等腰三角形培优试题

合集下载

等腰三角形大题培优专练

等腰三角形大题培优专练

2023-2024学年八年级数学上学期复习备考高分秘籍【人教版】专题2.5等腰三角形大题培优专练(提升篇)班级:_____________ 姓名:_____________ 得分:_____________一、解答题1.(2023秋·山东菏泽·八年级校联考期末)如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.求证:DE⊥CE.2.(2023秋·浙江·八年级专题练习)如图,已知△ABC中,∠B=∠E=40°,∠BAE=60°,且AD平分∠BAE.(1)求证:BD=DE;(2)若AB=AC,求∠CAD的度数.3.(2023·陕西西安·陕西师大附中校考模拟预测)如图,在△ABC中,AB=AC,延长BC至D,使得BD=AC,连接AD,再延长AB至E,使得BE=CD,连接DE.求证:△BED≌△CDA.5.(2023秋·全国·八年级专题练习)如图,(1)求证:△ADC≌△FDB;(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F.在不添加任何辅助线和字母的情况下,请直接写出图2中的等腰三角形(△ABC除外).8.(2023春·八年级课时练习)如图,在△ABC中,AB=AC,AB的垂直平分线交AB于M,交AC于N,连接NB.(1)若∠ABC=65°,求∠NBC的度数.(2)若AB=8cm,△NBC的周长是14cm.求BC的长;9.(2020秋·浙江温州·八年级校考期中)在正方形网格中,已知格点(即小正方形的顶点)A、B组成的线段AB,请分别按下列要求作图:(1)在图1中作一个面积为2的△ABC(点C在格点上),且有一个内角为钝角;(2)在图2中作一个等腰△ABC(点C在格点上).10.(2022秋·湖南邵阳·八年级校考期末)如图,在△ABC中,AB=AC,CE平分∠ACB,EC=EA.(1)求∠A的度数;(2)若BD⊥AC,垂足为D,BD交EC于点F,求∠1的度数.11.(2022秋·湖北随州·八年级校考期中)如图,B、C分别在AD、AE的垂直平分线上,DE=12,∠ABC=50°,∠ACB=70°.求:(1)△ABC的周长;(2)∠DAE的度数.12.(2022秋·山西晋中·八年级校考期中)已知:如图,△ABC中,∠ABC与∠ACB的角平分线相交于点F,过点F作DE∥BC,分别交AB、AC于点D、E.求证:(1)DE=DB+EC;(2)若AB=3,AC=2,则△ADE的周长为________.13.(2021秋·湖北宜昌·八年级统考期中)如图,在△ABC中,∠BAC、∠ACB的平分线交于点M,过M作DE∥AC,分别交AB、BC于点D、E.求证:AD+CE=DE.14.(2022秋·湖北随州·八年级校考期中)已知:如图,点②AB=AE,③AC=AD,④(只写一组).15.(2023秋·湖北武汉·八年级校考阶段练习)如图,点∠ABD=∠DBC,AB=DB,(1)BM=BN;(2)BM⊥BN.16.(2023秋·福建福州·八年级福建省福州屏东中学校考开学考试)如图,点AD=BC,∠ADE=∠BED.(1)尺规作图:作∠DCE的平分线CF,交DE于点F;(2)证明:CF⊥DE.17.(2022秋·河北唐山·八年级统考期中)如图,BA⊥AF于点A,ED⊥DC于点D,点E、F在线段BC上,DE与AF交于点O,且AB=DC,BE=CF.(1)求证:AF=DE;(2)若OP平分∠EOF,求证:OP垂直平分EF.18.(2023秋·山东聊城·八年级校考阶段练习)如图,在△ABC中,AB=AC,D是BC边上的一点,以AD为边在AD右侧作△ADE,使AE=AD,连接CE,∠BAC=∠DAE=100°.(1)试说明BD=CE;(2)若DE=DC,求∠CDE的度数.19.(2023秋·黑龙江哈尔滨·八年级哈尔滨市第四十七中学校考阶段练习)已知:在△ABC中,AB=AC,点D、点E在边BC上,AD=AE.(1)如图1,求证:BD=CE;(2)如图2,当∠BAC=90°,∠DAE=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的所有顶角为45°的等腰三角形.20.(2023秋·浙江·八年级专题练习)如图,已知△ABC,E是BA延长线上的点.(1)过点A在射线BE右侧作AD∥BC;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若AB=AC,求证:AD平分∠CAE.21.(2022春·河南焦作·八年级校考期中)已知命题:“等腰三角形一腰上的高与底边的夹角等于顶角的一半.”为了探究该命题是否正确,小明采用分类讨论思想,从直角三角形、锐角三角形、钝角三角形三个角度进行思考,先对前两种情况画出了图形,写出了已知、求证并给出了证明在探究在钝角三角形中是否正确时遇到了困难,请你补全图形,写出已知、求证,并给出证明.22.(2023秋·吉林长春·八年级东北师大附中校考开学考试)在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.(1)如图①,当AE⊥BC时,求证:DE∥AC.(2)若∠C=2∠B,∠BAD=x°(0<x<60).①如图②,当DE⊥BC时,x的值为___________;②当△DEF是等腰三角形时,直接写出x的值.23.(2021秋·福建莆田·八年级校考期末)如图,在△ABC中,EF垂直平分AC,交AC于点F,交BC于点E,AD⊥BC,且BD=DE,连接AE.(1)若∠BAE=44°,求∠C的度数.(2)若AC=7cm,DC=5cm,求△ABC的周长.24.(2022秋·福建福州·八年级统考期中)如图,在△ABC中,AC>BC,∠A=45°,点D是AB边上一点,且CD=CB,过点B作BF⊥CD于点E,与AC交于点F,过点C作CG⊥BD,垂足为点G.(1)求证:∠BCD=2∠ABF;(2)判断△BCF的形状,并说明理由.25.(2023秋·江苏·八年级专题练习)如图,点D、E在△ABC的边BC上,AB=AC.(1)若AD=AE,求证:BD=CE;(2)若BD=CE,F为DE的中点,如图②,求证:AF⊥BC.26.(2021春·上海松江·七年级校考期中)如图,在△ABC中,已知D是BC边的中点,过点于F,交AC的平行线BG于点G,DE⊥GF,交AC的延长线于点E,联结EG.(1)说明BG与CF相等的理由;(2)说明∠BGD与∠DGE相等的理由.27.(江苏省泰州市部分农村学校在△ABC中,AB=AC=4(1)当∠BDA=110°时,∠DEC=(2)当DC为何值时,△ABD≌△(3)在点D的运动过程中,若△(1)在线段AB上找一点P,使AP=AN,连接DP.求证:DP=DM;(2)若△AMD的面积等于100,△AND的面积等于80,求△DHN的面积.29.(2022秋·湖南株洲·八年级校考期中)在△ABC中,AD平分∠BAC,BD⊥AD,垂足为点D,过点D作DE∥AC,交AB于点E,AB=5.(1)求证:△ADE是等腰三角形;(2)求线段DE的长.30.(2022秋·广东深圳·八年级校联考开学考试)如图,已知△ABC中,∠B=∠E=40°,∠BAE=60°,∠ADC=70°,且AD平分∠BAE.(1)求证:BD=DE;(2)若AB=CD,求∠ACD的大小.。

