假设检验——非参数检验

合集下载

数学建模方法-非参数假设检验

数学建模方法-非参数假设检验

两相关样本的非参数检验(2 Related Samples Test)
【例12】clinical trial.sav 比较试验药组(group=1) 治疗前血红蛋白含量(hb1)和治疗后血红蛋白含量(hb2) 有无差异.
这是两组相关计量资料的比较. 结论:P=0.018,有显著性差异.
多个相关样本的非参数检验(K Related Samples Test) 【例13】nonpara_7.sav 分析药物是否有效
两相关样本的非参数检验(2 Related Samples Test) 多个相关样本的非参数检验(K Related Samples Test)
两独立样本的非参数检验(2 Independent Samples Test) 检验两个独立样本间是否具有相同的分布. 【例8】nonpara_3.sav 比较两组人群的RD值有无差别 这是两组计量资料的比较. 选择要检验的变量和分 类变量,定义分类值(1-2),其它使用默认选项即可.从负二项分 布的结论.
单样本的K_S拟合优度检验
检验一计量资料是否服从某种理论分布,这里的分布可以 是正态分布(Normal),均匀分布(Uniform),泊松分布(Poisson), 指数分布(Exponential).
【例7】diameter_sub.sav 检验是否服从正态分布
多个独立样本的非参数检验(K Independent Samples Test) 【例10】nonpara_5.sav 比较三种药物的效果有无差别 这是三组计量资料的比较. 选择要检验的变量和分 类变量,定义分类值(1-3),其它使用默认选项即可. 结论:三组的秩和12.6,7.6,3.8,P=0.008,三种药物的 效果有显著性差异,以甲药效果最好. 【例11】nonpara_6.sav 比较三种固定钉治疗骨折的疗效 这是三组等级/频数资料的比较. 先说明频数变量, 再选择要检验的变量和分类变量,定义分类值(1-3),其它 使用默认选项即可. 结论:P=0.129,故三组无显著性差异.

非参数检验的检验方法

非参数检验的检验方法

非参数检验的检验方法非参数检验是一种假设检验的方法,它不依赖于总体分布的具体形式,而是基于样本数据进行推断。

相比于参数检验,非参数检验更加灵活和普适,可以适用于更广泛的情况。

非参数检验的主要思想是通过对样本数据的排序或者秩次变换,来推断总体的性质。

下面将介绍几种常见的非参数检验方法:1. Mann-Whitney U检验(又称Wilcoxon秩和检验):Mann-Whitney U检验用于比较两个独立样本的总体中位数是否相等。

