应用统计学卡方检验和非参数检验

合集下载

卡方检验 (Chi-square) 参数与非参数检验卡方匹配度检验 卡方独立性检验 卡方检验的前提和

卡方检验 (Chi-square) 参数与非参数检验卡方匹配度检验 卡方独立性检验 卡方检验的前提和

单位格χ2
单位格χ2具有可加性 单位格χ2大于2.5,说明该因素对整个统计
检验的显著贡献较大
卡方独立性检验
检验行和列的两个变量彼此有无关联 是命名型变量, 顺序型变量相关的计算方

卡方独立性检验的公式
χ 2= ∑[<f0-f e>2/ f e]
f e=〔row total〕〔column total〕/n,
卡方分布
1. 是一系列平方和相加,没有负值 2. 当H0为真时,Chi square 的数值会小 3. 典型的卡方分布是正偏态,右侧的尾端构成临
界区域 4. 卡方分布的形状并不取决于样本数目,而是取
决于类目数目. df =C-1 5. 当卡方df 增加时,卡方的临界值增加. 6. 当卡方df 增加时,卡方分布的偏态越来越不严
性吗?
卡方匹配度检验的虚无假设-期望次数
在医生职业中,男的多还是女的多? 在外科医生中,男的是否占80%? 最喜欢的咖啡品牌
卡方匹配度检验的公式
f e=pn df =C-1 χ2= ∑[<f0-f e>2/ f e] F0:观察次数 f e :期望次数 C:类目的个数 Χ2:统计量
χ2与效应大小〔effect size〕
Phi系数,范围0至1,是一种多元相关系数 在2×2列联表时,
在多于2×2列联表时,
Phi系数:Cohen’s convension
当dfsmall=1时, Φ=0.10表示小的效应, Φ=0.30表示中等的效
应,Φ=0.50表示高的效应. 当dfsmall=2时, Φ=0.07表示小的效应, Φ=0.21表示中等的效
关系.每个个体被分类为出生顺序为1至3,及高自尊,低 自尊.这个卡方独立性检验的自学生选课的因素有上述4种,哪些因素的影响力更强?

非参数统计讲义四卡方检验课件

非参数统计讲义四卡方检验课件

确定研究问题
收集相关数据,确保数据质量。
数据收集
对数据进行整理,确保数据符合卡方检验的要求。
数据整理
将数据整理成交叉表形式,以便进行卡方检验。
制作交叉表
根据交叉表中的数据,计算卡方值。
计算卡方值
根据卡方值和自由度,计算p值,判断结果是否具有统计学显著性。
判断显著性
非参数统计讲义四卡方检验课件
目 录
非参数统计概述卡方检验基本概念卡方检验的步骤与公式卡方检验的案例分析卡方检验的优缺点与注意事项
非参数统计概述
参数统计依赖于对数据分布的假设,如正态分布、泊松分布等,而非参数统计则不依赖于任何分布假设。
非参数统计和参数统计都是统计学的重要组成部分,它们在某些情况下可以相互补充。
判断两个分类变量是否独立独立性检验用于检验两个分类变量是否独立。通过比较两个分类变量的实际观测频数与期望频数,可以判断两个变量之间是否存在关联性。这种方法常用于医学、生物学、社会学等领域,如判断两种药物是否具有协同作用、两种疾病是否具有相关性等。公式:$\chi^{2} = \sum \frac{(O{ij} - E{ij})^{2}}{E_{ij}}$解释:其中$O{ij}$表示观测频数,$E{ij}$表示期望频数。
它通过计算卡方统计量,评估观测频数与期望频数之间的差异是否具有统计学显著性。
卡方检验基于假设检验的思想,通过比较实际观测频数与期望频数来推断变量之间的关系。
它通过卡方统计量来衡量实际观测频数与期望频数之间的差异程度,并根据卡方分布计算出p值,从而判断差异是否具有统计学显著性。
卡方检验的步骤与公式
联系
区别
探索性数据分析
在缺乏先验知识的情况下,非参数统计可以帮助我们了解数据的分布和特点。