培优专题等腰三角形(含答案)

培优专题等腰三角形(含答案)

9、等腰三角形【知识精读】(-)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。

等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。

(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2. 定理及其推论的作用。

等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。

3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。

【分类解读】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。

等腰三角形培优专题

等腰三角形培优专题

等腰三角形【等腰三角形存在性问题】1.如图4×4的正方形网格中,网格线的交点叫格点,已知点A、B是格点,若C也是格点且△ABC 为等腰三角形,则点C的个数是()A.6个B.7个C.8个D.9个2.如图,正方形网格中,网格线的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.8C.9D.103.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有()A.8个B.7个C.6个D.5个4.如图,△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为.【等腰三角形分类讨论】1.等腰三角形的一个角比另一个角2倍少20度,等腰三角形顶角的度数是()A.140°或44°或80°B.20°或80°C.44°或80°D.140°2.规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为()A.30°B.36°C.45°D.60°3.等腰三角形的两边a,b满足|a﹣7|+=0,则它的周长是()A.12 B.15 C.17 D.194.等腰三角形周长为17cm,一腰上的中线将三角形分为两个三角形,这两个三角形的周长差为4cm,则此等腰三角形的底边长为.5.若等腰三角形一腰上的中线将其周长分成9和6两部分,则这个等腰三角形的三边长分别为.页1【等腰三角形性质的应用】6.已知:如图,在△ABC中,AB=AC,∠C=72°,BC=.以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A.2B.C.D.7.如图,在△ABC中,AB=AC,过点C的直线EF∥AB.若∠ACE=30°,则∠B的度数为()A.30°B.65°C.75°D.85°9.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°10.如图,BD,CE分别是△ABC的高线和角平分线,且相交于点O.若AB=AC,∠A=40°,则∠BOE的度数是()A.60°B.55°C.50°D.40°11.如图,在△ABC中,AC=AD=DB,∠C=70°,则∠CAB的度数为()A.75°B.70°C.40°D.35°12.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,BE和CE交于点E,过点E作MN∥BC 交AB于点M,交AC于点N.若MN=8,则BM+CN的长为()A.6.5B.7.2C.8D.9.513.如图,在△ABC中,∠ABC的平分线交AC于点D,AD=6,过点D作DE∥BC交AB于点E,若△AED的周长为16,则边AB的长为()A.6B.8C.10D.1214.如图,AE垂直于∠ABC的平分线交于点D,交BC于点E,CE=BC,若△ABC的面积为2,则△CDE的面积为()A.B.C.D.页215.如图,在△ABC中,AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则△BED 与△DFC的周长的和为()A.34B.32C.22D.2016.如图,已知△ABC,点D、E分别在边AC、AB上,∠ABD=∠ACE,下列条件中,不能判定△ABC是等腰三角形的是()A.AE=AD B.BD=CE C.∠ECB=∠DBC D.∠BEC=∠CDB.17.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm218.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=36°,那么∠BED的度数为()A.108°B.120°C.126°D.144°21.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=44°,则∠CDB的度数是.22.如图,已知△ABC中,AB=AC,∠CAB的角平分线与外角∠CBD的角平分线交于点M,且∠AMB=35°,则∠CAB=.24.如图,已知BD⊥AG,CE⊥AF,BD、CE分别是∠ABC和∠ACB的角平分线,若BF=3,ED =2,GC=5,则△ABC的周长为.【最短路径】页326.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线L成轴对称的△A′B′C′;(2)求△ABC的面积;(3)在直线L上找一点P(在答题纸上图中标出),使PB+PC的长最小.27.如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1(要求A与A1,B与B1,C与C1相对应);(2)在直线l上找一点P,使得PA+PB的和最小.【等腰三角形的性质的应用综合题】28.如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.29.如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.页430.如图,△ABC中,AB=AC,D,E,F分别为AB,BC,CA上的点,且BD=CE,∠DEF=∠B(1)求证:△BDE≌△CEF;(2)若∠A=40°,求∠EDF的度数.31.如图,在△ABC中,∠ABC=90°,过点B作BD⊥AC于点D,BE平分∠ABD交AC于点E.(1)求证:CB=CE;(2)若∠CEB=80°,求∠DBC的大小.32.如图,在△ABC中,∠B=90°,AB=8厘来,BC=6厘米P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动速度为1厘米/秒,点Q从点B开始沿B→C→A方向运动速度为2厘米/秒,若它们同时出发,设出发的时阃为t秒.(1)求出发2秒后,PQ的长;(2)点Q在CA边上运动时,当△BCQ成为等腰三角形时,求点Q的运动时间.33.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.页5(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,34.如图,在等腰△ABC中,AB=AC,D为底边BC延长线上任意一点,过点D作DE∥AB,与AC延长线交于点E.(1)则△CDE的形状是;(2)若在AC上截取AF=CE,连接FB、FD,判断FB、FD的数量关系,并给出证明.35.如图①,△ABC中,∠ABC=∠ACB,点D为BC边上一点,E为直线AC上一点,且∠ADE =∠AED.(1)试说明∠BAD=2∠CDE;(2)如图②,若点D在CB的延长线上,其他条件不变,(1)中的结论是否仍然成立?请说明理由.页6页 736.如图,在等腰三角形△ABC 中,AB =AC ,BD 平分∠ABC ,在BC 的延长线上取一点E ,使CE =CD ,连接DE ,求证:BD =DE .37.如图所示,△ABC 中,BA =BC ,点D 为BC 上一点,DE ⊥AB 交AB 于点E ,DF ⊥BC 交AC 于点F .(1)若∠AFD =160°,则∠A=°; (2)若点F 是AC 的中点,求证:∠CFD =∠B .38.如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,E 是AC 边上的一点,且∠CBE =∠CAD .求证:BE ⊥AC .39.如图,△ABC 中,∠ABC =∠ACB ,点D 在BC 所在的直线上,点E 在射线AC 上,且∠ADE =∠AED ,连接DE .(1)如图①,若∠B =∠C =30°,∠BAD =70°,求∠CDE 的度数;(2)如图②,若∠ABC=∠ACB=70°,∠CDE=15°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.40.如图,等腰△ABC的底边长为16cm,腰长为10cm,一个动点P在底边上从B向C以0.25cm/s 的速度移动,请你探究,当P运动几秒时,P点与顶点A的连线PA与腰垂直.页8。