它的基本思想是将两组样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。

然后计算两组数据秩次和之差的绝对值,该值即为检验统计量U,根据U的大小可以进行推断。

2. Kruskal-Wallis H检验:Kruskal-Wallis H检验用于比较多个独立样本的总体中位数是否相等。

它的基本思想是将所有样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。

然后计算每个样本的秩次和,以及总体的秩次和。

根据这些秩次和的差异来进行推断。

3. 秩和检验:秩和检验是一类常见的非参数检验方法,包括Wilcoxon符号秩检验和符号秩和检验。

这两种方法都是用来比较两个相关样本的总体中位数是否相等。

基本思想是将两个样本的差的符号进行标记,并用秩次表示绝对值大小的顺序。

然后根据秩次和的大小来进行推断。

4. Friedman检验:Friedman检验用于比较多个相关样本的总体中位数是否相等。

它的基本思想是将所有样本的数据进行秩次变换,并计算每个样本的秩次和。

然后根据秩次和的差异来进行推断。

在进行非参数检验时,需要注意以下几点:1. 样本独立性:非参数检验通常要求样本之间是独立的,即样本之间的观测值不受其他样本观测值的影响。

如果样本之间存在相关性,应考虑使用相关性检验或者非参数检验的相关版本。

2. 样本大小:非参数检验对样本的大小没有严格要求,但样本大小较小时可能会影响检验的统计功效。

3.3非正态总体参数的假设检验和非参数检验

3.3非正态总体参数的假设检验和非参数检验
33非正态总体参数的假设检验和非参数检验为取自总体的一个样本总体均值未知考虑假设检验若样本容量充分大当总体方差已知时可取统计量n充分大时u近似服从标准正态分布故问题归结为u检验
§3.3 非正态总体参数的 假设检验和非参数检验
1. 非正态总体大样本检验( n充分大) 设 X1, X2,…, Xn为取自总体的一个样本
服从多项分布。
由大数定律知,当n充分大时,频 数ni与理论频数npi越来越小。故ni 与npi之间的差异可以反映出概率分 ,p , ,p 布 (p 是否为总体的真实分 1 2 r) 布。令
(ni npi ) npi i 1
2 r
2
称上述统计量为皮尔逊统计量。
定理(皮尔逊定理)设总体的真实 ,p , ,p 分布为 (p 1 2 r),则有
总体均值未知,考虑假设检验 H0 : 0.
若样本容量充分大,当总体方差已 X 0 知时,可取统计量 U ,当 / n n充分大( n 30 ) 时,U近似服从 标准正态分布,故问题归结为u检验。
若样本容量充分大,且总体方差未 X 0 知时,可取统计量 U ,当 S/ n n充分大(一般要求 n 100 )时, U近似服从标准正态分布,故问题也 归结为u检验。
与皮尔逊检验法相比,K检验更 精确,但适用范围较小。

此时的统计量为

2 i 1
r
ˆ i0 ) (ni np ˆ i0 np
2
.
当n充分大时,上述统计量近似服 从自由度为r-m-1的卡方分布。其 中的 pˆ i 0 是把 1, ,m换成极大似然 ˆ , , ˆ 后算出的 p i 。 估计 0 1 m
分布拟合检验还可用来检验随机 变量之间的独立性。 假设有一个二维总体(X,Y)。将X和Y 的取值范围分别分成r个和q个互不相 交的区间A1,A2,…,Ar和B1,B2,…,Bq。 从总体抽取一个容量为n的样本 (x1,y1),…(xn,yn),令nij表示样本值中x 落入Ai,y落入Bj的个数。

非参数假设检验.pptx

非参数假设检验.pptx
取 1。.据9 此,我们可以用参数 的泊1松.9分布来
计算每分钟内通过收费站的汽车为0辆、1辆、2辆、3 辆、4辆或更多的概率。
第12页/共43页
e 各概率乘以观测总数n=100,便得到理论频数 ,具体结果见下表: i ei
计算 2统计量的值:
2 (14.96 10)2 (28.42 26)2 (27.0 35)2
H0 :汽车通过收费站的辆数服从泊松分布; H1 :不服从泊松分布。
观测值分为5组,且有 u0 10,u1 26,u2 35,u4 5
第11页/共43页
回忆泊松分布
P{X x} e x , x 0,1, 2,
x!
其中 为泊松分布的期望值,是未知的,需要用样
本观测值来估计。由于100分钟内观测到190辆汽车, 所以平均每分钟观测到190/100=1.9辆汽车,故
第9页/共43页
计算 2统计量的值:
2 6 (ui ei )2
i1
ei
(27 25)2 (18 25)2 (15 25)2 (24 25)2
25
25
25
25
(36 25)2 (30 25)2 12
25
25
在本例的情况下, 统2 计量的自由度为m-1=6-1=5。
第8页/共43页
解:本例中的观测值以月为组,共分为m=6组,
每 月的销售台数即为观测的频v数i ,观测的总次
数为n=150。现欲检验是否服从(离散的)均匀 分布,即每月的销售量是否为
ei
nPi
150 6
25(台),
Pi
1 6
,i
1,
,6
为此,设
H0 :洗衣机销售量服从均匀分布;
H1 :并不服从均匀分布;

