人教版八年级数学上册等腰三角形培优专题练习.doc
人教版八年级上册数学《等腰三角形》同步训练含答案

八年级数学上册《13.3等腰三角形》同步达标测评一.选择题(共8小题,满分32分)1.等腰三角形一腰上的高与另一腰的夹角是36°,则此等腰三角形的两个相等底角的度数大小是()A.54°B.63°C.27°D.27°或63°2.已知等腰三角形的一个外角等于140°,则这个三角形的三个内角的度数分别是()A.20°、20°、140°B.40°、40°、100°C.70°、70°、40°D.40°、40°、100°或70°、70°、40°3.如图,△ABC中,DE∥BC,FB,FC分别平分∠ABC和∠ACB,已知BC=20,AB=18,AC=16,则△ADE的周长是()A.30B.32C.34D.364.如图钢架BAC中,焊上等长的钢条来加固钢架,若P1A=P1P2,量得∠BP5P4=100°,则∠A=()度.A.10B.20C.15D.255.如图,为了加固屋顶的钢架,焊上等长的钢条(P1P2、P2P3等).若∠A=15°,AP1=P1P2,则这样的钢条最多只能焊上()条.A.4B.5C.6D.76.如图,AB=BC=CD=DE=EF=FG,则∠A的范围是()A.0°<∠A<15°B.0°<∠A<18°C.0°<∠A<20°D.0°<∠A<22.5°7.如图,已知∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上;△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形.若OA1=1,则△A2021B2021A2022的边长为()A.4044B.4046C.22020D.220218.如图,直线AB⊥CD,垂足为O,点P在∠BOC的平分线上,点E在直线AB上,且△EOP是等腰三角形,则这样的点P有()A.1个B.2个C.3个D.4个二.填空题(共7小题,满分28分)9.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正确的是.10.如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=.11.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是.12.如图,在△ABC中,AB=AC,∠BAD=30°,AE=AD,则∠EDC的度数是.13.已知等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为°.14.如图,线段OP的一个端点O在直线a上,以OP为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能有个.15.如果△ABM和△ACN分别是以△ABC的边AB、AC为边的形外等边三角形,MC交BN 于P,连P A,则∠APN=.三.解答题(共9小题,满分60分)16.如图,在△ABC中,已知AD平分∠BAC,过AD上一点P作EF⊥AD,交AB于E、交AC于F,交BC延长线于M,则有正确结论:∠M=(∠ACB﹣∠B).请说明理由.17.如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.18.如图,已知△ABC中,AB=AC,DE⊥AB,DF⊥AC,BG⊥AC.求证:DE+DF=BG.19.如图,已知∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC,点F为BC中点.求证:AF⊥BC.20.如图,在等腰△ABC中,AB=AC,BD为∠ABC平分线,延长BC到点E,使CE=CD,作DH⊥BE于H,求证:H为BE的中点.21.已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.22.如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,求证:△CMN是等边三角形.23.如图,等边△ABC的边长为12cm,D为AC边上一动点,E为AB延长线上一动点,DE 交CB于点P,点P为DE中点(1)求证:CD=BE;(2)若DE⊥AC,求BP的长.24.如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且P A=CQ,连PQ交AC边于D.(1)求证:PD=DQ;(2)若△ABC的边长为1,求DE的长.参考答案一.选择题(共8小题,满分32分)1.解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故选:D.2.解:(1)当40°角是顶角时,另两个底角度数为70°,70°;(2)当40°角是底角时,另两个角度数为40°,100°.故选:D.3.解:∵DE∥BC,∴∠BFD=∠FBC,∠EFC=∠BCF,∵FC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠BCF,∴∠BFD=∠DBF,∠EFC=∠ECF,∴DF=DB,EF=EC,∵△ADE的周长=AD+AE+DE,DE=DF+EF,∴△ADE的周长=AD+BD+AE+EC=AB+AC,∵AB=18,AC=16,∴△ADE的周长=34.故选:C.4.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A,∵∠P3P5P4+∠BP5P4=180°,∠BP5P4=100°,∴∠P3P5P4=80°,∴∠A=20°.故选:B.5.解:∵∠A=∠P1P2A=15°∴∠P2P1P3=30°,∠P1P3P2=30°∴∠P1P2P3=120°∴∠P3P2P4=45°∴∠P3P2P4=45°∴∠P2P3P4=90°∴∠P4P3P5=60°∴∠P3P5P4=60°∴∠P3P4P5=60°∴∠P5P4P6=75°∴∠P4P6P5=75°∴∠P4P5P6=30°∴∠P6P5P7=90°,此时就不能在往上焊接了,综上所述总共可焊上5条.故选:B.6.解:采用排除法:①∵AB=BC=CD=DE=EF=FG,当∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,∴∠BCD=180°﹣(∠CBD+∠BDC)=180°﹣60°=120°,∴∠ECD=∠CED=180°﹣∠BCD﹣∠BCA=180°﹣120°﹣15°=45°,∴∠CDE=180°﹣(∠ECD+∠CED)=180°﹣90°=90°,∴∠EDF=∠EFD=180°﹣∠CDE﹣∠BDC=180°﹣90°﹣30°=60°,∴∠FGE=∠GEF=∠EFD+∠A=60°+15°=75°,即此时符合;①当∠A=18°时,同法求出∠FEG=∠FGE=90°,此时△FEG不存在,此时不符合,同样,当∠A取大于18°的角都不符合,当∠A=小于18°的数时,△FEG存在,即选项A、C、D错误,只有选项B正确;故选:B.7.