matlab插值曲线拟合资料重点
2.1 重要:MATLAB插值与拟合

插值方法(interp,spline) 拟合方法(polyfit,polyval)
插值、拟合在化工计算中的作用
•表格式物性数据的内插 •离散实验数据点的处理 •微分法反应动力学方程拟合
插值简介
已知n+1个数对{xi, f(xi)},其中i=0,1…n,(xi互不相同,称 之为节点),求取函数g(xi)=f(xi)。 当{xi, f(xi)}有相当的精确度,但它们的函数关系难以确定或难 以计算时,则可利用这些数据点来构造一个较简单的函数来 近似表达原函数关系。
x = linspace(xi(1),xi(end),100); Lny = polyval(p,x); plot(xi,Lnyi,'o',x,Lny,'-') xlabel('x') ylabel('lny')
利用点(x=sin(kπ/6),y=cos(kπ/6),其中k=[0 1 2 3]来逼近单位 圆的前四分之一圆周。比较pchip与spline的差别。
1
t=linspace(0,pi/2,4)
0.9
0.8
x=cos(t);y=sin(t);
0.7
xx=linspace(0,1,40);
0.6
plot(x,y,'s',xx,[pchip(x,y,xx);spline(x,y,x 0.5
‘method’算法属性值可以是; ‘nearest’——最近插值 ‘linear’——线性插值(默认) ‘spline’——三次样条插值(spline) ‘cubic’——立方插值
二维插值函数的使用
假设有一组分度系数的“海底深度测量数据”,由以下一段 程序生成:
(完整)matlab实现插值法和曲线拟合

插值法和曲线拟合电子科技大学摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab 编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟合,用不同曲线拟合数据。
关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合引言:在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。
正文:一、插值法和分段线性插值 1拉格朗日多项式原理对某个多项式函数,已知有给定的k + 1个取值点:其中对应着自变量的位置,而对应着函数在这个位置的取值。
假设任意两个不同的x j 都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为:[3]拉格朗日基本多项式的特点是在 上取值为1,在其它的点 上取值为0.2分段线性插值原理给定区间[a ,b ], 将其分割成a=x 0 <x 1 〈…〈x n =b, 已知函数y= f(x ) 在这些插值结点的函数值为 y k =f(x k )(k=0,1,…,n)求一个分段函数I h (x), 使其满足:(1) I h (x k )=y k ,(k=0,1,…,n) ;(2) 在每个区间[x k ,x k+1 ] 上,I h (x )是个一次函数。
易知,I h (x)是个折线函数, 在每个区间[x k ,x k+1 ]上,(k=0,1,…,n)k 1k k1k 1k k 1k k k ,1)()()(x x x x x f x x x x x f x L --+--=++++,于是, I h (x )在[a,b ]上是连续的,但其一阶导数是不连续的.3拉格朗日插值多项式算法 ○1输入,(0,1,2,,)i i x y i n =,令0)(=x L n .错误!对0,1,2,,i n =,计算0,()()/()ni j i j j j il x x x x x -≠=--∏()()()n n i i L x L x l x y ←−−+4分段线性插值算法错误!输入(x k ,y k ),k=0,1,…,n;○2计算k 1k k1k 1k k 1k k k ,1)()()(x x x x x f x x x x x f x L --+--=++++5插值法和分段线性插值程序按下列数据分别作五次插值和分段线性插值,画出两条插值曲线以及给定数据点。
Matlab曲线拟合与插值运算