非参数假设检验方法

非参数假设检验方法

非参数假设检验方法
非参数假设检验方法,那可真是个超棒的统计利器!咱先说说它的步骤吧。

嘿,你想想看,就像搭积木一样,第一步得先明确问题,确定咱要检验啥。

然后收集数据,这数据就像是建筑材料,得好好收集。

接着计算检验统计量,这就如同给积木搭出形状。

最后根据统计量判断是否拒绝原假设。

这步骤简单易懂吧?
注意事项也不少呢!数据得有代表性,不然就像盖房子用了劣质材料,那可不行。

样本量也不能太小,不然就像小娃娃搭的积木城堡,风一吹就倒啦。

说到安全性和稳定性,那可是杠杠的!它不像有些方法那么娇气,对数据的分布要求不高。

就好比一辆越野车,能在各种路况下行驶,不用担心路况不好就抛锚。

应用场景那可多了去啦!当数据不满足参数检验的条件时,非参数假设检验方法就大显身手啦。

比如研究不同年龄段的人对某种产品的喜好,数据可能乱七八糟的,这时候非参数检验就像救星一样。

它的优势也很明显啊,操作简单,容易理解,不需要太多高深的数学知识。

就像玩游戏,不需要看厚厚的说明书就能上手。

给你举个实际案例吧。

有个公司想知道新推出的广告有没有效果,就用了非参数假设检验方法。

结果发现广告确实提高了产品的知名度。

这效果,哇塞,杠杠的!
非参数假设检验方法就是这么牛!它简单易用,安全稳定,应用场景广泛,优势明显。

赶紧用起来吧!。

非参数检验方法

非参数检验方法

非参数检验方法一、什么是非参数检验非参数检验(Nonparameteric Tests)是指检验假设(比如均值、方差、分布类型)不依赖样本参数的方法,也可以称为不参数检验,将数据的描述性统计量和判别量作为假设检验的基本工具,而不主张假设服从某个具体的概率分布。

二、非参数检验的优点1、可以使用描述性统计量作为假设检验的基本工具,而不主张数据服从某个具体的概率分布,使得检验更加简单。

2、非参数检验的统计量倪比较有针对性,无论样本量大小,无论是否假定样本服从某个具体概率分布,它都能比较有效计算统计量的有效性、准确性。

3、非参数检验的抽样复杂度较低,当数据量较小时,可以获得较精确的结果。

4、非参数检验可以应用于连续变量或离散变量检验假设,使得非参数检验成为一种常见的统计检验方法。

三、常见的非参数检验方法1、Wilcoxon符号秩检验:Wilcoxon符号秩检验是用于比较两组数据之间不同水平上的秩和的检验,它的统计量是组间的秩和比,假设多个样本的总体服从同一分布,可以用来检验两组数据间的均值或中位数的差异性,即表明两个样本的分布是否有差异。

2、Kruskal-Wallis H检验:Kruskal-Wallis H检验是一种无序秩检验,它能检验总体中多组数据间的均值或中位数的比较,即用来检验多个样本构成的总体是否服从同一分布,要求多组样本的体积相等。

3、Friedman检验:Friedman检验是一种用于多个样本比较的非参数检验,它的检验统计量是秩求和检验,可以检验多个样本构成的总体是否服从相同的分布,从而比较多个样本之间的均值,中位数或众数相对应的所有统计量。

4、Spearman秩相关系数:Spearman秩相关系数是一种测量两个变量相关性程度的方法,它不要求变量服从某种分布,仅要求变量是分类变量或连续变量。

5、Cochran Q检验:Cochran Q检验是变量若干观测值服从同一分布的依赖性检验,可以检验多组数据的差异性是否具有统计学意义,一般用于比较不同实验组间的得分或响应相对于对照组的得分或响应的差异性。

假设检验——非参数检验

假设检验——非参数检验

假设检验(二)——非参数检验假设检验的统计方法,从其统计假设的角度可分为两类:参数检验与非参数检验。

上一节我们所介绍的Z 检验、t 检验,都是参数检验。

它们的共同特点是总体分布正态,并满足某些总体参数的假定条件。

参数检验就是要通过样本统计量去推断或估计总体参数。

然而,在实践中我们常常会遇到一些问题的总体分布并不明确,或者总体参数的假设条件不成立,不能使用参数检验。

这一类问题的检验应该采用统计学中的另一类方法,即非参数检验。

非参数检验是通过检验总体分布情况来实现对总体参数的推断。

非参数检验法与参数检验法相比,特点可以归纳如下:(1)非参数检验一般不需要严格的前提假设;(2)非参数检验特别适用于顺序资料;(3)非参数检验很适用于小样本,并且计算简单;(4)非参数检验法最大的不足是没能充分利用数据资料的全部信息;(5 )非参数检验法目前还不能用于处理因素间的交互作用。

非参数检验的方法很多,分别适用于各种特点的资料。

本节将介绍几种常用的非参数检验方法。

一.2检验2检验主要用于对按属性分类的计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,它是一种检验计数数据分布状态的最常用的非参数检验方法。