中考数学培优:等腰三角形存在性问题

中考数学培优:等腰三角形存在性问题

中考数学培优:等腰三角形存在性问题【例题讲解】例题1.如图,直线l 1、12相交于点A ,点B 是直线外一点,在直线l 1、12上找一点C ,使△ABC 为一个等腰三角形.满足条件的点C 有个.【提示】①以B 为圆心,线段BA 长为半径作圆,与l 1、12交点即为满足条件点C ;②以A 为圆心,线段BA 长为半径作圆,与l 1、12交点即为满足条件点C ;③作线段AB 的垂直平分线,与l 1、12交点即为满足条件点C.(此方法简称为“两圆一线”)【巩固训练】1、一次函数y =43x +4分别交x 轴、y 轴于A 、B 两点,在坐标轴上取一点C ,使△ABC 为等腰三角形,则这样的点C 最多有个。

2、已知△ABC 的三条边长分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条例题2.一次函数y =43x +4分别交x 轴、y 轴于A 、B 两点,在y 轴上取一点C ,使得AC =BC ,求出C 点坐标?【代数法、几何法均可解】解:如图所示,直线AB 的解析式为y =43x +4,当y =0时,x =-3,则A (-3.0);当x =0时,y =4,则B (0,4)。

设C 点坐标为(x .0),在Rt △AOB 中,由勾股定理得5==,在Rt △BOC 中,由勾股定理得BC =。

①当以AB 为底时,AC =BC ,则3+x 整理得6x =7,解得x =76,则(76,0);②当以BC 为底时,可得AC =AB ,则35x --=,解得x =2或-8,则C (2,0)或(-8,0);③当以AC 为底时,可得AB =BC ,整理得x 2=9,解得x =±3,则C (3,0)或(-3,0)(舍去)。

综上所述,满足条件的点C 的坐标是(76,0)或(2,0)或(3,0)或(-8,0)例题3.如图,直线x =-4与x 轴交于点E ,一开口向上的抛物线过原点交线段OE 于点A ,交直线x =-4于点B ,过B 且平行于x 轴的直线与抛物线交于点C ,直线OC 交直线AB 于D ,且AD :BD =1:3.(1)求点A 的坐标;(2)若△OBC 是等腰三角形,求此抛物线的函数关系式.解:(1)如图过点D 作DF ⊥x 轴于点F .由题意可知OF =AF 则2AF +AE =4①∵DF ∥BE ,∴△ADF ∽△ABE ,∴12AF AD AE AB ==,即AE =2AF ②①与②联立解得AE =2,AF =1.∴点A 的坐标为(-2,0);(2)∵抛物线过原点(0,0),∴可设此抛物线的解析式为y =ax 2+bx∵抛物线过原点(0,0)和A 点(-2,0),∴对称轴为直线x =202-+=-1∵B 、C 两点关于直线x =-1对称B 点横坐标为-4,∴C 点横坐标为2,∴BC =2-(-2)=6∵抛物线开口向上,∴∠OAB >90°,OB >AB =OC .∴当△OBC 是等腰三角形时分两种情况讨论:①当OB =BC 时设B (-4,y 1),则16+y 12=36解得y 1=±(负值舍去).将A (-2,0),B (-4,)代入y =ax 2+bx得420164a b a b -=⎧⎪⎨-=⎪⎩解得5452a b ⎧=⎪⎪⎨⎪=⎪⎩∴此抛物线的解析式为yx 2x ②当OC =BC 时设C (2,y 2),则4+y 22=36解得y 2=±负值舍去)将A (-2,0),C(2,代入y =ax 2+bx ,得42042a b a b -=⎧⎪⎨+=⎪⎩,解得2a b ⎧=⎪⎨⎪=⎩∴此抛物线的解析式为y =22x 2x 例题4.如图甲,在△ABC 中,∠ACB =90°,AC =4cm,BC =3cm.如果点P 由点B 出发沿BA 方向向点A 匀速运动,同时点Q 由点A 出发沿AC 方向向点C 匀速运动,它们的速度均为1cm /s .连接PQ ,设运动时间为t (s )(0<t <4),解答下列问题:(1)设△APQ 的面积为S ,请写出S 关于t 的函数表达式?(2)如图乙,连接PC ,将△POC 沿QC 翻折,得到四边形PQP 'C ,当四边形PQP 'C 为菱形时,求t 的值;(3)当t 为何值时,△APQ 是等腰三角形?解:(1)如图1,过点P 作PH ⊥AC 于H ,∵∠C =90°,∴AC ⊥BC ,∴PH ∥BC ,∴△APH ∽△ABC ,∴PH AP BC AB =,∵AC =4cm ,BC =3cm ,∴AB =5cm ∴535PH t -=,∴PH =3-35t ,∴△AQP 的面积为:S =12×AQ ×PH =12×t ×(3-35t )=23518()1025t --+∴当t 为52秒时,S 最大值为185cm 2.(2)如图2,连接PP ',PP '交QC 于E ,当四边形PQP 'C 为菱开时,PE 垂直平分QC ,即PE ⊥AC ,QE =EC ,∴△APE ∽△ABC ,∴AE AP AC AB =,∴AE =(5)44455AP AC t t AB ⋅-⨯==-+∴QE =AE -AQ =45t -+4-t =95t -+4,QE =12QC =12(4-t )=12-t +2∴95t -+4=12-t +2,∴解得:t =2013,∵0<2013<4.∴当四边形PQP 'C 为菱形时,t 值是2013秒;(3)由(1)知,PD =335t -+,与(2)同理得:QD =AD -AQ =945t -+∴PQ ==在△APQ 中,①当AQ =AP ,即=5-t 时,解得:t 1=52,②当PQ =AQ ,t 时,解得:t 2=2513,t 3=5.③当PQ =AP-t 时,解得:t 4=0,t 5=4013∵0<t<4,∴t 3=5,t 4=0不合题意,舍去,∴当t 为52s 或2513s 或4013s 时,△APQ 是等腰三角形.例题5.