解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A2021B2021A2022的边长为22020.故选:C.8.解:如图,①当OP=OE时,这样的点E由2个,②当PE=OE时,这样的点E由1个,③当OP=PE时,这样的点E由1个,∴这样的点P有4个,故选:D.二.填空题(共7小题,满分28分)9.解:∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴180°﹣∠ECD=180°﹣∠ACB,即∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,故①小题正确;∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ,故③小题正确;PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE,故②小题正确;∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④小题错误.综上所述,正确的是①②③.故答案为:①②③.10.解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=BC,∵BD平分∠ABC,∴∠DBC=∠E=30°,BD⊥AC,∴∠BDC=90°,∴BC=2DC,∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,∴CD=CE=1,∴BC=2CD=2,故答案为211.解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠F A4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故答案为:()n﹣1×75°.12.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15,所以∠EDC的度数是15°.故答案是:15°.13.解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故答案为:60或120.14.解:△AOP,△BOP,△COP,△DOP就是所求的三角形.15.解:∵△ABM和△ACN都是等边三角形,∴AB=AM,AN=AC,∠BAM=∠CAN=60°,∴∠BAM+∠BAC=∠CAN+∠BAC,即∠CAM=∠BAN,在△ABN与△AMC中,,∴△ABN≌△AMC(SAS),∴∠ANP=∠ACP,又∵∠AEN=∠PEC(对顶角相等),∵∠AEP=∠NEC(对顶角相等),∴∠APN=∠ACN=60°.故答案为:60°.三.解答题(共9小题,满分60分)16.证明:∵EF⊥AD,AD平分∠BAC,∴∠1=∠2,∠APE=∠APF=90°,又∵∠AEF=180°﹣∠1﹣∠APE,∠AFE=180°﹣∠2﹣∠APF,∴∠AEF=∠AFE,∵∠CFM=∠AFE,∴∠AEF=∠AFE=∠CFM,∵∠AEF=∠B+∠M,∠MFC=∠ACB﹣∠M,∴∠B+∠M=∠ACB﹣∠M,即:∠M=(∠ACB﹣∠B).17.证明:延长BD至F,使DF=BC,连接EF,∵EC=ED,∴∠ECD=∠EDC,∴∠ECB=∠EDF,∴△ECB≌△EDF(SAS),∴BE=EF,∠B=60°,∴△BEF为等边三角形,∴BE=BF,∵AE=BD,∴DF=AB,BC=DF,∴AB=BC,∴△ABC是等边三角形.18.证明:连接AD.则△ABC的面积=△ABD的面积+△ACD的面积,AB•DE+AC•DF=AC•BG,∵AB=AC,∴DE+DF=BG.19.证明:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C,∵AD平分∠EAC,∴∠EAD=∠DAC,∴∠B=∠C,∴AB=AC,∵点F为BC中点,∴AF⊥BC.20.证明:∵AB=AC,∴∠ABC=∠SCB,∵BD平分∠ABC,∴∠ABD=∠CBD,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠E+∠CDE=2∠DBC,∴∠DBC=∠E,∴△BDE为等腰三角形,BD=ED,∵DH垂直于BE,∴H为BE中点(三线合一).21.证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.22.证明:∵△ABC是等边三角形,△CDE是等边三角形,M是线段AD的中点,N是线段BE的中点,∴∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠ECD+∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,AM=BN;∴AC=BC,∠CAD=∠CBE,AM=BN,∴△AMC≌△BNC(SAS),∴CM=CN,∠ACM=∠BCN;又∵∠NCM=∠BCN﹣∠BCM,∠ACB=∠ACM﹣∠BCM,∴∠NCM=∠ACB=60°,∴△CMN是等边三角形.23.(1)证明:作DF∥AB交BC于F,如图所示:∵△ABC是等边三角形,∴∠A=∠ABC=∠C=60°,∵DF∥AB,∴∠CDF=∠A=60°,∠DFC=∠ABC=60°,∠DFP=∠EBP,∴△CDF是等边三角形,∴CD=DF,∵点P为DE中点,∴PD=PE,在△PDF和△PEB中,,∴△PDF≌△PEB(AAS),∴DF=BE,∴CD=BE;(2)解:∵DE⊥AC,∴∠ADE=90°,∴∠E=90°﹣∠A=30°,∴AD=AE,∠BPE=∠ACB﹣∠E=30°=∠E,∴BP=BE,由(1)得:CD=BE,∴BP=BE=CD,设BP=x,则BE=CD=x,AD=12﹣x,∵AE=2AD,∴12+x=2(12﹣x),解得:x=4,即BP的长为4.24.(1)证明:如图,过P做PF∥BC交AC于点F,∴∠AFP=∠ACB,∠FPD=∠Q,∠PFD=∠QCD ∵△ABC为等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴△APF是等边三角形;∵AP=PF,AP=CQ,∴PF=CQ∴△PFD≌△QCD,∴PD=DQ.(2)△APF是等边三角形,∵PE⊥AC,∴AE=EF,△PFD≌△QCD,∴CD=DF,DE=EF+DF=AC,∵AC=1,DE=.。
新人教版八年级数学上册《等腰三角形》专项练习题