第五次课Matlab曲线拟合与插值运算一、本次课学习要点1、Matlab曲线拟合与插值运算2、符号表达式二、本次课教学重点利用M文件的Matlab曲线拟合与插值运算三、教学基本内容1、曲线拟合在许多应用领域中,人们经常需要从一系列已知离散点上的数据集[(x1,y1),(x2,y2)],…(x n,y n)]得到一个解析函数y=f (x)。
得到的解析函数f(x)应当在原离散点x i上尽可能接近给定的y i的值。
这一过程称为曲线拟合。
最常用的曲线拟合是最小二乘法曲线拟合。
似合结果可使误差的平方和最小,MATLAB提供的函数polyfit,根据给定的自变量数组x和函数数组y,按照拟合的阶数要求自动求解满足最小二乘意义的一阶或高阶解析函数f(x),使用很方便。
为了说明这个问题,我们取以下函数为例:2-=y⨯25.0xx=0:0.1:1;for i=1:length(x);y(i)=0.5-2*x(i)^2;end显示为:将y值进行一定的修改,输入如下的程序y=[0.52 0.45 0.4 0.35 0.18 0.02 -0.25 -0.4 -0.81 -1.1 -1.5]m=1;fxy1=polyfit(x,y,m)m=2;fxy2=polyfit(x,y,m)y1=polyval(fxy1,x) %多项式求值,x为输入值,fx1为一次拟合出来的多项式y2=polyval(fxy2,x)plot(x,y,'o',x,y1,'k:',x,y2,'k')显示为:2、插值运算与曲线拟合不同,插值运算不是试图找出适合于所有自变量数组x的全局最优拟合函数Y=f(x〕,而是要找到一个解析函数连接自变量相邻的两个点(xi,xi十1),由此还可以找到两点间的数值。
根据自变量的维数不同,插值方法可以分为一维插值y=f(x)和二维插值z=f(x,y)等。
在许多工程问题上,我们只能获得无规律的离散点上的数值,插值可以帮助我们得到近似的连续过程,便于用数学的解析方法对已有数据进行处理和运算,因此是一个很有用的工具。
matlab插值法拟合曲线

matlab插值法拟合曲线
在MATLAB中,一维插值函数为interp1(),其调用格式为:
Y1=interp1(X,Y,X1,method)。
其中,X、Y是两个等长的已知向量,分别表示采样点和采样值;X1是一个向量或标量,表示要插值的点;method参数用于指定插值方法,常用的取值有以下四种:
1. linear:线性插值,默认方法。
将与插值点靠近的两个数据点用直线连接,然后在直线上选取对应插值点的数据。
2. nearest:最近点插值。
选择最近样本点的值作为插值数据。
3. pchip:分段3次埃尔米特插值。
采用分段三次多项式,除满足插值条件,还需满足在若干节点处相邻段插值函数的一阶导数相等,使得曲线光滑的同时,还具有保形性。
4. spline:3次样条插值。
每个分段内构造一个三次多项式,使其插值函数除满足插值条件外,还要求在各节点处具有连续的一阶和二阶导数。
曲线拟合可以使用cftool工具,首先导入X和Y的数据,然后可以选择残差图和置信区间分布图。
数据插值、拟合方法的MATLAB实现

hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
n=6;
p=polyfit(hours,temps,n)
t=linspace(0,23,100);
z=polyval(p,t); %多项式求值
plot(hours,temps,'o',t,z,'k:',hours,temps,'b',’r’,'linewidth',1.5)
legend('原始数据','6阶曲线')
2.3用8阶多项式拟合的命令
hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
实验结果:
1.一元插值图像
图1.1一元插值图
经分析三次样条插值法效果最好,以三次样条插值法得出每个0.5小时的温度值:
时间
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
温度
12
11.9
12
12.0
12
11.6
11
10.4
10
9.9
10
10.0
时间
6
6.5
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
matlab插值和拟合专题

4.散乱节点的插值:ZI = GRIDDATA(X,Y,Z,XI,YI)
注:F12设置断点,F5单步执行
5.多项式拟合:
用m 次多项式拟合给定数据,Matlab中有现成的函数:
a=polyfit(x0,y0,m)
其中输入参数x0,y0 为要拟合的数据,m 为拟合多项式的次数,输出参数a 为拟合多项
式y=amxm+…+a0]。
多项式在x 处的值y 可用下面的函数计算
y=polyval(a,x)
'spline' 逐段3 次样条插值
'cubic' 保凹凸性3 次插值。
3.二维插值:z=interp2(x0,y0,z0,x,y,'method'),method的用法同上
二维三次样条插值:pp=csape({x0,y0},z0,conds,valconds),z=fnval(pp,{x,y})
1.分段线性插值:y=interp1(x0,y0,x,'method');
2.三次样条插值:pp=csape(x0,y0,conds);以一个结构体pp的形式返回三次样条插值(边界条件由conds指定)的分段多项式函数,ppval返回值
'nearest' 最近项插值
'linear' 线性插值
第十四讲 matlab拟合与插值