22检验的方法主要包括适合性检验和独立性检验。

(一)2检验概述2是实得数据与理论数据偏离程度的指标。

其基本公式为:2 ( f0 f e)(公式11—9)fe式中,f0 为实际观察次数,f e 为理论次数。

分析公式可知,把实际观测次数和依据某种假设所期望的次数(或理论次数)的差数平方,除以理论次数,求出比值,再将n 个比值相加,其和就是2。

观察公式可发现,如果实际观察次数与理论次数的差异越小, 2值也就越小。

当 f 0 与 f e 完全相同时,2值为零。

际次数与理论次数之差的大小而变化利用2值去检验实际观察次数与理论次数的差异是否显著的方法称为2检验有两个主要的作第一,可以用来检验各种实际次数与理论次数是否吻合的这类问题统称为适合性检验; 第二, 判断计数的两组或多组资料是否相互关联还是相互独立的问 题,这类问题统称为独立性检验。

非正态总体参数的假设检验和非参数检验

非正态总体参数的假设检验和非参数检验

分布类型,此时F0可能含有未知参数,
上述方法不再适用。此时若要检验假

H0 : F (x) F0 (x;1,L ,,m由) 于
未于知 是pi0,可故以上用述估检计验量法(不极能大直似接然使估用计,)
来代替未知参数。
此时的统计量为
2 r (ni npˆi0 )2 .
i 1
npˆ i0
当n充分大时,上述统计量近似服
服从多项分布。
由大数定律知,当n充分大时,频 数ni与理论频数npi越来越小。故ni 与npi之间的差异可以反映出概率分 布 ( p1, p2,L , pr )是否为总体的真实分 布。令
2 r (ni npi )2
i1
npi
称上述统计量为皮尔逊统计量。
定理(皮尔逊定理)设总体的真实 分布为( p1, p2,L , pr ) ,则有
实际上,还可以用皮尔逊统计量检 验任意的一个总体是否具有某个指 定的分布函数 F0 (x)。
若我们要检验假设 H0 : F (x) F0 (x). 可选取r-1个不相等的实数 y1 L yr1 把实数轴分成r个区间,令
p1 F ( y1), pi F ( yi ) F ( yi1),i 2,L , r 1, pr 1 F ( yr1).
缺点:由于采用分组处理样本,实 际上检验的只是若干特殊点的值, 这就导致很可能犯第二类错误(取 伪错误)。
2. Kolmogorov检验法
出发点:考虑经验分布函数 Fn*(x) 和原假设H0 : F (x) F0 (x)成立时总 体分布函数之间偏差的最大值。
2 ~& 2 (r 1)
由上述定理,当样本容量较大时,
统计量 2近似服从自由度为r-1的卡
方分布。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假设检验(二)——非参数检验假设检验的统计方法,从其统计假设的角度可分为两类:参数检验与非参数检验。

上一节我们所介绍的Z 检验、t 检验,都是参数检验。

它们的共同特点是总体分布正态,并满足某些总体参数的假定条件。

参数检验就是要通过样本统计量去推断或估计总体参数。

然而,在实践中我们常常会遇到一些问题的总体分布并不明确,或者总体参数的假设条件不成立,不能使用参数检验。

这一类问题的检验应该采用统计学中的另一类方法,即非参数检验。

非参数检验是通过检验总体分布情况来实现对总体参数的推断。

非参数检验法与参数检验法相比,特点可以归纳如下:(1)非参数检验一般不需要严格的前提假设;(2)非参数检验特别适用于顺序资料;(3)非参数检验很适用于小样本,并且计算简单;(4)非参数检验法最大的不足是没能充分利用数据资料的全部信息;(5 )非参数检验法目前还不能用于处理因素间的交互作用。

非参数检验的方法很多,分别适用于各种特点的资料。

本节将介绍几种常用的非参数检验方法。

一.2检验2检验主要用于对按属性分类的计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,它是一种检验计数数据分布状态的最常用的非参数检验方法。

22检验的方法主要包括适合性检验和独立性检验。

(一)2检验概述2是实得数据与理论数据偏离程度的指标。

其基本公式为:2 ( f0 f e)(公式11—9)fe式中,f0 为实际观察次数,f e 为理论次数。

分析公式可知,把实际观测次数和依据某种假设所期望的次数(或理论次数)的差数平方,除以理论次数,求出比值,再将n 个比值相加,其和就是2。

观察公式可发现,如果实际观察次数与理论次数的差异越小, 2值也就越小。

当 f 0 与 f e 完全相同时,2值为零。

际次数与理论次数之差的大小而变化利用2值去检验实际观察次数与理论次数的差异是否显著的方法称为2检验有两个主要的作第一,可以用来检验各种实际次数与理论次数是否吻合的这类问题统称为适合性检验; 第二, 判断计数的两组或多组资料是否相互关联还是相互独立的问 题,这类问题统称为独立性检验。