卡方检验名词解释

卡方检验名词解释

卡方检验名词解释
卡方检验属于非参数检验,由于非参检验不存在具体参数和总体正态分布的假设,所以有时被称为自由分布检验。

参数和非参数检验最明显的区别是它们使用数据的类型。

非参检验通常将被试分类,如民主党和共和党,这些分类涉及名义量表或顺序量表,无法计算平均数和方差。

卡方检验分为拟合度的卡方检验和卡方独立性检验。

我们用几个例子来区分这两种卡方检验:
•对于可口可乐公司的两个领导品牌,大多数美国人喜欢哪一种?•公司采用了新的网页页面B,相较于旧版页面A,网民更喜欢哪一种页面?
以上两个例子属于拟合度的卡方检验,原因在于它们都是有关总体比例的问题。

我们只是将个体分类,并想知道每个类别中的总体比例。

它检验的内容仅涉及一个因素多项分类的计数资料,检验的是单一变量在多项分类中实际观察次数分布与某理论次数是否有显著差异。

拟合度的卡方检验定义:
主要使用样本数据检验总体分布形态或比例的假说。

测验决定所获得的的样本比例与虚无假设中的总体比例的拟合程度如何。

拟合度的卡方检验又叫最佳拟合度的卡方检验,为何取名“最佳拟合”?这是因为最佳拟合度的卡方检验的目的是比较数据(实际频数)与虚无假设。

确定数据如何拟合虚无假设指定的分布,因此取名“最佳拟合”。

关于拟合度的卡方检验有一些翻译上的区别,其实表达的是一个意思:
拟合度的卡方检验=卡方拟合优度检验=最佳拟合度卡方检验
以下统称:卡方拟合优度检验
卡方统计的公式:卡方卡方=χ2=Σ(fo−fe)2fe
公式中O代表observation,即实际频数;E代表Expectation,即期望频数。

非参数检验卡方检验

非参数检验卡方检验

三、命令语句 NPAR TEST /CHISQUARE=检测变量 /EXPECTED=对应的期望频数 /MISSING ANALYSIS. 四、应用举例 某地区的人口消费结构在83年和90年的统计数字如下:
食品
衣物
住房
燃料
日用品
非商品支
出 83年 53 12.8 11.7 5.6 14.1 2.8 90年 44.2 10.8 15.1 4.7 16.2 9.0 建立一个数据文件:变量cost 为44个1、11个2、15个 3、16个5、9个6 检测变量:cost 期望值定义:53 13 12 6 14 3 分析结果:Asymp.sig=.010,所以85年的消费结构同 90年的消费结构差异显著。
二项分布检验 一、二项分布检验概念 对于某分布,假定低于某指定值V的百分比占P0。如 果该假设成立,则分布将满足一个规律。 H0假设:样本组中低于等于某值V的个案占百分比P0。 二、操作步骤 执行: [Analyze][Nonparametric][Binomial] 选择变量(必须是数值型变量)到Test Variables检验变 量窗口 定义分界值“Define Dichotomy”: “Get from data”为自动分界,即变量值中只有两类 数值。 “Cut point”定义分界值,检验小于该值的观测值。 “Test”定义检验百分比,例如:.10 , .50或 .75等。
“Exact”可以定义各种不同分布下的显著性检验, 使计算更精确: “Asymptotic only”适合于渐进分布的大样本分 布。 “Monte Carlo” 适合不满足渐进分布的大样本分 布。 “Confidence”指定置信区间。 “Number of”指定近似法计算中的个案数。 “Exact”精确计算统计概率。 按钮“Options”中可以设置选项: 统计描述“Descriptive” 中将计算: 均值、标准差、最大值、最小值等。 “Quartiles” 四等分百分位数的计算。 缺失值“Missing Value”: “Exclude cases test by test”表示排除在做统计 分析的变量中含有缺失值的个案。 “Exclude cases listwise”表示排除在检验变量