初二数学上册第二单元等腰三角形专项练习题则∠ A 的度数为( )A 、 30°B 、 40°C 、45 °D 、 60°一、选择题8、下列图形中,不是轴对称图形的是( )1 已知一个等腰三角形的底边长为 5, 这个等腰三形的腰A 角B 等边三角形 C线段 D 不等边三角形长为 x, 则 x 的取值范围是 ( )9、正△ ABC 的两条角平分线BD 和 CE 交于点 I ,则∠ BICA .0<x<5B .x≥5C x >5D 0<x<10AA D22 2A2. 等腰三角形的底角为15° ,FE腰长为 a, 则此三角形的面积为()DAa2B1 a 2E2BCC1 a 2D 2 a2图 543 将一张长方形的纸片 ABCD 如图 (4) 那样折起 , 使顶点 C 落在 F 处 . 其中 AB=4, 若∠ FED=30° , 则折痕 ED 的长为()A. 4 B 43C 8D 5310. 如图 (5), 在△ ABC 中 ,BC=8 ㎝ ,AB 的垂直平分线交 AB于点 D, 交 AC 于点 E, △ ABC 的周长为 18 ㎝ , 则 AC 的长等于 ( )A 6 ㎝B 8㎝ C 10 ㎝ D 12㎝4 下列图形中,不是轴对称图形的是 ( )A 有两个内角相等的三角形B 有一个内角是 45°直角三角形C. 有一个内角是 30°的直角三角形D.有两个角分别是 30°和 120°的三角形5、下列图形中,轴对称图形有()个A.1B.2C. 3D.46、等腰三角形周长是 29,其中一边是 7,则等腰三角形的底边长是() A 15 B15或 7 C 7 D 117、在△ ABC 中,AB =AC ,BD 平分∠ ABC ,若∠ BDC = 75°,D12BECBC为( ) A . 60 B . 90 C . 120 D . 150°10、下列三角形: ①有两个角等于 60°; ②有一个角等于 60°的等腰三角形; ?③三个外角(每个顶点处各取一个外角)都相等的三角形; ?④一腰上的中线也是这条腰上的高的等腰三角形. 其中是等边三角形的有( ) A ①②③ B ①②④ C ①③ D ①②③④11、如图 1, D 、E 、F 分别是等边△ ABC 各边上的点,且AD=BE=CF ,则△DEF?的形状是( )AA .等边三角形B .腰和底边不相等的等腰三角形C .直角D三角形 D .不等边三角E形12Rt △BCABC 中,CD 是斜边 AB上 的 高 , ∠ 图 5B=30°,AD=2cm ,则 AB 的长度是( )A . 2cm B. 4cm C . 8cm D . 16cm13 如图 2, E 是等边△ ABC 中 AC 边上的点,∠ 1= ∠ 2, BE=CD ,则对△ ADE 的形状判断准确的是()A .等腰三角形B .等边三角形C .不等边三角形D.不能确定形状图( 1)图(2)二、填空题1、△ ABC 中, AB=AC ,∠ A=∠ C ,则∠ B=_______.2、已知 AD 是等边△ ABC 的高, BE 是 AC 边的中线, AD与 BE 交于点 F ,则∠ AFE=______.3、△ ABC中,∠ B=∠ C=15°, AB=2cm,CD⊥ AB交 BA 的延长线于点D,?则 CD?的长度是 _______ .4、如图( 3),在ABC中 AB=AC,∠ A=36°, BD平分∠ABC,则∠1=________, 图中有_______ 个等腰三角形。
第十二章全等三角形、等腰三角形(培优卷1) 八年级数学人教版上册

人教版2021-2022年八年级上册数学全等三角形、等腰三角形(培优卷1)1.如图,E、F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE、BF交于点P.(1)求证:CE=BF;(2)求∠BPC的度数.2.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD =DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.3.如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.4.(1)如图1,已知以△ABC的边AB、AC分别向外作等腰直角△ABD与等腰直角△ACE,∠BAD=∠CAE=90°,连接BE和CD相交于点O,AB交CD于点F,AC交BE于点G,求证:BE=DC,且BE⊥DC.(2)探究:若以△ABC的边AB、AC分别向外作等边△ABD与等边△ACE,连接BE和CD相交于点O,AB交CD于点F,AC交BE于G,如图2,则BE与DC还相等吗?若相等,请证明,若不相等,说明理由;并请求出∠BOD的度数?5.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,点D,F为BC边上的两点,CF =DB,连接AD,过点C作CE⊥AD于点G,交AB于点E,连接EF.(1)若∠DAB=15°,AD=6,求线段GD的长度;(2)求证:∠EFB=∠CDA;(3)若∠FEB=75°,试找出AG,CE,EF之间的数量关系,直接写出结论.6.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC.以点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合).(1)如图1,DE与AC交于点P,观察并猜想BD与DP的数量关系:.(2)如图2,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明,如果不成立,请说明理由;(3)若DE与AC延长线交于点P,BD与DP是否相等?请画出图形并写出你的结论,无需证明.7.【阅读理解】已知:如图1,等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.求证:AC=AB+BD证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS)∴∠AED=∠B=90°,DE=DB又∵∠C=45°,∴△DEC是等腰直角三角形.∴DE=EC.∴AC=AE+EC=AB+BD.【解决问题】已知,如图2,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的平分线,交BC边于点D,DE⊥AC,垂足为E,若AB=2,则三角形DEC的周长为.【数学思考】:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D如图3”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想.【类比猜想】任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分线,交CB边的延长线于点D,如图4,请你写出线段AC、AB、BD之间的数量关系.8.