注意:X1的取值范围不能超出X的给定范围,否则, 会给出“NaN”错误 MATLAB中有一个专门的3次样条插值函数 Y1=spline(X,Y,X1),其功能及使用方法与函数 Y1=interp1(X,Y,X1,‘spline’)完全相同。 gjy_just@
5
例: 某观测站测得某日6:00时至18:00时之间每隔2小时的室内外温度(℃), 用3次样条插值分别求得该日室内外6:30至17:30时之间每隔2小时各 点的近似温度(℃)。 设时间变量h为一行向量,温度变量t为一个两列矩阵,其中第一列存放 室内温度,第二列储存室外温度。命令如下: h =6:2:18; t=[18,20,22,25,30,28,24;15,19,24,28,34,32,30]'; XI =6.5:2:17.5 YI=interp1(h,t,XI,’spline’) %用3次样条插值计算
gjy_just@ 自己编程!!!
16
3.4 累加和与累乘积
在MATLAB中,使用cumsum和cumprod函数能方便地求得 向量和矩阵元素的累加和与累乘积向量,函数的调用格为: cumsum(X):返回向量X累加和向量。 cumprod(X):返回向量X累乘积向量。 cumsum(A):返回一个矩阵,其第i列是A的第i列的累加和向量。 cumprod(A):返回一个矩阵,其第i列是A的第i列的累乘积向量。 cumsum(A,dim):当dim为1时,该函数等同于cumsum(A);当dim为 2时,返回一个矩阵,其第i行是A的第i行的累加和向量。 cumprod(A,dim):当dim为1时,该函数等同于cumprod(A);当dim 为2时,返回一个向量,其第i行是A的第i行的累乘积向量。 例:s=10*rand(5,9) 分别求出各列和各行的累加和累乘
MATLAB中的曲线拟合与插值

