Matlab插值与拟合教程
MATLAB软件中软件拟合与插值运算的方法

MATLAB软件中软件拟合与插值运算的方法内容目录
1MATLAB中软件拟合与插值运算的方法1
1.1拟合函数的选择1
1.1.1线性拟合1
1.1.2非线性拟合2
1.2拟合函数的求解2
1.2.1直接法2
1.2.2迭代法3
1.3MATLAB插值函数4
1.3.1样条插值函数4
1.3.2拉格朗日插值函数5
1.3.3指数插值函数5
结论6
近来,随着科学技术的进步,数据采集技术的发展,大量的实验数据和实验结果越来越多,如何合理地分析处理数据,描绘实际趋势,就变得十分重要,MATLAB中的软件拟合与插值是目前应用最多的数据处理技术之一、本文介绍了MATLAB中软件拟合与插值运算的方法及其具体实现。
1.1拟合函数的选择
1.1.1线性拟合
线性拟合是指拟合函数可以用一元线性方程描述,MATLAB中的拟合
函数有polyfit、polyval和 polyconf等。
其中,polyfit函数用来根据
输入的拟合数据拟出一元多项式,polyval函数用来求出拟合后的拟合值,polyconf函数用来计算拟合的参数的置信范围。
例如,用polyfit函数
拟合下面的数据,输入x = [1 2 3 4 5]和y = [4.3 7.3 11.1 14.1
18.4],拟出的拟合函数为y = 4.1 + 2.3x,即拟合函数为y = 4.1 +
2.3x。
1.1.2非线性拟合。
数据插值、拟合方法的MATLAB实现

hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
n=6;
p=polyfit(hours,temps,n)
t=linspace(0,23,100);
z=polyval(p,t); %多项式求值
plot(hours,temps,'o',t,z,'k:',hours,temps,'b',’r’,'linewidth',1.5)
legend('原始数据','6阶曲线')
2.3用8阶多项式拟合的命令
hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
实验结果:
1.一元插值图像
图1.1一元插值图
经分析三次样条插值法效果最好,以三次样条插值法得出每个0.5小时的温度值:
时间
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
温度
12
11.9
12
12.0
12
11.6
11
10.4
10
9.9
10
10.0
时间
6
6.5
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
拟合插值

一、实验目的用matlab测试数据的拟合与插值二、实验原理1 拟合(1)polyfit函数MATLAB的polyfit函数用于多项式拟合,其语法为:p = polyfit(x, y, k);其中,x,y分别是横纵坐标向量,它们不仅元素个数相同,而且同为行向量或同为列向量。
k为非负整数,是待拟合的多项式的最高次数。
p是输出项,为待拟合的多项式的系数向量(由高次到低次排列)。
在进行多项式拟合时,必须注意的是,拟合的精度是有限的,一般而言,需要满足以下条件:记m为不重复的横坐标的数目,则拟合次数k <= m - 1,在此前提下尽量使用低次多项式进行拟合。
(2)polyval函数polyval,顾名思义就是“多项式的值”,该函数的功能是将已知数据代入拟合得的多项式求值。
语法格式:y = polyval(p, x);其中,p是已经拟合的多项式(比如说(1)中的p),x是自变量组成的向量,y是所求值组成的向量。
(3)计算多项式拟合的方差已知原始数据x和y,拟合得到多项式p,判断拟合效果好坏的一个重要指标是方差,方差的计算方法是e = sum((y - polyval(p, x)).^2).polyval(p, x)得到拟合值向量,y是真实值向量,两者相减得到真实值和拟合值的差值向量,“.^2”表示对矩阵中的每一个元素进行平方运算,于是得到差值向量中每一个元素的平方,sum是求和函数,显然就是求差值向量元素的平方和,而这就是方差。
2 插值法:插值法又称“内插法”,是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f(x)的近似值,这种方法称为插值法。
三、实验设备、仪器及材料Windows7 ,matlab软件四、实验步骤(按照实际操作过程)(1)开启软件平台——MATLAB,开启MATLAB编辑窗口(2)根据各种数值解法步骤编写M文件(3)保存文件并运行(4)观察运行结果(数值或图形)(5)根据观察到的结果写出实验报告,并浅谈学习心得体会五、实验过程记录(程序)(1)在MATLAB的命令窗口输入以下代码:>> x = [1, 2, 3, 4];>> y = [3, 5, 7, 9];>> p = polyfit(x, y, 1)敲击回车键,得到输出结果:p =2.0000 1.0000所以拟合得的函数就是:y = 2.0000X + 1.0000.在进行多项式拟合时,必须注意的是,拟合的精度是有限的,一般而言,需要满足以下条件:记m为不重复的横坐标的数目,则拟合次数k <= m - 1,在此前提下尽量使用低次多项式进行拟合。