已知,如图,在Rt △ABC 中,AC =6,AB =8,D 为边AB 上一点,连接CD ,过点D 作DE ⊥DC 交BC 与E ,把△BDE 沿DE 翻折得△DE B 1,连接B 1C(1)证明:∠ADC =∠B 1DC ;(2)当B 1E /∥AC 时,求折痕DE 的长;(3)当△B 1CD 为等腰三角形时,求AD 的长.解:(1)证明由折叠的性质得:∠BDE =∠B 1DE ,∵DE ⊥DC ,∴∠ADC =180°-90°-∠BDE =90°-∠BDE ,∠B 1DC =90°-∠B 1DE ,∴∠ADC =∠B 1DC(2)解延长B 1E 交AB 于F .∵B 1E ∥AC ,∠A =90°,∴B 1F ⊥AB ,∴∠EB 1D +∠BDB 1=90°.∵∠B =∠EB 1D ,∴∠B +∠BDB 1=90°,∴∠BGD =90°,在△BDC 和△B 1FD 中,111B EB D BGD B FD BD DB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDG ≌△B 1FD .∴DF =DG ,在△ADC 和△GDC 中,90ADC CDG A DGC DC DC ∠=∠⎧⎪∠=∠=⎨⎪=⎩o ,∴△ADC ≌△GDC ,∴DG =AD .∴DF =AD =DG ,设DF =AD =DG =x ,∴BF =8-2x ,∵EF ∥AC ,∴△BFE ∽△BAC ,∴EF BF AC AB =,∴EF =1232x -,∵△EFD ∽△ACD ,∴DF EF AC AD=,∴12326x x x -=,解得:x =3,∴BF =3,EF =32,∴DE.(3)解设AD =x ,则CD,BD =8-x ,∵△B 1CD 是等腰三角形,①当B 1D =B 1C 时则∠B 1DC =∠B 1CD ,∴DB 1=BD =8-x ,如图2过B 1作B 1F ⊥CD ,则DF =CF =12CD=2,∵∠ADC =∠B 1DC ,∠B 1FD =∠A =90°,∴△CDA ∽△B 1DC ,∴1B D DF CD AD =,2x =,∴3x 2-16x +36=0,此方程无实数根.∴B 1D ≠BC .②B 1D =CD 时,∴B 1D =CD =BD =8-x .∴(8-x )2=x 2+6,∴x =74,∴AD =74.③当CD =BC 时如图2过C 作CH ⊥DB ,则DH =B 1H =12DB 1=12BD =12(8-x )在△ACD 和△CHD 中,90ADC CDH A CHD CD CD ∠=∠⎧⎪∠=∠=⎨⎪=⎩o ∴△ACD ≌△CHD ,∴AD =DH =x∴x =12(8-x ),∴x =83,∴AD =83,综上所述:当△B 1CD 是等腰三角形时AD 的长为74或83.【巩固训练】1.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出不同的等腰三角形的个数最多为()A.4B.5C.6D.72.如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,使得△BPC是一个等腰三角形.(1)用尺规作图画出符合要求的点P.(保留作图痕迹,不要求写做法)(2)求出PA的长.3.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)4.如图,一长度为10的线段AC的两个端点A、C分别在y轴和x轴的正半轴上滑动,以A为直角顶点,AC为直角边在第一象限内作等腰直角△ABC,连接BO.(1)求OB的最大值;(2)在AC滑动过程中,△OBC能否恰好为等腰三角形?若能,求出此时点A的坐标;若不能,请说明理由.5、如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点,直线y=-2x+3与y轴交于点C,与x轴交于点D,点P是x轴上方的抛物线上一动点,过点P作PF⊥x.轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)若△PCE为等腰三角形,求m的值.6.如图,在平面直角坐标系中,点A的坐标为(12,-8),点B、C在x轴上,tan∠ABC=43,AB=AC,AH⊥BC 于H,D为AC的中点,BD交AH于点M.(1)求过B、C、D三点的抛物线的解析式,并求出抛物线顶点E的坐标;(2)过点E且平行于AB的直线l交y轴于点G,若将(2)中的抛物线沿直线1平移,平移后的抛物线交y轴于点F,顶点为E'(点E'在y轴右侧).是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时顶点E'的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中点B坐标为(6,0),点A在第一象限,△AOB为等边三角形,OH⊥AB于点H,动点P、Q分别从B、O两点同时出发,分别沿BO、OA方向匀速移动,它们的速度都是1cm/s,当点P到达点O时,P、Q两点停止运动,设点P的运动时间为t(s),PQ交OH于点M,设四边形AQPB的面积为y.(1)求y与t之间的函数关系式;(2)设PQ的长为x(cm)试确定y与x之间的函数关系式;(3)当t为何值时,△OPM为等腰三角形;(4)线段OM有最大值吗?如果有,请求出来;如果没有,请说明理由.8.已知:如图,在矩形ABCD中,AB=5,AD=20.E为矩形外一点,且△EBA∽△ABD.3(1)求AE和BE的长;(2)将△ABE绕点B顺时针旋转一个角a(0°<α<180°),记旋转中的△ABE为△A'BE',在旋转过程中,设A'E'所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.9.如图(1),∠AOB=45°,点P、Q分别是边OA,OB上的两点,且OP=2cm.将∠O沿PQ折叠,点O落在平面内点C处。