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.(1)求证:△ADC≌△AEB;(2)判断△EGM是什么三角形,并证明你的结论;(3)判断线段BG、AF与FG的数量关系并证明你的结论.9.如图,D是△ABC的边BC上的点,且CD=AB,∠ADB=∠BAD,AE是△ABD的中线.求证:AC=2AE.10.如图(1),△ABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF =AE,连接BE,EF.(1)求证:BE=EF;(2)若将DE从中位线的位置向上平移,使点D,E分别在线段AB,AC上(点E与点A不重合),其他条件不变,如图(2),则(1)题中的结论是否成立?若成立,请证明;若不成立,请说明理由.11.如图,已知BC>AB,AD=DC,BD平分∠ABC,求证:∠A+∠C=180°.12.阅读下列材料:问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF=45°.判断线段BE、EF、FD之间的数量关系,并说明理由.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF绕点A顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小明同学的思路,解决下列问题:(1)图(1)中线段BE、EF、FD之间的数量关系是;(2)如图(2),已知正方形ABCD边长为5,E、F分别是BC、CD边上的点,且∠EAF =45°,AG⊥EF于点G,则AG的长为,△EFC的周长为;(3)如图(3),已知△AEF中,∠EAF=45°,AG⊥EF于点G,且EG=2,GF=3,则△AEF的面积为.13.如图,在四边形ABCD中,AB=BC=AD,∠ADC=90°,AD∥BC.(1)求证:四边形ABCD是正方形;(2)如图,点E在BC上,连接AE,以AE为斜边作等腰Rt△AEF,点F在正方形ABCD 的内部,连接DF,求证:DF平分∠ADC;(3)在(2)的条件下,延长EF交CD的延长线于点H,延长DF交AE于点M,连接CM交EF于点N,过点E作EG∥AF交DC的延长线于点G,若∠BGE+2∠FEC=135°,DH=1,求线段MN的长.14.【问题提出】如图1,在四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD,由于AD=CD,所以可将△DCB绕点D顺时针方向旋转60°,得到△DAB',则△BDB′的形状是.(2)在(1)的基础上,求四边形ABCD的面积.【类比应用】(3)如图3,等边△ABC的边长为2,△BDC是顶角为∠BDC=120°的等腰三角形,以D为顶点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.15.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.16.截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC =90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.。
(完整word)人教版八年级上册三角形培优卷.doc

三角形单元测试题一、(每空 3 分,共 30 分)1、如果三角形的两分 3 和 5,那么个三角形的周可能是()A. 15 B .16C.8 D .72、下列法中,正确的个数()①三角形的三条高都在三角形内,且都相交于一点.②三角形的中都是三角形的某一个点,且平分的直.③在△ ABC中,若∠ A=∠B=∠ C,△ABC是直角三角形.④一个三角形的两分是8 和 10,那么它的最短的取范是2<b<18.A. 1 个 B .2 个 C .3 个 D .4 个3、三角形的三条高所在的直相交于一点,个交点的位置()A.在三角形外 B .在三角形内C.在三角形上D.要根据三角形的形状才能定4、有五条段,度分 1、4、5、6、8,从中任取 3 条,一定能构成三角形的可能性是()A. 20% B . 30% C .40%D. 50%5、如,将矩形 ABCD片沿角 BD折叠,使点 C 落在 C’ ,BC’交 AD于 E,若∠ DBC=22.5°,在不添加任何助的情况下,中45°的角(虚也角的)有()A. 6 个 B . 5 个C.4 个D.3 个6、在△ ABC中, AB=6,AC=3,∠ B 的最大()A. 30° B . 45°C. 60°D.90°7、希腊人常用小石子在沙上成各种形状来研究数,例如:他研究 1 中的 1,3,6,10,⋯,由于些数能表示成三角形,将其称三角形数 ; 似地,称 2 中的 1,4,9,16⋯的数成正方形数。
下列数中既是三角形数又是正方形数的是()A.289B.1024C.1225D.13788、①是一 1,周 P1的正三角形板,沿①的底剪去一的正三角形板后得到②,然后沿同一底依次剪去一更小的正三角形板(即其前一被剪如掉正三角形板的)后,得③,④,⋯,第 n(n ≥3) 板的周 P, P -Pn-1 的()n nA. B .C. D .9、如,已知△ ABC是等腰直角三角形,∠A=90°,BD是∠ ABC的平分,DE⊥BC于 E,若 BC=10cm,△ DEC的周()A.8cm B .10cm C .12cm D .14cm10、如,在 4 的等三角形ABC中, AD是 BC上的高,点 E、 F是 AD上的两点,中阴影部分的面是()A.4B.3C.2D.二、填空(每空 3 分,共 18 分)11、如,三角形片 ABC中,∠ A=65°,∠ B=75°,将片的一角折叠,使点 C落在△ ABC 内,若∠1= 20°,∠ 2=___ ___ 。
《等腰三角形》培优专题

等腰三角形【分类解析】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
求证:M 是BE 的中点。
E例2. 如图,已知:AB C ∆中,AC AB =,D 是BC 上一点,且CA DC DB AD ==,,求BAC ∠的度数。
ABCD例3. 已知:如图,AB C ∆中,AB CD AC AB ⊥=,于D 。
求证:DCB 2B AC ∠=∠。
C4、中考题型:1.如图,△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有( )A. 6个B. 7个C. 8个D. 9个A 36° E DFBC 2.)已知:如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E 、F 分别是垂足。