(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合实际中,通常需要处理实验或测量得到的离散数据(点)。
插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。
1.如果要求近似函数经过所已知的所有数据点,此时称为插值问题(不需要函数表达式)。
2.如果不要求近似函数经过所有数据点,而是要求它能较好地反映数据变化规律,称为数据拟合(必须有函数表达式)。
插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。
区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。
【拟合】要求得到一个具体的近似函数的表达式。
因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。
当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。
一、数据插值根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值)(2)分段线性插值(3)Hermite(4)三次样条插值Matlab 插值函数实现:(1)interp1( ) 一维插值(2)intep2( ) 二维插值(3)interp3( ) 三维插值(4)intern( ) n维插值1.一维插值(自变量是1维数据)语法:yi = interp1(x0, y0, xi, ‘method’)其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。
注:(1)要求x0是单调的,xi不超过x0的范围;(2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;默认为分段线性插值。
例1 从1点12点的11小时内,每隔1小时测量一次温度,测得的温度的数值依次为:5,8,9,15,25,29,31,30,22,25,27,24.试估计每隔1/10小时的温度值。
Matlab数据插值与拟合

分段线性插值方法在速度和误差之间取得 了比较好的均衡,其插值函数具有连续性, 但在已知数据点处的斜率一般不会改变, 因此不是光滑的。分段线性插值方法是 MATLAB一维插值默认的方法。 MATLAB一维插值默认的方法。
2.Spline(样条插值) 2.Spline(样条插值)
样条插值是用分段低次多项式去逼近函数。样条函 样条插值是用分段低次多项式去逼近函数。样条函 数可以给出光滑 的插值曲线,只要在插值区间端 点提供某些导数信息,样条插值可以适应不同光滑 需求。三次样条是使用最为广泛的样条插值,它在 需求。三次样条是使用最为广泛的样条插值,它在 每个子区间[x 每个子区间[xi,xi+1]上都是有二阶连续导数的三次多 项式,即
4.1.1 一元插值函数
MATLAB中的一元插值函数为interp1( ),它的功能是一维 MATLAB中的一元插值函数为interp1( ),它的功能是一维 数据插值(表格查找)。该命令对数据点之间进行计算内 插值,它出一元函数f(x)在中间点的数值,其中函数f(x)由 插值,它出一元函数f(x)在中间点的数值,其中函数f(x)由 所给数据决定。 一元插值函数interp1( )的几种调用格式如表4 一元插值函数interp1( )的几种调用格式如表4-1所示。 表4-1 一维插值插值函数interp1的语法格式 一维插值插值函数interp1的语法格式
例4-1 用interp1对sin函数进行分段线性插值。 interp1对sin函数进行分段线性插值 函数进行分段线性插值。
解:在MATLAB命令窗口中输入以下命令: 解:在MATLAB命令窗口中输入以下命令: >> x=0:2*pi; >> y=sin(x); >> xx=0:0.5:2*pi >> yy=interp1(x,y,xx); >> plot(x,y,'s',xx,yy) 注:例 注:例4-1中用默认的 (分段线性插值的linear) 分段线性插值的linear) 对已知的7 sin函数的 对已知的7个sin函数的 数据点进行插值,用 plot画出插值结果。从图中可以看出分段线性就是联结两个 plot画出插值结果。从图中可以看出分段线性就是联结两个 邻近的已知点的线性函数插值计算该区间内插值点上的函数 值。
matlab 插值拟合

MATLAB 插值拟合介绍MATLAB是一种用于科学计算和工程应用的高级编程语言和环境。
它提供了许多功能强大的工具箱,可以用于各种数学计算、数据分析和图形绘制任务。
其中之一是插值拟合,它可以通过已知数据点之间的数学插值来估计未知数据点的值。
在本文中,我们将深入探讨MATLAB中的插值拟合方法以及如何使用它们来解决实际问题。
一、插值的概念插值是一种通过已知数据点之间的数学插值来估计未知数据点的值的方法。
它在许多领域中都有广泛的应用,如信号处理、图像处理、数据分析等。
插值的目标是在已知数据点之间建立一个连续的函数,以便可以在这些点之外对函数进行求值。
二、MATLAB中的插值方法MATLAB提供了多种插值方法,可以根据需要选择合适的方法。
下面介绍几种常用的插值方法:1. 线性插值线性插值是一种简单而直观的插值方法。
它假设在两个已知数据点之间的值是线性变化的,并使用直线来连接这些点。