人教版 八年级数学 13.3 等腰三角形 培优训练(含答案)

人教版 八年级数学 13.3 等腰三角形 培优训练(含答案)

人教版八年级数学13.3 等腰三角形培优训练一、选择题(本大题共10道小题)1. 如图,已知P A=PB,在证明∠A=∠B时,需要添加辅助线,下面有甲、乙两种辅助线的作法:甲:作底边AB的中线PC;乙:作PC平分∠APB交AB于点C.则()A.甲、乙两种作法都正确B.甲的作法正确,乙的作法不正确C.甲的作法不正确,乙的作法正确D.甲、乙两种作法都不正确2. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对3. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 104. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°5. 如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD6. 如图所示,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为E. 若AE=1,则△ABC的边长为()A. 2B. 4C. 6D. 87. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°8. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题(本大题共6道小题)11. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.12. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.13. 在△ABC中,若∠A=100°,∠B=40°,AC=5,则AB=________.14. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.15. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.16. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:DE=DF.18. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.19. 如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.20. 如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DF=2DC.人教版八年级数学13.3 等腰三角形培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】B【解析】∵|x -4|+y -8=0,∴x -4=0,y -8=0,解得x =4,y =8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.3. 【答案】C 【解析】∵AB =AC ,AD 平分∠BAC ,∴根据等腰三角形三线合一性质可知AD ⊥BC ,BD =CD ,在Rt △ABD 中,AB =5,AD =3,由勾股定理得BD =4,∴BC =2BD =8.4. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.5. 【答案】D[解析] 选项A 由等角对等边可得△ABC 是等腰三角形;选项B 由所给条件可得△ADB ≌△ADC ,由全等三角形的性质可得AB =AC ;选项C 由垂直平分线的性质可得AB =AC ;选项D 不可以得到AB =AC. 6. 【答案】B7. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.8. 【答案】D[解析] ∵∠BAC =72°,∠C =36°,∴∠ABC =72°.∴∠BAC =∠ABC. ∴CA =CB.∴△ABC 是等腰三角形.∵∠BAC 的平分线AD 交BC 于点D ,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.9. 【答案】C10. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题(本大题共6道小题)11. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.12. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.13. 【答案】514. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC. ∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.15. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.16. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.三、解答题(本大题共4道小题)17. 【答案】证明:连接AD.∵AB=AC,D为BC的中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.18. 【答案】解:(1)证明:如图,过点D作DM∥AB,交CF于点M,则∠MDF=∠E.∵△ABC是等边三角形,∴∠CAB=∠CBA=∠C=60°.∵DM∥AB,∴∠CDM=∠CAB=60°,∠CMD=∠CBA=60°.∴△CDM是等边三角形.∴CM=CD=DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF ≌△EBF(ASA).∴DM =BE. ∴CD =BE.(2)∵ED ⊥AC ,∠CAB =∠CBA =60°, ∴∠E =∠FDM =30°. ∴∠BFE =∠DFM =30°. ∴BE =BF ,DM =MF.∵△DMF ≌△EBF ,∴MF =BF. ∴CM =MF =BF.又∵BC =AB =12,∴BF =13BC =4.19. 【答案】解:(1)∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠BEG =∠AGC′=48°. 由折叠的性质得∠CEF =∠C′EF , ∴∠CEF =12(180°-48°)=66°. (2)证明:∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠GFE =∠CEF. 由折叠的性质得∠CEF =∠C′EF , ∴∠GFE =∠C′EF.∴GE =GF ,即△EFG 是等腰三角形.20. 【答案】证明:∵△ABC 是等边三角形, ∴∠A =∠B =∠ACB =60°. ∵DE ∥AB ,∴∠EDC =∠B =60°,∠DEC =∠A =60°. ∵EF ⊥DE ,∴∠DEF =90°. ∴∠F =90°-∠EDC =30°.∵∠ACB=∠EDC=∠DEC=60°,∴△EDC是等边三角形.∴DE=DC. ∵∠DEF=90°,∠F=30°,∴DF=2DE=2DC.。

初二数学等腰等边三角形培优题1(完整资料).doc

初二数学等腰等边三角形培优题1(完整资料).doc

此文档下载后即可编辑等腰等边三角形培优题11.如图,将△ABC 绕直角顶点C 顺时针旋转90°,得到△DEC ,连接AD ,若∠BBB =25∘,则∠BBB =______.2.如图,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC =_____.3.如图,在△BBBBBB 中,BB BB =BBBB ,CD 是∠BBBBBB 的平分线,BB BB //BBBB ,交AC 于点E .若∠BBBB =35∘,则∠BBB=.4.如图,等边△BBBBBB 中,AD 是中线,BBBB ⊥BBBB 于点E ,BBBB =3,则点D 到AB 的距离为:______.5.已知:在△ABC 中,AH ⊥BC ,垂足为点H ,若AB +BH =CH ,∠ABH =70∘,则∠BAC =______ ∘.6.如图,在△ABC 中,BI ,CI 分别平分∠ABC,∠ACB,过I 点作DE∥BC,交AB 于D ,交AC 于E ,给出下列结论:①△DBI 是等腰三角形;②△ACI 是(第1题) (第2题) (第3题)(第4题) (第6题) (第7题)等腰三角形;③AI 平分∠BAC;④△ADE 周长等于AB +AC .其中正确的是( )A . ①②③B . ②③④C . ①③④D . ①②④7.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,….若∠A=70°,则∠B n -1A n A n -1的度数为( )A . 702n ⎛⎫︒ ⎪⎝⎭B . 1702n +⎛⎫︒ ⎪⎝⎭C . 1702n -⎛⎫︒ ⎪⎝⎭D . 2702n +⎛⎫︒ ⎪⎝⎭8.如图,在等边△ABC 中,AD 是BC 边上的高,∠BDE=∠CDF=30°, 在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的有 (填序号) 9.如图所示,在Rt △ABC 中,∠A=30°,∠B=90°,AB=12,D 是斜边AC 的中点,P 是AB 上一动点,则PC+PD 的最小值为 .10.如图,已知△BBBBBB 是等边三角形,D 为BC 延长线上一点,CE 平分∠BBBBBB ,BBBB =BBBB ,BBBB =7, 则 AE 的长度是 . 11.如图,△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BC 于点E ,交BD于点F ,连接CF .若∠A =60°,∠ABD =24°,则∠ACF 的度数为 .12.如图,已知点C 是线段AB 的中点,点D 是线段BC 上的定点(不同于端点B 、C ),过点D 作直线l 垂直线段AB ,若点P 是直线l 上的任意一点,连接PA 、PB ,则能使△PAB 成为等腰三角形的点P 一共有_______ 个.(填写确切的数字)(第11题) (第9题) (第10题)(第8题)(第12题) (第13题)13.如图,AB=2,BC=5,AB⊥BC于点B,l⊥BC于点C,点P自点B开始沿射线BC移动,过点P作PQ⊥PA交直线l于点Q,当BP= 时,PA=PQ. 14.已知△ABC是等边三角形,E是AC边上一点,F是BC边延长线上一点,且CF=AE,连接BE,EF.(1)如图1,若E是AC边的中点,猜想BE与EF的数量关系为___________________.(2)如图2,若E是线段AC上的任意一点,其它条件不变,上述线段BE、EF 的数量关系是否发生变化,写出你的猜想并加以证明.(3)如图3,若E是线段AC延长线上的任意一点,其它条件不变,上述线段BE、EF的数量关系是否发生变化,写出你的猜想并加以证明。

中考数学等腰三角形培优辅导训练试题

中考数学等腰三角形培优辅导训练试题

中考数学等腰三角形培优辅导训练试题D AF21EDCA B等腰三角形培优专练一、选择题1、下列命题正确的是[ ]A.等腰三角形只有一条对称轴B.直线不是轴对称图形C.直角三角形都不是轴对称图形D.任何角都是轴对称图形 2、等腰三角形一腰上的高与底所夹的角等于[]A.顶角B.顶角的21C.顶角的2倍 D 底角的213、如图, 在△ABC 中, AB =AC, CD ⊥AB 于D, 则下列判断正确的是[]A.∠A =∠BB.∠A =∠ACDC.∠A =∠DCBD.∠A =2∠BCD 4、如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足[]A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°第3题第4题5、下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;?③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有() A .①②③ B .①②④ C .①③ D .①②③④6、如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF?的形状是()A .等边三角形B .腰和底边不相等的等腰三角形C .直角三角形D .不等边三角形第6题第8题7、Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是() A .2cm B .4cm C .8cm D .16cm8、如图,E 是等边△A BC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是()A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状 9、正△ABC 的两条角平分线BD 和CE 交于点I ,则∠BIC 等于()A .60°B .90°C .120°D .150°10、如图,△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有() A. 6个 B. 7个 C. 8个 D. 9个A36°E DFB CCA1DB23第10题第12题11、等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm,则腰长为()A. 2cmB. 8cmC. 2cm或8cmD. 以上都不对二、填空题12、如图,ABC是等边三角形,BCBD90CBD==∠,,则1∠的度数是________。

