卡方检验 (Chi-square)
卡方检验(chi-squaretest)和费歇尔精确检验(fishersexacttest)

什么情况下用卡方检验(chi-square test)或费歇尔精确检验(fisher's exact test)呢?
以下面二联表为例:
健康 患病
吸烟 不吸烟
AB CD
N=A+B+C+D 假定吸烟患病人群是二联表中人数最少的,那么吸烟患病人群的理论频数T=(A+B)*(B/N)
当 T ≥5 且 N ≥ 40,采用卡方检验(chi-square test); 当 1<= T<5 ,且 N ≥ 40,采用连续性校正的卡方进行检验; 当 T<1 或 N<40,采用费歇尔精确检验(fisher's exact test);
博客园 用户登录 代码改变世界 密码登录 短信登录 忘记登录用户名 忘记密码 记住我 登录 第三方登录/注册 没有账户, 立即注册
卡方检验( chi-squaretest)和费歇尔精确检验 ( fistest):独立性检验,判断变量之间是否有相关性; 费歇尔精确检验(fisher's exact test):同样为独立性检验,但基于超几何分布;
统计方法卡方检验

统计方法卡方检验卡方检验(Chi-Square Test)是一种统计方法,用于检验两个或多个分类变量之间的关系。
它通过比较观察到的频数与期望的频数之间的差异,来判断这些变量是否独立或存在相关性。
卡方检验可以用于不同类型的问题,包括:1.两个分类变量之间的关系:例如,我们可以使用卡方检验来确定性别和吸烟偏好之间是否存在关联。
2.多个分类变量之间的关系:例如,我们可以使用卡方检验来确定教育水平、职业和收入之间是否有关联。
卡方检验的原理是基于观察到的频数与期望的频数之间的差异。
观察到的频数是指在实际数据中观察到的变量组合的频数。
期望的频数是指在假设独立的情况下,根据变量边际分布计算得到的预期频数。
卡方检验通过计算卡方统计量来衡量这两组频数之间的差异。
在进行卡方检验之前,需要设置零假设(H0)和备择假设(Ha)。
零假设通常是指两个或多个分类变量之间独立的假设,而备择假设则是指两个或多个分类变量之间存在相关性的假设。
卡方检验的计算过程可以分为以下几个步骤:1.收集观察数据:将观察到的数据以交叉表格的形式整理起来。
表格的行和列分别代表两个或多个分类变量的不同组合,表格中的数值表示观察到的频数。
2.计算期望频数:根据变量边际分布计算得到期望频数。
期望频数是在零假设成立的情况下,根据变量边际分布计算得到的预期频数。
3.计算卡方统计量:根据观察频数和期望频数之间的差异计算卡方统计量。
卡方统计量的计算公式为:X^2=Σ((O-E)^2/E)其中,Σ代表对所有单元格进行求和,O表示观察到的频数,E表示期望频数。
4. 计算自由度:自由度(degrees of freedom)是进行卡方检验时需要考虑的自由变量或条件的数量。
在卡方检验中,自由度等于(行数 - 1)乘以(列数 - 1)。
5.查找临界值:使用给定的自由度和显著性水平(通常为0.05)查找卡方分布表格,以确定接受或拒绝零假设。
6.比较卡方统计量和临界值:如果卡方统计量大于临界值,则拒绝零假设,认为两个或多个分类变量之间存在相关性;如果卡方统计量小于临界值,则接受零假设,认为两个或多个分类变量之间独立。
卡方检验法的基本步骤