MATLAB中的interp1函数可以实现线性插值。
2. 多项式插值多项式插值是一种更高阶的插值方法,它通过在已知数据点上构造一个多项式函数来逼近未知数据点。
MATLAB中的polyfit函数可以用于拟合多项式,并使用polyval函数进行插值。
3. 三次样条插值三次样条插值是一种更加平滑的插值方法,它通过在每个已知数据点附近构造一个三次多项式函数来逼近未知数据点。
MATLAB中的spline函数可以实现三次样条插值。
4. 二维插值除了在一维数据上进行插值外,MATLAB还提供了在二维数据上进行插值的方法。
例如,interp2函数可以用于二维线性插值,griddata函数可以用于二维三次插值。
三、插值拟合的实际应用插值拟合在许多实际问题中都有广泛的应用。
下面介绍几个常见的应用场景:1. 曲线拟合插值拟合可以用于拟合实验数据或观测数据的曲线。
通过选择适当的插值方法,可以找到最佳拟合曲线,从而更好地理解数据的趋势和规律。
2. 图像处理图像处理中经常需要对像素之间的值进行插值,以便进行放大、缩小或平滑处理。
在Matlab中如何进行数据插值与拟合

在Matlab中如何进行数据插值与拟合引言:数据处理是科学研究与工程开发中不可或缺的环节之一。
而数据插值和拟合则是数据处理中常用的技术手段。
在Matlab这一强大的数值分析工具中,提供了丰富的函数与工具箱,使得数据插值与拟合变得更加便捷高效。
本文将详细阐述在Matlab中如何进行数据插值与拟合,并介绍几个常用的插值与拟合方法。
一、数据插值数据插值是通过已知的有限个数据点,推导出数据点之间未知位置上的数值。
在Matlab中,可以利用interp1函数进行数据插值。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据插值:1. 调用interp1函数,并传入x和y作为输入参数。
```matlabxi = linspace(min(x), max(x), n);yi = interp1(x, y, xi, '方法');```其中,xi是插值点的位置,min和max分别是x向量的最小值和最大值,n是插值点的数量。
'方法'是要使用的插值方法,可以选择线性插值(method='linear')、样条插值(method='spline')等。
2. 绘制插值结果曲线。
```matlabplot(x, y, 'o', xi, yi)legend('原始数据','插值结果')```使用plot函数可以绘制原始数据点和插值结果的曲线。
通过设置不同的插值方法和插值点的数量,可以探索不同的插值效果。
二、数据拟合数据拟合是通过已知的一组数据点,找到一个符合数据趋势的函数模型。
在Matlab中,可以利用polyfit函数进行多项式拟合。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据拟合:1. 调用polyfit函数,并传入x和y作为输入参数。
```matlabp = polyfit(x, y, n);```其中,n是多项式的次数,p是拟合多项式的系数。
Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧在数据科学和工程领域中,曲线拟合和插值技术是常用的数学方法。
在Matlab 中,有许多工具和函数可用于处理这些技术。
本文将讨论Matlab中的曲线拟合和插值技巧,并介绍一些实际应用案例。
一、曲线拟合技术曲线拟合是根据已知数据点来构造一个与这些点最匹配的曲线模型。
在Matlab 中,常用的曲线拟合函数包括polyfit和lsqcurvefit。
1. polyfit函数polyfit函数是Matlab中一个功能强大的多项式拟合函数。
它可以拟合多项式曲线模型,并通过最小二乘法找到最佳拟合系数。
例如,我们有一组数据点(x,y),我们想要拟合一个二次多项式曲线来描述这些数据。
可以使用polyfit函数:```matlabx = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];degree = 2;coefficients = polyfit(x, y, degree);```在上述例子中,degree参数设置为2,表示拟合一个二次多项式曲线。
polyfit 函数将返回一个包含拟合系数的向量,可以用来构造拟合曲线。
2. lsqcurvefit函数lsqcurvefit函数是Matlab中一个用于非线性最小二乘拟合的函数。
与polyfit函数不同,lsqcurvefit函数可以用于拟合任意曲线模型,不局限于多项式。
例如,我们想要拟合一个指数函数曲线来拟合数据:```matlabx = [1, 2, 3, 4, 5];y = [1.1, 2.2, 3.7, 6.5, 12.3];model = @(params, x) params(1)*exp(params(2)*x);params0 = [1, 0];estimated_params = lsqcurvefit(model, params0, x, y);```在上述例子中,model是一个函数句柄,表示要拟合的曲线模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB插值与拟合§1曲线拟合实例:温度曲线问题曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。
曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。
1. 1.线性拟合函数:regress()调用格式:b=regress(y,X)[b,bint,r,rint,stats]= regress(y,X)[b,bint,r,rint,stats]= regress(y,X,alpha)说明:b=regress(y,X)返回X处y的最小二乘拟合值。
该函数求解线性模型:y=Xβ+εβ是p⨯1的参数向量;ε是服从标准正态分布的随机干扰的n⨯1的向量;y为n⨯1的向量;X为n⨯p矩阵。
bint返回β的95%的置信区间。
r中为形状残差,rint中返回每一个残差的95%置信区间。
Stats向量包含R2统计量、回归的F值和p值。
例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。
即y=10+x+ε;求线性拟合方程系数。
程序:x=[ones(10,1) (1:10)’]y=x*[10;1]+normrnd(0,0.1,10,1)[b,bint]=regress(y,x,0.05)结果:x =1 11 21 31 41 51 61 71 81 91 10y =10.956711.833413.012514.028814.885416.119117.118917.996219.032720.0175b =9.92131.0143bint =9.7889 10.05370.9930 1.0357即回归方程为:y=9.9213+1.0143x2. 2.多项式曲线拟合函数:polyfit( )调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。
矩阵s用于生成预测值的误差估计。
(见下一函数polyval)程序:x=0:.1:1;y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2]n=3;p=polyfit(x,y,n)xi=linspace(0,1,100);z=polyval(p,xi); %多项式求值plot(x,y,’o’,xi,z,’k:’,x,y,’b’)legend(‘原始数据’,’3阶曲线’)结果:p =16.7832 -25.7459 10.9802 -0.0035多项式为:16.7832x3-25.7459x2+10.9802x-0.0035曲线拟合图形:也可由函数给出数据。
例3:x=1:20,y=x+3*sin(x)程序:x=1:20;y=x+3*sin(x);p=polyfit(x,y,6)xi=1inspace(1,20,100);z=poyval(p,xi); %多项式求值函数plot(x,y,’o’,xi,z,’k:’,x,y,’b’)legend(‘原始数据’,’6阶曲线’)结果:p =0.0000 -0.0021 0.0505 -0.5971 3.6472 -9.7295 11.3304再用10阶多项式拟合程序:x=1:20;y=x+3*sin(x);p=polyfit(x,y,10)xi=linspace(1,20,100);z=polyval(p,xi);plot(x,y,'o',xi,z,'k:',x,y,'b')legend('原始数据','10阶多项式')结果:p =Columns 1 through 70.0000 -0.0000 0.0004 -0.0114 0.1814 -1.8065 11.2360 Columns 8 through 11-42.0861 88.5907 -92.8155 40.2671可用不同阶的多项式来拟合数据,但也不是阶数越高拟合的越好。
3. 3.多项式曲线求值函数:polyval( )调用格式:y=polyval(p,x)[y,DELTA]=polyval(p,x,s)说明:y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。
[y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y±DELTA。
它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。
则Y±DELTA将至少包含50%的预测值。
4. 4.多项式曲线拟合的评价和置信区间函数:polyconf( )调用格式:[Y,DELTA]=polyconf(p,x,s)[Y,DELTA]=polyconf(p,x,s,alpha)说明:[Y,DELTA]=polyconf(p,x,s)使用polyfit函数的选项输出s给出Y的95%置信区间Y±DELTA。
它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。
1-alpha 为置信度。
例4:给出上面例1的预测值及置信度为90%的置信区间。