MATLAB 中的曲线拟合和插值在大量的使用领域中,人们经常面临用一个分析函数描述数据(通常是测量值)的任务。
对这个问题有两种方法。
在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。
这种方法在下一节讨论。
这里讨论的方法是曲线拟合或回归。
人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。
图11.1说明了这两种方法。
标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。
11.1 曲线拟合曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。
所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。
数学上,称为多项式的最小二乘曲线拟合。
如果这种描述使你混淆,再研究图11.1。
虚线和标志的数据点之间的垂直距离是在该点的误差。
对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。
这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。
最小二乘这个术语仅仅是使误差平方和最小00.20.40.60.81-2024681012xy =f (x )Second O rder C urv e Fitting图11.1 2阶曲线拟合在MATLAB 中,函数polyfit 求解最小二乘曲线拟合问题。
为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。
» x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; » y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];为了用polyfit ,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。
如果我们选择n=1作为阶次,得到最简单的线性近似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 在命令窗口输入:
n=11, m=21 x=-5:10/(m-1):5 y=1./(1+x.^2) z=0*x x0=-5:10/(n-1):5 y0=1./(1+x0.^2) y1=interp1(x0,y0,x) y2=interp1(x0,y0,x,'spline') [x' y' y1' y2'] plot(x,z,'r',x,y,'k:',x,y1,'b',x,y2,'g') gtext('Piece.linear.'),gtext('Spline'),gtext('y=1/(1+x^2)')
例4
对
y
1
1 x2
在[-5,
5]上,
用n=11个等距分点作分段线
性插值和三次样条插值, 用m=21个插值点作图,比较结果.
xy
y1
y2
0 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000
四种插值方法比较
函数
格式
zi=interp2(x,y,z,xi,yi)
功能
二维插值。Z为由已知点的值组成的 矩阵,参量x与y是与z同维的已知点 的矩阵,且必须是单调的。xi与yi为 需要插值的点。若xi与yi中有在x与y 范围之外的点,则相应地返回NaN。
zi=interp2(z,xi,yi) Interp2
MATLAB对已知数据集外部点上函数值的预测都返回NaN, 但可通过为interp1函数添加‘extrap’参数指明也用于外插。 MATLAB的外插结果偏差较大。
例1
对
f
x
பைடு நூலகம்
1
1 9
x2
在[-1,
1]上,
用n=20的等距分点
进行线性插值, 绘制 f(x)及插值函数的图形.
解 在命令窗口输入:
x=-1:0.1:1; y=1./(1+9*x.^2); xi=-1:0.1:1; yi=interp1(x,y,xi); plot(x,y,'r-',xi,yi,'*')
例3. 已知实验数据如表。
x
0
0.25 0.50 0.75 1.00
y
0.9162 0.8109 0.6931 0.5596 0.4055
计算插值点x0=0.6处的函数值y0。
>> x=[0 0.25 0.50 0.75 1.00]; >> y=[0.9162 0.8109 0.6931 0.5596 0.4055]; >> x0=0.6; >> y01=interp1(x,y,x0); >> y02=interp1(x,y,x0,'nearest'); >> y03=interp1(x,y,x0,'pchip'); >> y04=interp1(x,y,x0,'spline'); >> y01,y02,y03,y04
三、插值、曲线拟合
插值就是已知一组离散的数据点集,在集合内部某两 个点之间预测函数值的方法。
插值法是实用的数值方法,是函数逼近的重要方法。在 生产和科学实验中,自变量x与因变量y的函数y = f(x)的关 系式有时不能直接写出表达式,而只能得到函数在若干个 点的函数值或导数值。当要求知道观测点之外的函数值时, 需要估计函数值在该点的值。
Matlab常用数据插值函数及功能
函数
格式
功能
yi=interp1(x,y,xi)
一维插值。对一组点(x,y)进行插 值,计算插值点xi的函数值。
yi=interp1(y,xi) Interp1
此格式默认x=1:n,其中n是向量 y的长度,y为矩阵时,
n=size(y,1)
yi=interp1(x,y,xi,method) Method为指定的插值算法。 Nearest最近邻点插值,linear线 性插值(默认方式),spline三次 样条函数插值,cubic三次插值。
例2. 在普通V带设计中,带轮的包角α与包角系数ka之间的关系如 表所示。求α=133.5°时的包角系数ka。
包角与包角系数
包角 (°)
90 100 110 120 125 130 135 140
包角系 数
0.69
0.74
0.78
0.82
0.84
0.86
0.88
0.89
包角 (°)
145 150 155 160 165 170 175 180
包角系 数
0.91
0.92
0.93
0.95
0.96
0.98
0.99
1
>>a1=[90,100,110,120,125,130,135,140,145,150,155,160,165,170,175,180]; >>a2=[0.69,0.74,0.78,0.82,0.84,0.86,0.88,0.89,0.91,0.92,0.93,0.95,0.96,0.98,0.99 ,1]; >>ka=interp1(a1,a2,133.5) >>ka=0.8740
函数
格式
y=interpft(x,n) Interpft
y=interpft(x,n,dim)
yy=spline(x,y,xx) spline
pp=spline(x,y)
功能 一维Fourier插值。适用于周期函数生 成数据的插值。X为抽样序列,n为 需要计算的等距点数,y为n点的插 值计算结果。
沿着指定的方向dim进行计算。
三次样条数据插值。用三次样条插 值计算出由向量x与y确定的一元函 数在点xx处的值yy。
返回由向量x与y确定的分段样条多 项式的系数矩阵pp。
注意:
(1)只对已知数据点集内部的点进行的插值运算称为内插, 可比较准确的估测插值点上的函数值。
(2)当插值点落在已知数据集的外部时的插值称为外插, 要估计外插函数值很难。
y01 = 0.639700000000000
y02 = 0.693100000000000
y03 = 0.641818996851421
y04 = 0.641831200000000
例4
对
y
1
1 x2
在[-5,
5]上,
用n=11个等距分点作分段线
性插值和三次样条插值, 用m=21个插值点作图,比较结果.
此格式默认x=1:n、y=1:m,其中 [m,n]=size(z)。再按 zi=interp2(x,y,z,xi,yi)情形进行计算。
zi=interp2(x,y,z,xi,yi,method)
用指定的算法method计算二维插值。 Linear双线性插值(默认方式), Nearest最邻近插值,spline三次样条 插值,cubic双三次插值。