2检验的具体步骤与 t 检验基本相同。

第一,建立虚无假设。

例如假定实测次数与理论次数无显著差异,差异仅由机会造成。

第二,计算理论次数,并求出2值。

第三,统计推断。

根据 df 数目和选定的显著性水平, 查 2值表得出超过实得 2值的概率。

把概率的大小,作为接受或拒绝假设的依据。

表 11—92检验统计决断规则(二)适合性检验 适合性检验是应用2检验方法的一种。

它主要适用于检验实际观测次数与理论次数之检查以是否显著, 它所面对的研究对象主要是一个因素多项分类的计数资料, 所以又称为单因素分类2检验或单项表的 2检验。

适合性检验的种类主要有无差假设的适合性检验和实际次数分布 是否属于正态分布的适合性检验,下面逐一进行简要介绍2值的特点为:①2值具有可加性。

②2值永远不会小于零。

③ 2值的大小随着实2检验1. 无差假设的适合性检验所谓无差假设是指各项分类的次数没有差异, 理论次数完全按概率相等的条件计算, 即理论 次数 = 总数/分类项数例 1 ,随机抽取 70 名学生,调查他们对高中分文理科的意见,回答赞成的有 42 人,反对的 有 28 人。

问对分科的意见有无显著差异?解:此例只有两种分类。

因此应有理论次数 f e =70×0.5=35 (人)检验步骤: ( 1)建立假设: H 0 : f 0 f e 30, H 1 : f 0 f e(2)计算2值:平上保留虚无假设,拒绝备择假设。

其结论为:学生对高中文理分科的态度的差异不显著。

例 2,某大学某系的 46 位老年教师中,健康状况属于良好的有 15 人,中等的有 20 人,比 较差的有 11 人,问该系老教师中三种健康状况的人数是否一样? 解:此例有三种分类。

因此应有理论次数f e = 46= 18 (人)e3检验步骤:1)建立假设:H 0 :健康状况好、中、差三种人数H 1 :健康状况好、中、差三种人数不相同2)计算 2值:22(20 18)2 (11 18) 23.4418 18首先确定自由度 df ,本例 df = 3 — 1 = 2 。

查 df = 2 的2表,2(2,0.05) =5.99 ,故有2< 2(2,0.05) ,因此应在 0.05 显著性水平上保留虚无假设,拒绝备择 假设。

其结论为:该系老教师中,健康状况好、中、差三种人数无显著差异2.实际次数分布是否属于正态分布的适合性检验2(f 0 f e )2 =(42 35)2 (28 35) 3522.8353)统计推断。

首先确定自由度 df , 2检验的自由度一般等于分类项数减 1 ,本例 df =2— 1 = 1 。

查 df = 1 的2表, 2(1,0.05) =3.84 ,故有2(1,0.05) ,因此0.05 显著性水22( f 0 f e ) (15 18) 18 3)统计推断2检验还可以通过将正态分布的概率转换为理论次数的数值,来检验某些实际次数分布是否属于正态分布。

例3 ,今对某校100 名学生进行操行评定,分优、良、中、差四等,评定结果为:优19 人、良39 人、中35 人、差7 人。

试检验其分布的形式是否属于正态分布?解:检验步骤:(1)建立假设:H 0 :评定结果服从正态分布H 1 :评定结果不服从正态分布(2)计算2值:首先需求出理论次数。

正态分布的各部分理论次数,是通过正态分布图中面积比率乘以总次数得出的。

在正态分布情况下,正态曲线底边上± 3 之内几乎包含了全部量数,因此我们可将正态分布底线长度从-3 至+3 分为四个等分,每等分为1.5 ,其面积比率为:第一等分(优)的面积:上限3 ,下限为1.5 。

