1

12,n n n ka a n n N ma p

*--=

≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b

-=+的式子;

⑦1n

n n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式

的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可. 17.C 【分析】

根据等比数列的通项公式求解即可. 【详解】

由题意可得等比数列通项5

1

11122n

n n a a q -????

=== ? ?????

,则5n = 故选:C

18.B 【分析】

首先利用等比数列的性质求3a 和公比q ,再根据公式求5S . 【详解】

正项等比数列{}n a 中,

2432a a a =+∴,

2332a a =+∴,

解得32a =或31a =-(舍去) 又11

2

a =

, 23

1

4a q a =

=, 解得2q

5

151

(132)

(1)312112

a q S q --∴===--,

故选:B 19.A 【分析】

根据题中条件,先得数列的通项,再由等比数列的求和公式,即可得出结果. 【详解】

因为点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上, 所以()12

,2n

n a n N n -=∈≥,因此()12n n a n N ++=∈,

即数列{}n a 是以4为首项,以2为公比的等比数列, 所以{}n a 的前10项和为()10412409212

-=-.

故选:A. 20.A 【分析】

先求出1a ,再当2n ≥时,由(

)*

2n n S a n n N

=+∈得1

121n n S

a n --=+-,两式相减后化

简得,121n n a a -=-,则112(1)n n a a --=-,从而得数列{}1n a -为等比数列,进而求出

n a ,可求得3a 的值

【详解】

解:当1n =时,1121S a =+,得11a =-,

当2n ≥时,由(

)*

2n n S a n n N

=+∈得1

121n n S

a n --=+-,两式相减得

1221n n n a a a -=-+,即121n n a a -=-,

所以112(1)n n a a --=-,

所以数列{}1n a -是以2-为首项,2为公比的等比数列,

所以1122n n a --=-?,所以1

221n n a -=-?+,

所以23

2217a =-?+=-,

故选:A

二、多选题 21.无 22.无 23.无

24.BCD 【分析】

考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】

对于数列{}n a ,考虑121,1,1n n n a a a ++===,

21

1n n n n

a a a a +++--无意义,所以A 选项错误;

若等差比数列的公差比为0,

21

2110,0n n n n n n

a a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;

若32n

n a =-+,

21

13n n n n

a a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确;

若等比数列是等差比数列,则1

1,1n n q a a q -=≠,

()()

11211111

111111n n n

n n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】

易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1. 25.ABC 【分析】

利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】

因为数列{}n a 为递增数列, 所以123a a a <<,

所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,

所以2

1122b b b <=

,即1b <

又2

2234b b b <=,即21

2

2b b =

<, 所以11b >

,即11b <<,故B 正确;

{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++???++

= 22(121)

2[13(21)]22

n n n n +-++???+-=

=,

因为12n n n b b +?=,则1

122n n n b b +++?=,所以22n n b b +=,

则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++???++++???+

=1101101122(222)(222)()(21)n n n

b b b b --++???++++???+=+-

1)1)n n

>-=-, 当n =1

时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时

假设当n=k

时,21)2k k ->

21)k k ->, 则当n=k +1

1121)21)21)2k k k k k ++-=

+-=->

2221(1)k k k >++=+

所以对于任意*n N ∈

,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】

本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题.

26.ABC 【分析】

设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则

()121n n a S +=+,且12a =,可得123n n a -=?,即可判断四个选项的正误.

【详解】

设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则

()121n n a S +=+,且12a =,

由()121n n a S +=+可得()121n n a S -=+,两式相减得:12n n n a a a +=-,

所以13n n a a +=,所以每分钟内新感染的病毒构成以12a =为首项,3为公比的等比数列,

所以1

23n n a -=?,

在第3分钟内,该计算机新感染了31

32318a -=?=个文件,故选项A 正确;

经过5分钟,该计算机共有()551234521311324313

a a a a a ?-+++++=+==-个病毒文

件,故选项B 正确;

10分钟后,计算机感染病毒的总数为

()

1010512102131

11310132

a a a ?-+++

+=+

=>?-,

所以计算机处于瘫痪状态,故选项C 正确; 该计算机瘫痪前,每分钟内新被感染的文件数成公比为3的等比数列,故选项D 不正确; 故选:ABC 【点睛】

关键点点睛:解决本题的关键是读懂题意,得出第1n +分钟之内新感染的文件数为1n a +与 前n 分钟内新感染的病毒文件数之和为n S 之间的递推关系为()121n n a S +=+,从而求得

n a .