卡方检验法的基本步骤1.引言1.1 概述引言是一篇长文的开篇部分,它为读者提供了一个大致了解文章主题和内容的概述。
在本文中,我们将探讨卡方检验法的基本步骤。
卡方检验法是一种统计方法,用于确定观察到的数据是否与期望的数据分布相符合。
它可以用于比较两个或多个分类变量之间的关系,并确定它们是否独立。
卡方检验法的步骤主要包括计算期望频数、计算卡方值和判断显著性。
通过这些步骤,我们可以评估数据之间的差异,从而得出结论。
在接下来的章节中,我们将详细介绍卡方检验法的基本概念和原理,以及具体的步骤。
了解卡方检验法的基本步骤对于进行实证研究和数据分析至关重要。
通过掌握这些步骤,我们可以准确地分析和验证数据,进一步推动统计学和实证研究的发展。
1.2文章结构文章结构部分的内容如下:1.2 文章结构本文将以卡方检验法的基本步骤为核心内容进行阐述,主要分为引言、正文和结论三个部分。
引言部分将对卡方检验法进行概述,介绍其基本概念和原理,旨在为读者提供对该方法的整体了解。
同时,还会说明本文的目的和意义,以引起读者的兴趣和阅读欲望。
正文部分将详细阐述卡方检验法的基本概念和原理。
首先,将介绍卡方检验法是一种统计推断方法,用于分析两个或多个分类变量之间的关联性。
然后,将详细解释卡方检验法的基本步骤,包括建立假设、计算卡方值、确定临界值和进行推断。
通过实例分析,将具体说明每个步骤的操作过程和意义,以帮助读者掌握卡方检验法的实施方法。
结论部分将对本文进行总结,简要回顾卡方检验法的基本步骤和应用前景。
首先,将对卡方检验法的基本步骤进行总结和概括,强调每个步骤的重要性和关联性。
然后,将探讨卡方检验法在实际应用中的前景和意义,包括其在医学研究、社会科学和市场调查等领域的应用。
最后,还将提出未来对于卡方检验法的进一步研究方向和改进空间,以促进该方法在实践中的更广泛应用。
通过以上的文内结构,本文将全面系统地介绍卡方检验法的基本步骤,使读者能够深入了解该方法的原理和实施过程。
卡方检验

2. 如检验结果拒绝检验假设,只能
认为各总体率或总体构成比之间总的
来说有差别,但不能说明它们彼此之 间有差别或两两之间有差别。
第三节 配对计数资料的卡方检验
配对设计的四格表资料:即将含量 为n的一份随机样本同时按照两个二项 分类的属性进行交叉分类,形成2行2列 的交叉分类表。
配对:(1)对同一批样本用不同的处理方法(2)观 察对象根据配对条件配成对子,同一对子内不同 的个体分别接受不同的处理。
2 2 2
2
4.确定P值,作出统计推论 自由度ν=(行-1)(列-1)=1
χ2 = 10.01>χ2 0.05(1)=3.84,P<0.05,
按α=0.05水准,拒绝H0,接受H1, 差异有统计学意义,可认为化疗加放 疗治疗卵巢癌疗效与单用化疗的有效 率之间存在统计学差异。
二. 四格表专用公式
(ad bc) n (a b)(c d )( a c)(b d )
表8.6
鼻咽癌患者与眼科病人血型构成比较
组别
患者
A型
55
B型
45 23
O型
57 36
AB型
19 9
合计
176 112
眼科病人44
合计
99
68
93
28
288
由表8.6可知,第2行第4列对应的 合计数最小,故该格的理论数最小, 即T24=112×28/288=10.89>5, 符合R×C表卡方检验条件。 1、建立假设:
H0:鼻咽癌患者与眼科病人血型构成比相同 H1:鼻咽癌患者与眼科病人血型构成比不全相同 α=0.05
2. 计算χ2值
A 55 45 n( 1) 288 ( nR nC 176 99 176 68
chi-square test名词解释