程序:x=0:.1:1;y=[.3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2]n=3;[p,s]=polyfit(x,y,n)alpha=0.05;[Y,DELTA]=polyconf(p,x,s,alpha)结果:p =16.7832 -25.7459 10.9802 -0.0035s =R: [4x4 double]df: 7normr: 1.1406Y =Columns 1 through 7-0.0035 0.8538 1.2970 1.4266 1.3434 1.1480 0.9413Columns 8 through 110.8238 0.8963 1.2594 2.0140DELTA =Columns 1 through 71.3639 1.1563 1.1563 1.1589 1.1352 1.1202 1.1352Columns 8 through 111.1589 1.1563 1.1563 1.36395. 5.稳健回归函数:robust( )稳健回归是指此回归方法相对于其他回归方法而言,受异常值的影响较小。
调用格式:b=robustfit(x,y)[b,stats]=robustfit(x,y)[b,stats]=robustfit(x,y,’wfun’,tune,’const’)说明:b返回系数估计向量;stats返回各种参数估计;’wfun’指定一个加权函数;tune 为调协常数;’const’的值为’on’(默认值)时添加一个常数项;为’off ’时忽略常数项。
例5:演示一个异常数据点如何影响最小二乘拟合值与稳健拟合。
首先利用函数y=10-2x 加上一些随机干扰的项生成数据集,然后改变一个y的值形成异常值。
调用不同的拟合函数,通过图形观查影响程度。
程序:x=(1:10)’;y=10-2*x+randn(10,1);y(10)=0;bls=regress(y,[ones(10,1) x]) %线性拟合brob=robustfit(x,y) %稳健拟合scatter(x,y)hold onplot(x,bls(1)+bls(2)*x,’:’)plot(x,brob(1)+b rob(2)*x,’r‘)结果:bls =8.4452-1.4784brob =10.2934-2.0006分析:稳健拟合(实线)对数据的拟合程度好些,忽略了异常值。
最小二乘拟合(点线)则受到异常值的影响,向异常值偏移。
6. 6. 向自定义函数拟合对于给定的数据,根据经验拟合为带有待定常数的自定义函数。
所用函数:nlinfit( )调用格式: [beta,r,J]=nlinfit(X,y,’fun’,betao)说明:beta 返回函数’fun’中的待定常数;r 表示残差;J 表示雅可比矩阵。
X,y 为数据;‘fun’自定义函数;beta0待定常数初值。
例6:在化工生产中获得的氯气的级分y 随生产时间x 下降,假定在x ≥8时,y 与x 之间有如下形式的非线性模型:)8()49.0(---+=x b e a a y 现收集了44组数据,利用该数据通过拟合确定非线性模型中的待定常数。
x y x y x y8 0.49 16 0.43 28 0.418 0.49 18 0.46 28 0.4010 0.48 18 0.45 30 0.4010 0.47 20 0.42 30 0.4010 0.48 20 0.42 30 0.3810 0.47 20 0.43 32 0.4112 0.46 20 0.41 32 0.4012 0.46 22 0.41 34 0.4012 0.45 22 0.40 36 0.4112 0.43 24 0.42 36 0.3614 0.45 24 0.40 38 0.4014 0.43 24 0.40 38 0.4014 0.43 26 0.41 40 0.3616 0.44 26 0.40 42 0.3916 0.43 26 0.41首先定义非线性函数的m 文件:fff6.mfunction yy=model(beta0,x)a=beta0(1);b=beta0(2);yy=a+(0.49-a)*exp(-b*(x-8));程序:x=[8.00 8.00 10.00 10.00 10.00 10.00 12.00 12.00 12.00 14.00 14.00 14.00...16.00 16.00 16.00 18.00 18.00 20.00 20.00 20.00 20.00 22.00 22.00 24.00... 24.00 24.00 26.00 26.00 26.00 28.00 28.00 30.00 30.00 30.00 32.00 32.00...34.00 36.00 36.00 38.00 38.00 40.00 42.00]';y=[0.49 0.49 0.48 0.47 0.48 0.47 0.46 0.46 0.45 0.43 0.45 0.43 0.43 0.44 0.43... 0.43 0.46 0.42 0.42 0.43 0.41 0.41 0.40 0.42 0.40 0.40 0.41 0.40 0.41 0.41...0.40 0.40 0.40 0.38 0.41 0.40 0.40 0.41 0.38 0.40 0.40 0.39 0.39]';beta0=[0.30 0.02];betafit = nlinfit(x,y,'sta67_1m',beta0)结果:betafit =0.38960.1011即:a=0.3896 ,b=0.1011 拟合函数为:)8(1011.0)3896.049.0(3896.0---+=x e y §2 插值问题在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值。