27.AD 【分析】

根据等比数列的定义判断. 【详解】

设{}n a 的公比是q ,则1

1n n a a q -=,

A .23513a a

q a a ==,1a ,3a ,5a 成等比数列,正确; B ,32

a q a =,363a

q a =,在1q ≠时,两者不相等,错误;

C .

24

2a q a =,484

a q a =,在21q ≠时,两者不相等,错误;

D .

36936

a a

q a a ==,3a ,6a ,9a 成等比数列,正确. 故选:AD . 【点睛】

结论点睛:本题考查等比数列的通项公式.

数列{}n a 是等比数列,则由数列{}n a 根据一定的规律生成的子数列仍然是等比数列: 如奇数项1357,,,,a a a a 或偶数项246,,,

a a a 仍是等比数列,

实质上只要123,,,,,n k k k k 是正整数且成等差数列,则123,,,,,

n k k k k a a a a 仍是等比

数列. 28.ABD 【分析】

根据等差中项列式求出1

2

q =-

,进而求出等比数列的通项和前n 项和,可知A ,B 正确;

3a =求出15p s =??=?或24p s =??=?或42p s =??=?或5

1

p s =??=?,可知19p s +的最小值为

114

,C 不正确;利用1n

n y S S =-关于n S 单调递增,求出1n n S S -的最大、最小值可得结果. 【详解】

设等比数列{}n a 的公比为q ,

由13a =,21344a a a -=+得2

43343q q -?=+?,解得1

2

q =-

,所以11

3()2

n n a -=?-,

1

3(1())

1221()121()2

n n n S --??==-- ???--;

1111361()66()63()63222n n n n n S a -?

?=--=--=+?-=+ ??

?;所以A ,B 正确;

3a =,则23p s a a a ?=,1122111()p s p s a a a q a q a q --?==,

所以11

4p s q q

q --=,所以6p s +=,

则15p s =??

=?或24p s =??=?或42p s =??=?或51

p s =??=?,此时19145p s +=或114或194或465;C 不正确,

122,2121()2122,2n

n n n

n S n ???

+? ?????

?=--=? ?????

?- ?????

为奇数为偶数, 当n 为奇数时,(2,3]n S ∈,当n 为偶数时,3

[,2)2

n S ∈,

又1n n y S S =-

关于n S 单调递增,所以当n 为奇数时,138

(,]23

n

n S S -∈,当n 为偶数时,153

[,)62n n S S -

∈,所以83

m ≥,56t ≤,所以8511366m t -≥-=,D 正确, 故选:ABD . 【点睛】

本题考查了等差中项的应用,考查了等比数列通项公式,考查了等比数列的前n 项和公式,考查了数列不等式恒成立问题,属于中档题. 29.BC 【分析】

根据数列的增减性由所给等式求出1a d 、,写出数列的通项公式及前n 项和公式,即可进行判断. 【详解】

数列{a n }为单调递增的等比数列,且24100a a +=>,0n a ∴>

23464a a a =,2364a ∴=,解得34a =,

2410a a +=,4

410q q

∴+=即22520q q -+=,解得2q

12

, 又数列{a n }为单调递增的等比数列,取2q

,3124

14

a a q =

==, 1

2

n n

a ,212121

n n n S -==--,()1121212n n n

n n S S ++-=---=.

故选:BC 【点睛】

本题考查等比数列通项公式基本量的求解、等比数列的增减性、等比数列求和公式,属于基础题. 30.AC 【分析】

求出等比数列的公比2q =±,再利用通项公式即可得答案; 【详解】

57216

24

a q q a ==?=±,

当2q

时,65428a a q ==?=,

当2q =-时,654(2)8a a q ==?-=-, 故选:AC. 【点睛】

本题考查等比数列通项公式的运算,考查运算求解能力,属于基础题. 31.AD 【分析】

分类讨论67,a a 大于1的情况,得出符合题意的一项. 【详解】

①671,1a a >>, 与题设

671

01

a a -<-矛盾. ②671,1,a a ><符合题意. ③671,1,a a <<与题设

671

01

a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.

得671,1,01a a q ><<<,则n T 的最大值为6T .

∴B ,C ,错误.

故选:AD. 【点睛】

考查等比数列的性质及概念. 补充:等比数列的通项公式:()1

*

1n n a a q n N -=∈.

32.CD 【分析】

根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:

22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.

【详解】

因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,

所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()13

22122

?-?=,故错误; B. 令1n =时, 213122

S =+

=,而 111

22S =,故错误;

相关主题
相关文档
最新文档