概念解释:卡方检验(chi-square test)是一种用于比较观察值与期望值之间差异的统计方法。
它适用于分类数据的分析,可以帮助确定观察到的数据分布是否符合预期的理论分布。
卡方检验通常用于分析两个或多个分类变量之间的关系,例如性别和职业的关联性、不同教育水平对政治立场的影响等。
让我们来深入理解卡方检验的概念和原理。
卡方检验的基本原理是通过比较观察值和期望值之间的差异来判断两个或多个分类变量之间是否存在关联性。
在进行卡方检验之前,我们首先需要建立一个原假设,即假设观察到的数据分布与理论分布相符。
通过一系列计算和统计方法,我们可以得出卡方值,并以此来判断观察值与期望值之间的差异程度。
如果卡方值远大于预期值,我们就可以拒绝原假设,从而得出两个或多个分类变量之间存在显著关联的结论。
接下来,让我们从简单的示例开始,来看一下卡方检验的具体应用。
假设我们想要研究不同职业对投票倾向的影响,我们可以通过卡方检验来判断职业与政治立场之间是否存在关联。
我们收集了一份包括职业和政治立场的调查数据,然后我们可以利用卡方检验来分析这些数据,以确定职业与政治立场之间的关联性。
在分析完具体示例之后,让我们进一步探讨卡方检验的应用范围和局限性。
卡方检验适用于分类数据的分析,可以帮助我们判断不同变量之间是否存在关联性。
然而,卡方检验也有一定的局限性,例如对样本量和数据分布的要求比较严格,同时需要注意变量之间的独立性等。
在应用卡方检验时,我们需要综合考虑数据的特点和实际情况,以确保分析结果的准确性和可靠性。
总结回顾:通过本文的讨论,我们对卡方检验的概念和原理有了深入的理解。
我们了解到卡方检验是一种用于比较观察值和期望值之间差异的统计方法,适用于分类数据的分析。
在具体应用中,我们可以通过卡方检验来判断不同变量之间是否存在关联性,从而深入了解数据的特点和规律。
我们也意识到卡方检验在应用时需要注意一些局限性,需要综合考虑实际情况和数据特点。
08卡方检验

知识分子
25
11
4. 初步统计频数卡方独立性检验:SPSS
New file > Variable View > define variables Data View > input data Data > Weight Cases > “Counts” to be weighted Run “Crosstabs” analysis
统计方法与数据分析
第七讲 卡方检验
1. 卡方检验:概述
卡方(Chi-square), 数学符号表示为χ2, 是一种非 参数检验方法。它适用于比较两组(或以上)互斥 的频数数据之间是否存在显著差异。 卡方比较的是观测频数(observed frequency)和 期待频数(expected frequency)之间的比例,以 考察是否存在显著差异。 期待频数也称理论频数,通常是指假定各组均等的 频数。
卡方检验结果显示,对语言教学影响因素的看法受教龄的 影响显著(χ2=35.300,df=2,p<0.05)。教龄5年以上的教 师认为语言/学习因素是主要的;教龄5年以下的教师认为 环境和学习者因素是主要的(下表)。这可能是因为…
4. 初步统计频数卡方独立性检验:练习
一项研究得到家庭背景不同的学生(农民、干部、 知识分子)的英语学习成绩(及格、不及格)。 现要考察“家庭背景”与“英语成绩”之间是否 彼此独立?
卡方拟合检验SPSS结果(2)
卡方拟合检验结果在论文中的呈现方式
卡方检验结果显示,双语教师的课堂用语有显著差异 (χ2=340.556,df=5,p<0.05)。大多数双语教师使用英语 的量多于汉语,或至少英语汉语使用比例差不多。仅使用 英语或汉语授课的教师极少(下表)。这可能是因为…
卡方检验

卡方检验
■ 行×列表资料的χ2检验
多个样本率的比较
例题 某医师研究物理疗法、药物治疗和外用膏药三种疗法治疗周围性面 神经麻痹的疗效,资料见下表。问三种疗法的有效率有无差别?
卡方检验
■ 行×列表资料的χ2检验
多个样本率的比较
卡方检验
■ 行×列表资料的χ2检验
多个样本率的比较
卡方检验
卡方检验
■ 四格表资料的χ2检验
3.当n<40,或T<1时,用四格表资料的Fisher确切概率法。 步骤:
卡方检验
■ 四格表资料的χ2检验
3.当n<40,或T<1时,用四格表资料的Fisher确切概率法。 步骤:
卡方检验
■ 四格表资料的χ2检验
3.当n<40,或T<1时,用四格表资料的Fisher确切概率法。 步骤:
样本构成比的比较
卡方检验
■ 行×列表资料的χ2检验
双向无序分类资料的关联性检验
卡方检验
■ 行×列表资料的χ2检验
双向无序分类资料的关联性检验 例题 测得某地5801人的ABO血型和MN血型结果如下表,问两种血型系统 之间是否有关联?
卡方检验
■ 行×列表资料的χ2检验
双向无序分类资料的关联性检验
Coxhran Armitage 趋势检验(Cochran Armitage trend test )
卡方检验
■ 有序分组资料的线性趋势 χ2检验
卡方检验
■ 有序分组资料的线性趋势 χ2检验
例 某研究者欲研究年龄与冠状动脉粥样硬化等级间的关系,将278例尸 解资料整理成下表,问年龄与冠状动脉粥样硬化等级间是否存在线性变化 趋势?
《医学统计概论》第7章卡方检验Chi-square test