卡方检验

卡方检验

由=0.01得临界值 2(k1)0 2 .0(1 3)1.3 145
由于
22 (k1) 0.01
故接受H0,即认为试验结果与孟德尔学说的结果相符合。
X2拟合检验的步骤
1.把观察到的不同类别的频数分别归入k类,这 些频数之和应是独立观察到总频数之和。
2.假设H0,即确定出每一类应有的期望数Tk
(或np)。如k>2,只要有20%的Tk(或np) <5,就要合并相邻精度类别以减少k值,以 此来增加某些Tk值。如k=2,只有当Tk都5 时,才能应用式5-1来进行X2检验,否则就需 要应用修正式来检验。
[951000.9]2
np
1000.1
1000.9
(Ynp)
2
(51000.1)2
2.78
np(1p) 1000.10.9
X 2 0 .0 5 ,1 C H I I N V ( 0 .0 5 ,1 ) 3 .8 4
因为X2 < X20.05,1, 所以优级品率没有出现下降的变化。
II: 符号检验
1. 计算X2。
2. 根据给定的置信概率,查X2分布表,如果 计算值小于表值,则接受H0,反之则拒绝。

一试剂公司按现行生产工艺生产的化学试剂,
其优品率要占到10%。现从一批产品中抽取
100个进行检验,结果发现优级品仅5个。问是
否优级品率出现了下降的变化(=0.05)?
X2
(Ynp)2
(51000.1)2 =
1 符号检验 检验不知道分布类型的数据
根据统计资料的符号,可以简便地来检验两组
成对的数据是否属于同一总体。两个样本既可
以是互相独立,也可以是相关的,也就是说既 可检验两总体是否存在显著差异,也可检验是 否来自同一总体。

单样本非参数检验1卡方检验【24页】

单样本非参数检验1卡方检验【24页】

(1)建立零假设和备择假设
H0 :总体分布函数为 F(x); H1 :总体分布函数不为 F(x)。
分布函数和密度函数的区别知道吧?
(2)构造和计算统计量
◆把实轴 (,分) 成 k 个不相交的区间 (,a 1 ](a ,1 ,a 2 ],,.(.a k . 1 ,, )
◆设样本观察值 x1,x2,...x,n落入每个区间的实际频数为 f i 则实际频率为 f i
因此,医学家的研究结论是正确的哦。
3.3 卡方检验的SPSS软件实现
(1)输入例子中的数据,如图所示。
切记要加权!
卡检验的SPSS操作
勾选“值”
输入2.8, 点“添加”
改成1,点“添加”, 依次进行
1个2.8,6个1,最后点 OK!
得到卡方检验结果,分两部分
死亡日期
O bserv ed N Expected N Residual
1.00
55
53.5
1.5
2.00
23
19.1
3.9
3.00
18
19.1
-1.1
4.00
11
19.1
-8.1
5.00
26
19.1
6.9
6.00
20
19.1
.9
7.00
15
19.1
-4.1
Total
168
注意:学习了卡方检验的方法和过程后,你会解读软件给 出的分析结果吗?
答案
• P值=0.256,大于显著性水平0.05,接受原 假设,认为原分布成立,即原来医生的结 论是正确的。
中,拒绝零假设,即总体不服从指定分布 F(X )
即 2 的概率P值??显著性水平

应用统计学 第10章 卡方检验和非参数检验

应用统计学 第10章 卡方检验和非参数检验

39
40
§10.5 单因素方差分析的非参数分析:Kruskal-Wallis秩检验
如果第9章中单因素方差分析的F检验的正态 分布假设条件不符合时,可以使用Kruskal-Wallis 秩检验。Kruskal-Wallis秩检验是两独立总体 Wilcoxon秩和检验的延伸,主要用于检验项独立 总体是否有相等均值。Kruskal-Wallis秩检验和单 因素方差分析的F检验一样有效。
41
总体分布的卡方检验; 两个比例差异的卡方检验(独立样本); 两个以上比例差异的卡方检验(独立样本); 独立性的卡方检验; 两个比例差异的McNEMAR检验(相关样本); 两个独立总体的非参数检验(Wilcoxon秩和检验); 单因素方差分析的非参数检验(Kruskal-Wallis秩检验)
107 103 89 99 167 192 123 72 94 59 155 141 69 121 136 149 136 120 190 118 105 118 97 104 173 128 8 130 139 212 148 168 135 63 136 111 190 103 140 117 49 123 92 12 179 127 181 144 151 52 143 105 31 57 129 91 121 89 145 128 120 80 68 120 88 103 158 113 142 168 115 107 88 139 75 145 83 60 118 174 142 172 95 107 144 113 223 76 185 155 87 122 146 156 105 114 93 176 140 116
6
解:由表中数据,用Excel可求得 x =120.95, S2=40.582 ,故可作原假设 H0:X~ N (120,402) 将实轴划分为如下7个互不相交的区间。用Excel 的FREQUENCY函数计算数据落在各区间内的频 数,用NORMDIST函数求出各理论频数nPi ,统 计量的计算如表所示。