等腰三角形的判定同步培优题典(解析版)

等腰三角形的判定同步培优题典(解析版)

专题3.4等腰三角形的判定姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•肥城市校级月考)如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC、∠BCD 的平分线,则图中的等腰三角形有()A.3个B.4个C.5个D.2个【分析】根据已知条件和等腰三角形的判定定理,对图中的三角形进行分析,即可得出答案.【解析】共有5个.∵AB=AC∴△ABC是等腰三角形;∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=12∠ABC,∠ECB=12∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;∵∠A=36°,AB=AC,∴∠ABC=∠ACB=12(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=12∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:C.2.(2019秋•河西区期中)在△ABC中,∠A=45°,∠B=45°,则下列判断错误的是()A.△ABC是直角三角形B.△ABC是锐角三角形C.△ABC是等腰三角形D.∠A和∠B互余【分析】根据等腰直角三角形的判定解答即可.【解析】∵在△ABC中,∠A=45°,∠B=45,∴∠C=90°,即△ABC是等腰直角三角形,∠A和∠B互余故选:B.3.(2019秋•东海县期中)△ABC中,AD,BE分别是边BC,AC上的高,若∠EBC=∠BAD,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【分析】发现∠ABC与∠C分别是∠BAD与∠EBC的余角,得到二角相等,根据等腰三角形的判定可得答案.【解析】∵∠EBC+∠C=90°,∠C+∠CAD=90°,∴∠CAD=∠EBC,∵∠EBC=∠BAD∴∠BAD=∠CAD,∠CAD+∠C=90°∠BAD+∠ABC=90°∴∠ABC=∠C∴AB=AC∴为等腰三角形.故选:A.4.(2020春•松江区期末)如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组【分析】根据等腰三角形的判定定理逐个判断即可.【解析】①、∵△ABC中,AB=AC,∴△ABC是等腰三角形,故①正确;②、∵△ABC中,∠B=56°,∠BAC=68°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣68°﹣56°=56°,∴∠B=∠C,∴△ABC是等腰三角形,故②正确;③∵△ABC中,AD⊥BC,AD平分∠BAC,∴∠BAD=∠CAD,∠ADB=∠ADC,∵∠B+∠BAD+∠ADB=180°,∠C+∠CAD+∠ADC=180°,∴∠B=∠C,∴△ABC是等腰三角形,故③正确;④、∵△ABC中,AD⊥BC,AD平分边BC,∴AB=AC,∴△ABC是等腰三角形,故④正确;即正确的个数是4,故选:D.5.(2020•海门市一模)线段AB在如图所示的8×8网格中(点A、B均在格点上),在格点上找一点C,使△ABC是以∠B为顶角的等腰三角形,则所有符合条件的点C的个数是()A.4B.5C.6D.7【分析】根据题意可得,以点B为圆心,BA长为半径画圆,圆与格点的交点即为符合条件的点C.【解析】如图所示:使△ABC是以∠B为顶角的等腰三角形,所以所有符合条件的点C的个数是6个.故选:C.6.(2020春•阜宁县期中)以下列各组数据为边长,可以构成等腰三角形的是()A.1cm、2cm、3cm B.3cm、3cm、4cmC.1cm、3cm、1cm D.2cm、2cm、4cm【分析】根据三角形的三边关系即可作出判断.【解析】根据三角形的三边关系可知:A.1+2=3,不能构成三角形,不符合题意;B.3+3>4,能构成三角形,而且是等腰三角形,符合题意;C.1+1<3,不能构成三角形,不符合题意;D.2+2=4,不能构成三角形,不符合题意.故选:B.7.(2020•衡水模拟)在证明等腰三角形的判定定理“等角对等边”,即“如图,已知:∠B=∠C,求证:AB=AC”时,小明作了如下的辅助线,下列对辅助线的描述正确的有()①作∠BAC的平分线AD交BC于点D②取BC边的中点D,连接AD③过点A作AD⊥BC,垂足为点D④作BC边的垂直平分线AD,交BC于点DA.1个B.2个C.3个D.4个【分析】①②③分别从能否判定△ABD≌△ACD来分析,④从辅助线本身作法来分析即可.【解析】①作∠BAC的平分线AD交BC于点D,则由∠B=∠C,∠BAD=∠CAD,AD=AD,可判定△ABD≌△ACD(AAS),从而可得AB=AC,故①正确;②取BC边的中点D,连接AD,则∠B=∠C,BD=CD,AD=AD,无法判定△ABD≌△ACD,故没法证明AB=AC,故②错误;③过点A作AD⊥BC,垂足为点D,则由∠B=∠C,∠BDA=∠CDA,AD=AD,可判定△ABD≌△ACD(AAS),从而可得AB=AC,故③正确;④作BC边的垂直平分线AD,交BC于点D,过已知点不能作出已知线段的垂直平分线,辅助线作法错误,故④错误.综上,正确的有①③.故选:B.8.(2019秋•新泰市期末)如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB 于点D,交AC于点E,那么下列结论,其中正确的有()①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.A.1个B.2个C.3个D.4个【分析】根据角平分线的定义得到∠DBF=∠CBF,根据平行线的性质得到∠DFB=∠CBF,推出△BDF 是等腰三角形;故①正确;同理,EF=CE,于是得到DE=DF+EF=BD+CE,故②正确;根据三角形的内角和和角平分线的定义得到∠BFC=180°﹣65°=115°,故③正确;推出DF不一定等于EF,故④错误.【解析】∵BF是∠AB的角平分线,∴∠DBF=∠CBF,∵DE∥BC,∴∠DFB=∠CBF,∴∠DBF=∠DFB,∴BD=DF,∴△BDF是等腰三角形;故①正确;同理,EF=CE,∴DE=DF+EF=BD+CE,故②正确;∵∠A=50°,∴∠ABC+∠ACB=130°,∵BF平分∠ABC,CF平分∠ACB,∴∠FBC=12∠ABC,∠FCB=12∠ACB,∴∠FBC+∠FCB=12(∠ABC+∠ACB)=65°,∴∠BFC=180°﹣65°=115°,故③正确;当△ABC为等腰三角形时,DF=EF,但△ABC不一定是等腰三角形,∴DF不一定等于EF,故④错误;故选:C.9.(2019秋•江油市期末)如图:D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若BD=1,BC=3,则AC的长为()A.5B.4C.3D.2【分析】延长BD交AC于E,如图,利用CD平分∠ACB,BD⊥CD先判断△BCE为等腰三角形得到DE=BD=1,CE=CB=3,再证明EA=EB=2,然后计算AE+CE即可.【解析】延长BD交AC于E,如图,∵CD平分∠ACB,BD⊥CD,∴△BCE为等腰三角形,∴DE=BD=1,CE=CB=3,∵∠A=∠ABD,∴EA=EB=2,∴AC=AE+CE=2+3=5.故选:A.10.(2019秋•西青区期末)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=2,ED=6,则EB+DC的值为()A.6B.7C.8D.9【分析】只要证明EG=EB,DF=DC即可解决问题.【解析】∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵∠GBC=∠GBE,∠FCB=∠FCD,∴∠EGB=∠EBG,∠DCF=∠DFC,∴BE=EG,CD=DF,∵FG=2,ED=6,∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•田家庵区期末)如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有8个.