求证:AE =AF 。
AE F BDC5、题形展示:例1. 如图,AB C ∆中, 100=∠=A AC AB ,,BD 平分ABC ∠。
求证:B C B D AD =+。
【实战模拟】1. 选择题:等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为( ) A. 2cmB. 8cmC. 2cm 或8cmD. 以上都不对2. 如图,AB C ∆是等边三角形,BC BD 90CBD ==∠, ,则1∠的度数是________。
CA 1DB2 33. 求证:等腰三角形两腰中线的交点在底边的垂直平分线上.4. AB C ∆中, 120A AC AB =∠=,,AB 的中垂线交AB 于D ,交CA 延长线于E ,求证:BC 21DE =。
【试题答案】(实战模拟) 1. B2. 分析:结合三角形内角和定理,计算图形中角的度数是等边三角形性质的重要应用。
解:因为AB C ∆是等边三角形 所以 60ABC BC AB =∠=, 因为B C B D =,所以B D A B = 所以23∠=∠在AB D ∆中,因为 60ABC 90CBD =∠=∠, 所以 150ABD =∠,所以 152=∠ 所以 75ABC 21=∠+∠=∠3. 分析:首先将文字语言翻译成数学的符号语言和图形语言。
等腰三角形 培优训练2022-2023学年人教版八年级数学上册

13.3 等腰三角形 培优训练一、单选题1.如图,B 在AC 上,D 在CE 上, AD =BD =BC , ∠ACE =25° , ∠ADE 的度数为( )A .50°B .65°C .75°D .80°2.如图,平面直角坐标系中,已知定点A (3,0)和B (0,4),若动点C 在y 轴上运动,则使△ABC 为等腰三角形的点C 有( )个.A .3B .4C .5D .63.如图, △ABC 中, BD 是角平分线, DE ∥BC 交 AB 于 E ,交 AC 于 D ,若 DE =7 , AE =5 ,则 AB = ( )A .10B .12C .14D .164.如图是正五边形ABCDE , DG 平分正五边形的外角△EDF ,连接AD ,则△ADG= ( )A .54°B .60°C .72°D .88°5.如图,在△ABC 中,运用尺规作图的方法在BC 边上取一点P ,使PA +PB =BC ,下列作法正确的是( )A .B .C .D .6.如图, △ABC 是等边三角形, BD 是中线,延长 BC 至E ,使 CE =CD ,则下列结论错误..的是( )A .∠CED =30°B .∠BDE =120°C .DE =BD D .DE =AB7.下列命题是真命题的是( )A .等腰三角形的角平分线、中线、高线互相重合B .一个三角形被截成两个三角形,每个三角形的内角和是90度C .有两个角是60°的三角形是等边三角形D .在 △ ABC 中, ∠A =∠B =2∠C ,则 △ ABC 为直角三角形8.如图,在Rt△ABC 中,△ACB =90°,AC =5,BC =12,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为( )A .44B .43C .42D .419.如图,△ABC 是等边三角形,点E 是AC 的中点,过点E 作EF△AB 于点F,延长BC交EF 的反向延长线于点D ,若EF=1,则DF 的长为( )A .2B .2.5C .3D .3.5二、填空题10.等腰三角形腰AB =10,底边BC =12,则△ABC 的周长为 .11.规定:在直角三角形中,如果直角边是斜边的一半,那么它所对的锐角为30°.等腰三角形ABC 中,AD ⊥BC 于点D ,若AD =12BC ,则△ABC 底角的度数为 .12.如图,在等边三角形ABC 中,AB =2,BD 是AC 边的高线,延长BC 至点E ,使CE =CD ,则BE 的长为 .13.如图,在 ΔABC 中, ∠ACB =120° , CD 平分 ∠ACB ,作 AE//DC ,交 BC 的延长线于点 E ,则ΔACE 是 三角形.14.已知射线OM.以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,如图所示,则△AOB= (度)15.如图,在△ABC 中,△ACB=90°,△B =30°,CD 是高.若AD=2,则BD= .三、作图题16.如图,在9×4的方格纸ABCD 中,每个小正方形的边长均为1,点E 为格点(注:小正方形顶点称为格点).请仅用无刻度直尺按要求画图.△在CD 边上找一点P ,连结AP ,使△AEP 是等腰三角形; △在AB 边上找一点Q ,使EQ△AP ,画出线段EQ.四、解答题17.如图, △ABC 中, AB=AC ,D 、E 分别是AB 、AC 上的点,且 △ABE=△ACD ,BE 、CD 交于点O ,求证: △OBC 是等腰三角形.18.已知a ,b ,c 是△ABC 的三边,a =4,b =6,若三角形的周长是小于16的偶数,判断△ABC 的形状.19.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点,连接ED ,BD .若BD 平分∠ABC ,求证:BD ⊥AC .20.如图, △ABC 是等边三角形, BD 是中线,延长 BC 至E ,使CE=CD.求证:DB =DE .21.如图,在△ABC 中,AB =AC ,D 为AB 边的中点,DE△AC 于点E ,DF△BC 于点F ,DE =DF .求证:△ABC 是等边三角形.22.如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内的两点,AD 平分△BAC ,∠EBC =∠E =60°.若BE =6cm ,DE =2cm ,求BC 的长.23.如图,在△ABC 中,△ACB=90°,CD 是高,△A=30°,求证:BD =14AB .24.阅读下列材料:小明遇到一个问题:已知:如图1,在△ABC 中,△BAC=120°,△ABC=40°,试过△ABC 的一个顶点画一条直线,将此三角形分割成两个等腰三角形.他的做法是:如图2,首先保留最小角△C ,然后过三角形顶点A 画直线交BC 于点D .将△BAC 分成两个角,使△DAC=20°,△ABC 即可被分割成两个等腰三角形.喜欢动脑筋的小明又继续探究:当三角形内角中的两个角满足怎样的数量关系时,此三角形一定可以被过顶点的一条直线分割成两个等腰三角形. 他的做法是:如图3,先画△ADC ,使DA=DC ,延长AD 到点B ,使△BCD 也是等腰三角形,如果DC=BC ,那么△CDB =△ABC ,因为△CDB=2△A ,所以△ABC= 2△A .