分类资料组间比较的统计方法选择与应用

分类资料组间比较的统计方法选择与应用

分类资料组间比较的统计方法选择与应用在统计学中,分类资料组间比较是指对不同分类资料组之间的差异进行统计分析。

分类资料是指将个体按其中一种特征分组,而分类资料组是指这些不同特征组成的组。

此时,为了确定不同组之间的差异,我们需要选择适当的统计方法进行比较。

下面介绍几种常用的分类资料组间比较的统计方法选择与应用。

1.基本原则:在选择分类资料组间比较的统计方法时,需要根据变量的测定水平来确定,通常可以根据资料的测定水平来进行分类资料分析的方法选择。

对于分类资料,我们可以采用卡方检验分析,对于有序分类资料,我们可以采用秩和检验分析。

2.卡方检验:卡方检验适用于分类资料的比较,其基本思想是比较实际观测频数与理论频数之间的差异。

卡方检验有两种形式:独立性检验和拟合优度检验。

独立性检验用于检验两个或多个分类变量之间是否存在关联;拟合优度检验用于检验观测频数与理论频数之间的差异是否显著。

3.秩和检验:对于有序分类资料,我们可以采用秩和检验进行比较。

秩和检验的基本思想是将不同组之间的观测值按顺序排列,并将其转化为秩次,然后将秩次相加得到秩和,通过比较秩和的大小来判断不同组之间的差异是否显著。

4.t检验:当分类资料分为两个组进行比较时,可以采用t检验。

t检验的基本思想是通过比较两个组的均值差异来判断两个组之间的差异是否显著。

但是需要注意的是,t检验要求数据满足正态分布的假设,所以在进行t检验之前需要进行正态分布检验。

5.方差分析:当分类资料包含多个组时,可以使用方差分析进行比较。

方差分析的基本思想是比较组间方差与组内方差之间的差异,通过计算F值来判断不同组之间的差异是否显著。

方差分析也需要满足正态分布的假设。

6.非参数检验:如果数据不满足正态分布假设,或者样本量较小,可以使用非参数检验。

非参数检验不依赖于总体分布形式的假设,比如Mann-Whitney U检验适用于两个独立样本的比较,Kruskal-Wallis H检验适用于多个独立样本的比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中nPi为理论频数。其中nPi为理论频数。当H0为 真时,下式的值就应当较小
2 k ( fi nPi )2
i 1
nPi
4
(3) 可以证明,当n充分大时(n≥50),若H0为真,则统计量
2 k ( fi nPi )2
i 1
nPi
近似服从(k -r -1)分布。其中r为分布F(x)中待定参数的个数。
于是在给定显著性水平下,若
2 2 (k r 1)
就拒绝H0,说明总体X的真实分布函数与F(x)间存在显著差
异;否则接受H0,即可以认为两者在水平下并无显著差
异。
5
某厂有一台经常需要维修的设备,该设备中有一个易损坏
的重负荷轴承,设备故障的主要原因是轴承损坏。为了制 定该设备的维修计划和维修预算,需要了解该轴承的寿命 分布。下表给出了100个轴承寿命的观察数据,问:该轴 承寿命是否服从正态分布?
行变量
类 1(正向) 类 2(反向) 总计
组一
x1 n1 x1 n1
列变量
组二
x2 n2 x2 n2
总计
X , ( x1 x2)
n X n, ( n1 n2)
10
为了检验组一样本有关类1的比例是否等于第二组样本有关 类1的比例,即假设检验为: 原假设为两比例之间无显著差异: H0 : p1 p2 备择假设为两比例之间有差异: H1 : p1 p2
为某一已知分布的分布函数,1, 2, … , r是F(x)的r
个待定参数,分别是r个参数的点估计,以分别代替
1, 2, … ,r ,作原假设
H0:总体X的分布函数为F(x) (2) 将F(x)的定义域划分为k个互不相交的区间 (ai , ai+1,i =1,2,…, k;记fi为样本观察值x1, x2, … , xn落在 第个区间(ai ,ai+1 内的频数,并记
Pi=P{ai <X≤ ai+1}= F(ai+1)-F(ai )
3
为以F(x)为分布函数的随机变量在区间 (ai, ai+1 上 取值的概率,i =1,2,…, k。则当H0为真时,由贝努 里定理,当n充分大时,n次独立重复试验结果的 实fi际n 频率 与其概率Pi之间的差异并不显著,于是 显然可以用统计量来刻画它们间总的差异的大小。