【分析】以A点为顶点的等腰三角形可作3个,以B点为顶点的等腰三角形可作3个,以AB为底边的等腰三角形可作2个.【解析】如图,△ABC是等腰三角形,这样的格点C有8个.故答案为8.12.(2019秋•永定区期末)如图,∠AOB=56°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为124°或76°或28°.【分析】求出∠AOC,根据等腰得出三种情况,OE=CE,OC=OE,OC=CE,根据等腰三角形性质和三角形内角和定理求出即可.【解析】∵∠AOB=56°,OC平分∠AOB,∴∠AOC=28°,①当E在E1时,OE=CE,∵∠AOC=∠OCE=28°,∴∠OEC=180°﹣28°﹣28°=124°;②当E在E2点时,OC=OE,则∠OCE=∠OEC=12(180°﹣28°)=76°;③当E在E3时,OC=CE,则∠OEC=∠AOC=28°;故答案为:124°或76°或28°.13.(2019秋•樊城区期末)已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为70°或40°或20°.【分析】分三种情形分别求解即可;【解析】如图,有三种情形:①当AC=AD时,∠ACD=70°.②当CD′=AD′时,∠ACD′=40°.③当AC=AD″时,∠ACD″=20°,故答案为70°或40°或20°14.(2019秋•来凤县期末)如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在坐标轴上找一点P,使得△P AB是等腰三角形,则符合条件的点P共有6个.【分析】分类讨论:AB=AP时,AB=BP时,AP=BP时,根据两边相等的三角形是等腰三角形,可得答案.【解析】①当AB=AP时,在y轴上有2点满足条件的点P,在x轴上有1点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P,在x轴上有2点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.③当AP=BP时,在x轴、y轴上各有一点满足条件的点P,有1点与AB=AP时的x轴正半轴的点P重合.综上所述:符合条件的点P共有6个.故答案为:6.15.(2019秋•江油市期末)如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形、点C也在格点上,且△ABC为等腰三角形,则符合条件的点C共有9个.【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【解析】①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.16.(2018秋•恩施市期末)如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH,添的钢管长度都与OE相等,则最多能添加这样的钢管5根.【分析】因为每根钢管的长度相等,可推出图中的5个三角形都为等腰三角形,再根据外角性质,推出最大的∠0BQ的度数(必须≤90°),就可得出钢管的根数.【解析】如图所示,∠AOB=15°,∵OE=FE,∴∠GEF=∠EGF=15°×2=30°,∵EF=GF,所以∠EGF=30°∴∠GFH=15°+30°=45°∵GH=GF∴∠GHF=45°,∠HGQ=45°+15°=60°∵GH=HQ,∠GQH=60°,∠QHB=60°+15°=75°,∵QH=QM,∴∠QMH=75°,∠HQM=180﹣75°﹣75°=30°,故∠OQM=60°+30°=90°,不能再添加了.故答案为5.17.(2019春•盐湖区校级月考)在△ABC中,∠B=50°,当∠A为50°或65°或80°时,△ABC是等腰三角形.【分析】由已知条件,根据题意,分两种情况讨论:①∠B是顶角;②∠B是底角,③∠B=∠C=50°,利用三角形的内角和进行求解.【解析】①∠B是顶角,∠A=(180°﹣∠B)÷2=65°;②∠B是底角,∠B=∠A=50°.③∠A是顶角,∠B=∠C=50°,则∠A=180°﹣50°×2=80°,∴当∠A的度数为50°或65°或80°时,△ABC是等腰三角形.故答案为:50°或65°或80°.18.(2018秋•宿松县期末)如图,△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD 为等腰三角形,则∠ADC的度数为20°或70°或100°.【分析】分三种情形分别求解即可.【解析】如图,有三种情形:①当AC=AD时,∠ADC=70°.②当CD′=AD′时,∠AD′C=100°.③当AC=AD″时,∠AD″C=20°,故答案为:70°或100°或20°三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2018秋•邵阳县期末)如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC(1)试判定△ODE的形状,并说明你的理由;(2)若BC=10,求△ODE的周长.【分析】(1)证明∠ABC=∠ACB=60°;证明∠ODE=∠ABC=60°,∠OED=∠ACB=60°,即可解决问题.(2)证明BD=OD;同理可证CE=OE;即可解决问题.【解析】(1)△ODE是等边三角形;理由如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°;∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°,∴△ODE为等边三角形.(2)∵OB平分∠ABC,OD∥AB,∴∠ABO=∠DOB,∠ABO=∠DBO,∴∠DOB=∠DBO,∴BD=OD;同理可证CE=OE;∴△ODE的周长=BC=10.20.(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.【分析】(1)根据等腰三角形的性质和三角形内角和得出∠DBC=36°,进而根据等腰三角形的判定解答即可;(2)根据等腰三角形的性质和三角形内角和解答即可.【解答】证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°﹣36°=54°.21.(2019秋•嘉祥县期末)(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F,试猜想EF、BE、CF之间有怎样的关系,并说明理由;(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,请直接写出EF、BE、CF之间的关系EF=BE﹣CF.【分析】(1)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系;(2)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系.【解析】(1)EF=BE+CF,理由:∵BO平分∠ABC,CO平分∠ACB,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF;(2)不成立,理由:∵BO平分∠ABC,CO平分∠ACD,∴∠EBO=∠OBC,∠FCO=∠OCD,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCD,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴EF=OE﹣OF=BE﹣CF.故答案为EF =BE ﹣CF .22.(2019秋•确山县期末)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.【分析】(1)由AB =AC ,∠ABC =∠ACB ,BE =CF ,BD =CE .