于是小明得到了一个结论:当三角形中有一个角是最小角的2倍时,则此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.请你参考小明的做法继续探究:当三角形内角中的两个角满足怎样的数量关系时,此三角形一定可以被过顶点的一条直线分割成两个等腰三角形.请直接写出你所探究出的另外两条结论(不必写出探究过程或理由).25.如图[感知]如图①,△ABC 是等边三角形,点D 、E 分别在AB 、BC 边上,且AD=BE ,易知:△ADC△△BEA (1)[探究]如图②,△ABC 是等边三角形,点D 、E 分别在边BA 、CB 的延长线上,且AD=BE ,△ADC与△BEA 还全等吗?如果全等,请证明:如果不全等,请说明理由.(2)[拓展]如图③,在△ABC 中,AB=AC ,△1=△2,点D 、E 分别在BA 、FB 的延长线上,且AD=BE=CF ,若AF=2AD ,S△ABF=6,则S△BCD的大小为答案解析部分1.【答案】C【解析】【解答】解:∵BD=BC,∠ACE=25°,∴∠BDC=∠C=25°,∴∠ABD=50°,∵AD=BD,∴∠A=∠ABD=50°,∴∠ADE=∠A+∠C=75°.故答案为:C.【分析】由等边对等角得∠BDC=∠C=25°,利用三角形外角的性质求出∠ABD=50°,由等边对等角得∠A=∠ABD=50°,根据三角形外角的性质求出∠ADE=∠A+∠C=75°.2.【答案】B【解析】【解答】解:如图所示:当BC=BA时,使△ABC为等腰三角形的点C有2个;当AB=AC时,使△ABC为等腰三角形的点C有1个;当CA=CB时,使△ABC为等腰三角形的点C有1个;综上所述,若动点C在y轴上运动,使△ABC为等腰三角形的点C有4个;故答案为:B.【分析】利用等腰三角形的判定方法求解即可。
人教版 八年级数学 13.3 等腰三角形 培优训练(含答案)

人教版八年级数学13.3 等腰三角形培优训练一、选择题(本大题共10道小题)1. 如图,已知P A=PB,在证明∠A=∠B时,需要添加辅助线,下面有甲、乙两种辅助线的作法:甲:作底边AB的中线PC;乙:作PC平分∠APB交AB于点C.则()A.甲、乙两种作法都正确B.甲的作法正确,乙的作法不正确C.甲的作法不正确,乙的作法正确D.甲、乙两种作法都不正确2. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对3. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 104. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°5. 如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD6. 如图所示,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为E. 若AE=1,则△ABC的边长为()A. 2B. 4C. 6D. 87. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°8. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题(本大题共6道小题)11. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.12. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.13. 在△ABC中,若∠A=100°,∠B=40°,AC=5,则AB=________.14. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.15. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.16. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:DE=DF.18. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.19. 如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.20. 如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DF=2DC.人教版八年级数学13.3 等腰三角形培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】B【解析】∵|x -4|+y -8=0,∴x -4=0,y -8=0,解得x =4,y =8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.3. 【答案】C 【解析】∵AB =AC ,AD 平分∠BAC ,∴根据等腰三角形三线合一性质可知AD ⊥BC ,BD =CD ,在Rt △ABD 中,AB =5,AD =3,由勾股定理得BD =4,∴BC =2BD =8.4. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.5. 【答案】D[解析] 选项A 由等角对等边可得△ABC 是等腰三角形;选项B 由所给条件可得△ADB ≌△ADC ,由全等三角形的性质可得AB =AC ;选项C 由垂直平分线的性质可得AB =AC ;选项D 不可以得到AB =AC. 6. 【答案】B7. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.8. 【答案】D[解析] ∵∠BAC =72°,∠C =36°,∴∠ABC =72°.∴∠BAC =∠ABC. ∴CA =CB.∴△ABC 是等腰三角形.∵∠BAC 的平分线AD 交BC 于点D ,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.9. 【答案】C10. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题(本大题共6道小题)11. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.12. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.13. 【答案】514. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC. ∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.15. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.16. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.三、解答题(本大题共4道小题)17. 【答案】证明:连接AD.∵AB=AC,D为BC的中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.18. 【答案】解:(1)证明:如图,过点D作DM∥AB,交CF于点M,则∠MDF=∠E.∵△ABC是等边三角形,∴∠CAB=∠CBA=∠C=60°.∵DM∥AB,∴∠CDM=∠CAB=60°,∠CMD=∠CBA=60°.∴△CDM是等边三角形.∴CM=CD=DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF ≌△EBF(ASA).∴DM =BE. ∴CD =BE.(2)∵ED ⊥AC ,∠CAB =∠CBA =60°, ∴∠E =∠FDM =30°. ∴∠BFE =∠DFM =30°. ∴BE =BF ,DM =MF.∵△DMF ≌△EBF ,∴MF =BF. ∴CM =MF =BF.又∵BC =AB =12,∴BF =13BC =4.19. 【答案】解:(1)∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠BEG =∠AGC′=48°. 由折叠的性质得∠CEF =∠C′EF , ∴∠CEF =12(180°-48°)=66°. (2)证明:∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠GFE =∠CEF. 由折叠的性质得∠CEF =∠C′EF , ∴∠GFE =∠C′EF.∴GE =GF ,即△EFG 是等腰三角形.20. 【答案】证明:∵△ABC 是等边三角形, ∴∠A =∠B =∠ACB =60°. ∵DE ∥AB ,∴∠EDC =∠B =60°,∠DEC =∠A =60°. ∵EF ⊥DE ,∴∠DEF =90°. ∴∠F =90°-∠EDC =30°.∵∠ACB=∠EDC=∠DEC=60°,∴△EDC是等边三角形.∴DE=DC. ∵∠DEF=90°,∠F=30°,∴DF=2DE=2DC.。
人教版八年级数学上册 第13章 13.3.1.2 等腰三角形的判定 培优训练(含答案)

人教版数学八年级上册13.3.1.2等腰三角形的判定培优训练一.选择题(本大题共10小题,每小题3分,共30分)1.下列条件中,不能判定△ABC是等腰三角形的是( )A.∠A∶∠B∶∠C=1∶1∶3B.a∶b∶c=2∶2∶3C.∠B=50°,∠C=80°D.2∠A=∠B+∠C2.在△ABC中,∠A∶∠B∶∠C=1∶1∶2,则△ABC是()A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形3.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B等于( )A.70°B.35°C.110°或35°D.110°4.如图,OC平分∠AOB,CD∥OB,若OD=3 cm,则CD等于()A.3 cm B.4 cmC.1.5 cm D.2 cm5.如图,AD平分∠BAC,AD∥EC,则下列三角形中一定是等腰三角形的是( )A.△ABD B.△ACDC.△ACE D.△ABC6. 如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,A.2个B.3个C.4个D.5个7. 如图,将一张长方形纸片ABCD沿BD折叠,若AE=3,AB=4,BE=5,则重叠部分的面积为( ) A.6 B.8C.10 D.128.如图,轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是( )A.45海里B.35海里C.50海里D.25海里9.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,那么点C的个数有()A.6个B.7个C.8个D.9个10.如图,在下列三角形中,AB=AC,能被一条直线分成两个小等腰三角形的是()A.①②③B.①②④二.填空题(共8小题,3*8=24)11.如图,在△ABC中,BD⊥AC,∠A=50°,∠CBD=25°,若AC=5 cm,则AB=_______cm.12.如图,在△ABC中,BC=5 cm,BP,CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长为_______cm.13.如图,在△ABC中,若∠BAC=50°,∠B=65°,AD⊥BC于D,BC=8 cm,则△ABC是_______三角形,BD的长为_______cm.14. 直线上依次有A,B,C,D四个点,AD=7,AB=2,若AB,BC,CD可构成以BC为腰的等腰三角形,则BC的长为___________.15.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为_______.16. 如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是_______.17.如图,在△ABC中,AB=AC=5,D是BC边上的点,DE∥AB交AC于点E,DF∥AC交AB 于点F,那么四边形AFDE的周长是____.18.如图,上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B处,从A,B处望灯塔C,测得∠NAC=43°,∠NBC=86°,则海岛B与灯塔C相距____海里.三.解答题(共7小题,46分)19.(6分) 如图,在△ABC中,AB=AC,D是AB上一点,过D作DE⊥BC于E,并与CA的延长线相交于F,试判断△ADF的形状,并说明理由.20.(6分) 如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.21.(6分) 如图,在△ABC中,D,E是BC边上的两点,且BD=CE,AD=AE,求证:∠B=∠C,∠BAD=∠CAE.22.(6分) 如图,在△ABC中,AB=AC,点D在BC上,∠B=30°,∠BAD=45°.(1)求∠DAC的度数;(2)求证:DC=AB.23.(6分) 如图,在△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AC=AB+BD.24.(8分) 如图,在△ABC中,AB=AC,AD是高,AM是△ABC的外角∠CAE的平分线.作∠ADC 的平分线DN,)设DN与AM交于点F,判断△ADF的形状.25.