(3) 当n<40或有T<1时,用Fisher’s exact probability。
7.2 配对四格表资料的χ2检验
配对设计包括:(1)同一批样品用两种不同的处理方法;(2)观察 对象根据配对条件配成对子,同一对子内不同的个体分别接受不同的处理; (3)在病因和危险因素的研究中,将病人和对照按配对条件配成对子, 研究是否存在某种病因或危险因素。
表7-1 两组降低颅内压有效率的比较(P137)
组别
试验组 对照组 合计
有效
99 75 174
无效
5 21 26
合计
104 96 200
有效率(%)
95.20 (p1) 78.13 (p2) 87.00 (pc)
实际频数A (actual frequency) 理论频数T (theoretical frequency)
,
1
因为有一格1<T<5,且n>40时,所以应用连续性校
正χ2检验。
四、精确概率法(Fisher’s exact probability)
在无效假设成立的前提下且周边合计固定时,产生任意 一个四格表(i)的概率Pi 服从于超几何分布,其计算式为:
a b!c d !a c!b d !
Pi
a!b!c!d !n!
药物治疗组 164
18
182
外用膏药组 118
26
144
4.59
>0.0125 (NS)
合计
282
44
326
二、各实验组与同一对照组比 关键是检验水平的校正
'
2k 1
自学
7.6 双向有序分组资料的线性趋势检验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡方检验(Chi-square)
⏹参数与非参数检验
⏹卡方匹配度检验
⏹卡方独立性检验
⏹卡方检验的前提和限制
⏹卡方检验的应用
参数与非参数检验
⏹参数检验
◆用于等比/等距型数据
◆对参数的前提:正态分布和方差同质
⏹非参数检验
◆不用对参数进行假设
◆对分布较少有要求,也叫d i s t r i b u t i o n-f r e e t e s t s
◆用于类目/顺序型数据
◆没有参数检验敏感,效力低
◆因此在二者都可用时,总是用参数检验
卡方匹配度检验
⏹用样本数据检验总体分布的形状或比率,以确定与假设的总体性质的匹配度⏹是对次数分布的检验
⏹研究情境
◆在医生职业中,男的多还是女的多?
◆在三种咖啡中,哪种被国人最喜欢?
◆在北京大学中,各国留学生的比例有代表性吗?
卡方匹配度检验的公式
⏹χ2=∑[(f0-f e)2/f e]
⏹f e=p n
⏹d f=C-1
◆F0:观察次数
◆f e:期望次数
◆C:类目的个数
◆Χ2:统计量
卡方独立性检验
⏹检验行和列的两个本来变量彼此有无关联
卡方独立性检验的公式
⏹χ2=∑[(f0-f e)2/f e]
⏹f e=(r o w t o t a l)(c o l u m n t o t a l)/n,
⏹d f=(R-1)(C-1)
◆F0:观察次数
◆f e:期望次数
◆R:行类目的个数C:列类目的个数◆Χ2:统计量
例:х2检验
1.计算期望次数fe=(fc*fr)/n
2.计算每个单位格的х2值
22
df=(R-1)(C-1)= (3-1)(2-1)=2,х2的临界值为5.99
拒绝Ho,对手表显示的偏好程度与被试的年龄段有关。