利用边角边定理证明△DBE ≌△CEF ,然后即可求证△DEF 是等腰三角形.(2)根据∠A =40°可求出∠ABC =∠ACB =70°根据△DBE ≌△CEF ,利用三角形内角和定理即可求出∠DEF 的度数.【解答】证明:∵AB =AC ,∴∠ABC =∠ACB ,在△DBE 和△CEF 中{BE =CF ∠ABC =∠ACB BD =CE,∴△DBE ≌△CEF ,∴DE =EF ,∴△DEF 是等腰三角形;(2)∵△DBE ≌△CEF ,∴∠1=∠3,∠2=∠4,∵∠A +∠B +∠C =180°,∴∠B =12(180°﹣40°)=70°∴∠1+∠2=110°∴∠DEF=70°23.(2020•恩施州模拟)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC 即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解析】(1)∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵D为BC的中点,∴AD⊥BC,∴∠BAD=90°﹣∠ABC=90°﹣36°=54°.(2)∵BE平分∠ABC,∴∠ABE=∠EBC,又∵EF∥BC,∴∠EBC=∠BEF,∴BF=EF.24.(2019秋•永城市期末)如图,在四边形ABCD中,AB∥CD,∠ABC的平分线交CD的延长线于点E,F是BE的中点,连接CF并延长交AD于点G.(1)求证:CG平分∠BCD.(2)若∠ADE=110°,∠ABC=52°,求∠CGD的度数.【分析】(1)根据角平分线的定义得到∠ABF=∠CBF=12∠ABC.根据平行线的性质得到∠ABF=∠E,推出△BCE是等腰三角形.根据等腰三角形的性质即可得到结论.(2)根据平行线的性质待定的∠ABC+∠BCD=180°.根据角平分线的定义即可得到结论.【解答】(1)证明:∵BE平分∠ABC,∴∠ABF=∠CBF=12∠ABC.∵AB∥CD,∴∠ABF=∠E,∴∠CBF=∠E,∴BC=CE,∴△BCE是等腰三角形.∵F为BE的中点,∴CF平分∠BCD,即CG平分∠BCD.(2)解:∵AB∥CD,∴∠ABC+∠BCD=180°.∵∠ABC=52°,∴∠BCD=128°.∵CG平分∠BCD,∴∠GCD=12∠BCD=64°.∵∠ADE=110°,∠ADE=∠CGD+∠GCD,∴∠CGD=46°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形培优训练
实际解题中的一个常用技巧是,构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用的构造方法有:
1.“角平分线+平行线”构造等腰三角形; 2.“角平分线+垂线”构造等腰三角形;
3.用“垂直平分线”构造等腰三角形;4.用“三角形中一个外角是不相邻内角的2倍关系”构造等腰三角形.
例1 如图AOB 是一钢架,且∠AOB=10°,为使钢架更加坚固,需在其内部添加一些钢管EF 、FG 、GH ……添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根.
例2如图,在△ABC 中,AC =BC ,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE=2
1BD .求证:
BD 是∠ABC 的角平分线.
例3如图在△ABC 中,已知∠C =60°,AC>BC ,又△ABC ′、△BCA ′、△CAB ′都是△ABC 形外的等边三角形,而点D 在AC 上,且BC =DC
(1)证明:△C ′BD ≌△B ′DC ; (2)证明:△AC ′D ≌△DB ′A ;
(3)对△ABC 、△ABC ′、△BCA ′、△CAB ′,从面积大小关系上,你能得出什么结论?
(1)是基础,(2)是(1)的自然推论,(3) 由角的不等,导出边的不等关系,这是探索面积不等关系的关键. 例4 如图,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5,这个六边形的周长是 cm . 设法将六边形的问题转化为三角形或四边形的问题加以解决,六边形的外角都为60°,利用60°构造等边三角形是解本例的关键.
例5 如图,已知Rt △ABC 中,∠C=90°,∠A=30°,在直线BC 或AC 上取一点P ,使得△PAB 是等腰三角形,则符合条件的P 点有( ) A .2个 B .4个 C .6个 D .8个
AB 既可作等腰三角形PAB 的腰,也可作为等腰三角形PAB 的底,故要思考全面,才能正确地得出符合条件的P 点的个数.
例6如图,△ABC 中,AD ⊥BC 于D ,∠B=2∠C ,求证:AB 十BD =CD .
如何利用条件∠B=2∠C?又怎样得到AB+BD?不同的思考方向,会找到解题的不同方法.
例7如图,在五边形ABCDE 中,∠B =∠E ,∠C=∠D ,BC=DE ,M 为CD 中点,求证:AM ⊥CD .
证明∠AMC=90°或应用等腰三角形“三线合一”的性质,通过作辅助线将五边形问题恰当地转化为三角形问题是解本例的关键.
等腰三角形练习题
1、等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形底边长为 .
2、如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,
若BF =AC ,则∠ABC 的大小是 .
3、如图,△ABC 中,AB=AC ,∠B=36°,D 、E 是BC 上两点,使∠ADE=∠AED=2∠BAD ,则图中等腰三角形共有 个.
4、如图,四边形ABCD 中,对角线AC 与BD 相交于E 点,若AC 平分∠DAB ,且AB=AE ,AC=AD ,有如下四个结论:①AC ⊥BD ;②BC=DE ;③∠DBC=2
1∠DAB ;④△ABE 是等边三角形.请写出正确结论的序号 .5、已知△ABC 中,AB =AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点F 、F ,给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形,③S AEPF 四边形=
21 S ABC ;④EF=AP .当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),上述结论中始终正确的是( )
A .1个
B .2个
C .3个
D . 4个
6、如图,在等腰直角△ABC 中,AD 为斜边上的高,以
D 为端点任作两条互相垂直的射线与两腰相交于
E 、
F ,连
结EF 与AD 相交于G ,则∠AED 与∠AGF 的关系为( )
A .∠AED>∠AGF
B .∠AED =∠AGF
B .
C .∠AED<∠AGF
D .不能确定
7、如图,在△ABC 中,∠B =2∠C ,则AC 与2AB 之间的关系是( )
A .AC>2A
B B .A
C =2AB C .AC ≤2AB
D .AC<2AB
8、等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( )
A .30°
B .30°或150°
C . 120°或150°
D .30°或120°或150°
9、在等边正方形ABCD 所在的平面内求一点P ,使△PAB 、△PBC 、△PCD 、△PAD 都是等腰三角形,具有这样性质的点P 有( )
A .7个
B .8个
C .9个
D .10个
10、如图,在Rt △ABC 中,已知∠ACB=90°,AC=BC ,D 为DC 的中点,CE ⊥AD 于E ,BF ∥AC 交CE 的延长线于点
F .求证:
AB 垂直平分DF .
11、如图,在△ABC 中,∠BAC=90°,AB =AC ,D 是△ABC 内一点,∠DAC=∠DCA=15°,求证:BD =BA .
12、如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF =EF .。

相关文档
最新文档