(8分) 已知点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图①,若点O在BC上,求证:AB=AC;(2)如图②,若点O在△ABC内部,求证:AB=AC;(3)猜想:若点O在△ABC的外部,此时AB=AC成立吗?(用图形来说理即可)参考答案:1-5DDBAC 6-10DCDCD11. 512. 513. 等腰,414. 2或2.515. 916. 317. 1018. 3019. 解:△ADF是等腰三角形.理由:在△ABC中,∵AB=AC,∴∠B=∠C,∵DE⊥BC,∴∠DEB=∠DEC=90°,∴∠BDE+∠B=90°,∠F+∠C=90°,∴∠BDE=∠F,∵∠BDE=∠ADF,∴∠ADF=∠F,∴AF=AD,∴△ADF是等腰三角形20. 证明:如图,∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形21. 解:∵AD=AE,∴∠ADE=∠AED,∵∠ADE+∠ADB=180°,∠AED+∠AEC=180°,∴∠ADB=∠AEC,又∵BD=CE,∴△ABD≌△ACE(SAS),∴∠B=∠C,∠BAD=∠CAE∴∠BAC=180°-∠B-∠C=120°.又∵∠BAD=45°,∴∠DAC=∠BAC-∠BAD=120°-45°=75°(2)证明:∵∠B=30°,∠BAD=45°,∴∠CDA=∠B+∠BAD=75°.∵∠DAC=75°,∴∠CDA=∠DAC,∴DC=AC=AB23. 解:如图,在AC上截取AE=AB,连接DE,则:∵AD是∠BAC的平分线,∴∠BAD=∠EAD,又∵AE=AB,AD=AD,∴△ABD≌△AED(SAS),∴∠AED=∠B,BD=ED,∵∠B=2∠C,∠AED=∠EDC+∠C,∴2∠C=∠EDC+∠C,∴∠EDC=∠C,∴ED=EC,∴AC=AE+EC=AB+BD24. 解:如图,△ADF为等腰直角三角形,理由:∵AB=AC,AD⊥BC,∴∠ADC=90°,∠BAD=∠CAD,∵AM平分∠EAC,∴∠EAM=∠CAM,又∠EAM+∠CAM+∠BAD+∠CAD=180°,∴∠DAC+∠CAM=∠DAM=90°,∴∠ADC+∠DAM=180°,∴AM∥DC,∴∠AFD=∠FDC,又∵DN平分∠ADC,∴∠ADF=∠FDC,∴∠ADF=∠AFD,∴AD=AF,∴△ADF是等腰直角三角形25. 解:如图①,(1)过点O作OD⊥AB于D,OE⊥AC于E,则OD=OE,∠ODB=∠OEC=90°,在Rt△BOD和Rt△COE中,∵OD=OE,OB=OC,∴∠B=∠C,∴AB=AC如图②,(2)过点O作OD⊥AB于D,OE⊥AC于E,则OD=OE,∠ODB=∠OEC=90°,在Rt△BOD和Rt△COE中,∵OD=OE,OB=OC,∴Rt△BOD≌Rt△COE(HL),∴∠DBO=∠ECO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC(3)不一定成立,如图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形培优专题
等腰三角形是一种特殊的三角形,它具有一般三角形的性质,同时,还具有自身的特殊性,这些特殊性使它比一般三角形应用更加广泛.等腰三角形的性质和判定为证明两个角相等和两条线段相等提供了依据.等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径.
练习
1.如图,已知△
A.7.5°ABC中,
AB
B.10°
=AC ,AD =
C.12.5 °
AE ,∠ BAE
D.18°
= 30 °,则
∠
DEC 等于().
2.如图,AA′、 BB′分别是△ABC的外角∠C 在一直线上,则∠ACB的度数是多少?EAB 和∠CBD 的平分线,且AA′=
AB
= B′B,A′、 B 、
3.如图,则∠ BDC
等腰三角形
= ________
ABC
.
中,AB =AC ,∠
A
=20 °.
D
是AB 边上的点,且AD = BC ,连
结
CD ,
例 2 如图, D 是等边三角形ABC 的 AB 边延长线上一点, E 是等边三角形ABC 的 AC 边延长线上一点,且EB = ED .那么CE 与 AD 相等吗?试说明理由.
E
C
A B D
练习
线交1.已知如图,在△
CA 的延长线于点
ABC中,AB=CD,D是
F ,判断AD 与 AF 相等吗?
AB 上一点,DE⊥BC ,
E
为垂足,ED? 的延长
2.如图,△ABC = 15°,则 BD 与
A . BD>BA
是等腰直角三角形,∠
BA 的大小关系是(
B . BD<B
A
BAC
)
=90°,点 D 是△
C. BD =BA
ABC
内一点,且∠
D .无法确定
DAC =∠DCA
3.已知:如图,在△ABC中,AD
是BC 边上的中线, E 是AD 上一点,且BE =
AC
,延长
BE 交 AC 于 F, AF 与 EF 相等吗?为什么?
例 3已知:如图,△ABD和△ BEC均为等边三角形,M 、N
△ BMN是等边三角形吗?说明理由.
分析要说明一个三角形是等边三角形,只要能够证明这个三角形满足相等或一个角是60°的等腰三角形”即可.本题只需利用三角形全等证得分别为AE 和 DC 的中点,那么
“三条边相等或三个角
BM = BN ,且∠ MBN = 60°
即可.
练习
1.已知:如图,在等边三角形ABC 中,
BD = CE=AF ,AD 与BE 交于G,
BE
与CF 交于H ,
CF 与AD 交于K ,试判断
△
GHK 的形状.
2.已知:如图,
△
是等边三角形,如果
ABC 是等边三角形,
M 是线段AD 的中点,
E 是 AC 延长线上的任意一点,
N 是线段BE 的中点,那么△
选择一点 D ,?使△ CDE
CMN是等边三角形吗?
为什么?
3.已知:如图,等边三角形三角形 PCD 、 QAE和RAB,则以
ABC ,在 AB 上取点 D ,在
P、 Q 、 R 为顶点的
三角形是等边三角形,
请说明理由.
= AE ,作等边
例 4已知:如图,等腰△ABC中,AB=AC,∠ A=100°,∠ABC的平分线交AC 于 E ,试比较AE+BE与BC的大小?
A A
E E
B C B C
练习
1.如图,在△CF ⊥ AB 于 F,那么ABC中,AB=AC,
P
PD+PE 与 CF 相等吗?
为底边BC 上的一点,PD ⊥
AB
于 D,PE⊥AC 于 E,
2.已知:如图,△ABC和△ ADE都是等边三角形. B 、 C 、 D 在一条直线上,说明CE 与AC+CD相等的理由.
连结3.
已
知
:
如
图
,
△ABC
AE ,
则AD_______AE+AB
是等边三角形,延长
AC .(填“ >”或
“=”或“
到<”)
D ,以BD 为一边作等边三角形BD
,
E。