著性水平下,决策规则为: 如果 2 2 (1) ,拒绝 H0 否则,接受 H0 。 为了计算任意单元期望频数,必须知道如果原假设为真,那么两项
128 168 174 155 116
6
解:由表中数据,用Excel可求得
x =120.95, S2=40.582 ,故可作原假设
H0:X~ N (120,402) 将实轴划分为如下7个互不相交的区间。用Excel 的FREQUENCY函数计算数据落在各区间内的频 数,用NORMDIST函数求出各理论频数nPi ,统 计量的计算如表所示。
使用卡方( 2 )检验的基本思路为:
(1) 确定统计量为
2
( fo fe)2
f 表格中所有元
e
其中 fo为列联表中特定单元的观测频数,fe 为列联表中特定
单元的期望频数,因此这里的统计量 2 是观测频数和期望
频数差的平方除以每单元的期望频数,并对表中的所有单 元格取和求得;
11
(2) 可以证明上述统计量 2近似服从自由度为1的 分2 布,因此在显
7
区间 (- , 70 (70, 90 (90, 110 (110, 130 (130, 150 (150, 170 (170, +) 合计
fi
nPi
11
10.56
10
12.10
18
17.47
21
19.74
19
17.47
ห้องสมุดไป่ตู้10
12.10
11
10.56
100
100
( fi nPi )2 nPi 0.0183 0.3645 0.0161 0.0804 0.1340 0.3645 0.0183 0.9961
75
144 105
192 149 128 111 127 91
103 145 113 114
123 136 8
190 181 121 158 83
223 93
72
120 130 103 144 89
113 60
76
176
94
190 139 140 151 145 142 118 185 140
59
118 212 117 52
承的使用寿命服从N (120,402)分布。
9
§10.2 比例差异的 检2 验(独立样本)
1. 两个比例差异的检验
前面,我们研究了两个比例的Z检验。这部分从不同角度 检验数据。假设检验过程使用近似卡方( )分2 布的检验 数据。
如果想要比较两个独立样本组的分类变量,可以做两维 的列联表,显示每组的第1类(正向类,如“成功”, “是”等)和第2类(反向类,如“失败”,“否”等) 出现的频数,如表所示
107 155 105 148 49
143 120 115 142 87
103 141 118 168 123 105 80
107 172 122
89
69
97
135 92
31
68
88
95
146
99
121 104 63
12
57
120 139 107 156
167 136 173 136 179 129 88
第10章 卡方检验和非参数检验
本章教学内容:
总体分布的卡方检验; 两个比例差异的卡方检验(独立样本); 两个以上比例差异的卡方检验(独立样本); 独立性的卡方检验; 两个比例差异的McNEMAR检验(相关样本); 两个独立总体的非参数检验(Wilcoxon秩和检验); 单因素方差分析的非参数检验(Kruskal-Wallis秩检验)
1
非参数检验概述
在总体分布形式已知条件下未知参数检验问题。 但实际问题中总体的分布形式往往是未知的,虽 然根据中心极限定理可以有相当的把握认为大多 数经济变量服从或近似服从正态分布,但有时为 了使所做的统计推断更具说服力,就需要对总体 的分布形式进行检验。
2
§10.1 总体分布的 检2 验
检验的基本原理: (1) 设x1, x2, … , xn为总体X的一组样本观察值,F(x)
8
取显著性水平 = 0.25 (由于原假设H0是我们希望
得到的结果,为使检验结论更具说服力,控制的
重点应是与原假设H0不真而接受H0的概率,故
应取的稍大些)。本例中k = 7,r = 2,k –r -1 = 4。
2
0.9961
2 0.25
(4)
5.385
故在水平 = 0.25下接受原假设H0,即可认为该轴
相关文档
最新文档