1.5 ~3 之间的面积比率为:0.4987 -0.4332=0.0655 ,即7%。

第二等分(良)的面积:位于0~1.5 之间,其面积比率为0.4332 ,即43%。

第三等分(中)的面积:位于0 ~-1.5 之间,其面积比率为0.4332 ,即43%。

第四等分(差)的面积:位于-1.5 ~-3 之间的面积比率为:0.4987 -0.4332=0.0655 ,即7%。

根据各等分的面积比率,乘以总人数,即可得出理论次数。

如:优的人数为7%× 100=7,良的人数为43%×100=43。

同理可求出中的人数为43,差的人数为7。

即优的f e=7,良的f e=43,中的f e=43,差的f e =7。

代入(公式11—9)有:2 2 2 22 (19 7)2(39 43)2(35 43)2(7 7)222.437 43 43 722.43(3 )统计推断。

首先确定自由度df ,本例df = 4 —1 = 3 。

查df = 2 的2表,2(3,0.05)=7.81 ,2(3,0.01)= 11.345 ,故有2> 2(3,0.01),因此应在0.01 显著性水平上拒绝虚无假设,接受备择假设。

其结论为:此评定结果不服从正态分布三)独立性检验独立性检验也是2检验的一个重要应用。

如果想研究两个或两个以上因素之间是否具有独立性,就可利用2独立性检验。

独立性检验一般都采用表格的形式来显示观察结果,所以独立性检验也称为列联表分析。

当检验对象只有两个因素而且每个因素只有两项分类的列联表就称为2×2 列联表或四格表;而一个因素有R类,另一个因素有C类,这种表称之为R×C表。

本节只讨论二维列联表的情况。

关于二维列联表的独立性检验,需注意几个问题:第一,独立性检验的虚无假设是二因素(或多元素)之间是独立的或无关联,被择假设是二因素(或多因素)自荐有关联或者说差异显著。

一般多用文字叙述而很少用符号代替。

第二,独立性检验的理论次数是直接由列联表所提供的数据推算出来的。

如果用f Ri表示第i 行的和,f Cj 表示第j 列的和,N 为所有数据值和,则第i 行第j 列的方格内的理论次数为:f R i f C jf e ij(公式11—10)eijN第三,二维列联表自由度与二因素各自的分类项数有关。

设R为行分类项数(行数),C 为列分类项数(列数),则自由度为:df (R 1)(C 1)。

1.2× 2 列联表的独立性检验2× 2 列联表就是把样本按两种性质分组,并排成两行两列的表,它是最简单的列联表,简称为四格表。

2×2 列联表用以进行两个组彼此独立互无关联的检验。

独立性检验下面我们从样本的不同情况出发,分别介绍相应的检验方法。

独立样本的2×2 列联表的独立性检验独立样本4 格表的独立性检验,既可以用计算2的基本公式(公式11—9 )计算,也可用面的简捷公式计算:22 =N (ad bc)2(公式11—11)(a b)(c d )(a c)(b d )式中:a,b, c, d 分别是四格表内的实计数2表11—10 2 × 2列联表的2值计算示意表例4 ,设有甲乙两区,欲测验两区中学教学水平,各区随机抽取500 名初三学生,进行统一试题的数学测验,其结果是:甲区及格学生为475 人,不及格为25 人;乙区及格学生460 人,不及格为40 人,问甲区中学与乙区中学的数学测验成绩的差异是否显著?解:检验步骤:(1)建立假设:H 0 :甲区中学与乙区中学数学测验成绩无显著差异H1 :甲区中学与乙区中学数学测验成绩差异显著2)计算2值:表11—11 甲区中学与乙区中学的数学测验成绩表2 1000 (475 40 460 25)23.68= 500 65 935 5003)统计推断。

首先确定自由度df ,本例df =(2-1 )(2-1 )=1,查df =1 的2表,2 2 22(1,0.05) =3.84 ,故有 2<2(1, 0.05) ,因此应在 0.05 显著性水平上保留虚无假设,拒绝备择假设。

其结论为:甲区中学与乙区中学数学测验成绩无显著差异。

例 5,随机抽取某校男生 250 名,女生 240 ,进行体育达标考核,结果如下表 问体育达标水平是否与性别有关?表 11— 12 体育达标考核情况表达标未达标 合计男 15 20 35 女 13 18 31 合计283866解:检验步骤:1)建立假设: H 0 :体育达标水平与性别无关H 1 :体育达标水平与性别有关2 2 2(15 14.85)2 (20 20.15)2 (13 13.15) 2 14.85 20.15 13.153)统计决断: 首先确定自由度 df ,本例 df =1,查 df =1 的 2表,2(1,0.05) =3.84 ,故有 2< 2(1,0.05) ,因此应在 0.05 显著性水平上保留虚无假设,拒绝备择假设。

相关文档
最新文档