电位分析法.

合集下载

电位分析法

电位分析法
电极的主要组成部分是电极 下端的玻璃泡,它是电极的 敏感膜,是在SiO2基质中 加入Na2O、Li2O和CaO烧 结而成的特殊玻璃膜。利用 玻璃膜的组成不同可制成对 不同阳离子有响应的玻璃电 极。对H+有响应的电极叫 pH玻璃电极,它是问世最 早(1906年)的离子选择 性电极,也是人们研究较多 的离子选择性电极。
电位分析法按原理分类
直接电位法和电 位滴定法。 直接电位法是通 过测量电池电动 势,从而确定指 示电极电位,然 后根据Nernst方 程,计算被测物 含量。

电位滴定法是通 过测量在滴定过 程中指示电极电 位的变化来确定 滴定终点,再按 滴定中消耗的标 准溶液的体积和 浓度计算待测物 质含量,实质上 是一种容量分析 方法。
第二节 离子选择性电极(ISE)概述
离子选择性电极由三部分组成:
离子选择性电极由三部分组成:①敏感膜:对
给定离子响应; ②内参液:含有与膜及内参 比电极响应的离子;③内参比电极。 也有的膜电极不用内参液和内参比电极,在 压膜时,在膜上压一层银粉,焊上一根金属 导线,或用导电胶将导线与膜粘在一起,或 把敏感膜涂在金属丝或片上制成涂层电极。
φm = K RT ln α FF
氟离子选择性电极的使用范围

一般在1~10-6 mol· -1范围内电极电位符合能斯特方程;检测 L 下限由单晶膜的溶度积决定,LaF3饱和溶液中F-离子浓度 约为10-7 mol· -1,因此氟电极在纯水体系中最低检测下限为 L 10-7 mol· -1左右;实验中要用F-离子的标准溶液校正电极。 L 电极在低活度范围内响应时间为~3min,而后在高活度范围 内响应迅速。氟电极的选择性较好,PO43-,CH3COO-,X -,NO -,SO 2- ,HCO -等离子不干扰,主要干扰离子 3 4 3 -。干扰的原因是在膜表面产生如下反应: 是OH LaF3 + 3OH- = La(OH)3 + 3F- 产生的F-离子对测定造成正干扰,而La(OH)3 层也对 测定有干扰. 在酸度较高时,会形成HF,HF2-,HF32-,而使F-离子浓 度降低,因此测定时应控制pH值在5~6之间。

电位分析法

电位分析法

电位分析法一、概论:电位分析法是通过化学电池的电流为零的一类方法二、电位分析法指示电极分类1、第一类电极:金属及其离子溶液2、第二类电极:金属及其难溶盐(或络合离子)3、第三类电极:金属与具有两种共同阴离子的难溶盐或难解离的络合离子4、第零类电极:惰性金属Pt 、Au 、C 等三、参比电极与盐桥1、参比电极1标准氢电极:在任何温度下电位值都为零,但一般不使用,因为操作麻烦又贵。

2甘汞电极和银-氯化银电极:电极电位可从P362查表获得甘汞电极:)/(|)(),(22L xmol KCl s Cl Hg l Hg 银-氯化银电极:)/(|)(),(L xmol KCl s AgCl s Ag 2、盐桥1作用:联通电路,消除或减小液接电位2使用条件:不含被测离子、正负电子迁移率基本相等、离子浓度尽可能大,减少液接电位。

四、离子选择电极1、膜电电位E 膜=in Dd out D E E E ++=l in l out a a nF RT k ln '±(d E :扩散电位,D E :界面电位,a :活度)2、离子选择电极电位:l out ISE a nF RT const E ln '±=(负离子➕,正离子➖)l out ISE SCEBattery a nFRT K E E E ln ±=-=(负离子➖,正离子➕)ISE :离子选择电极,SCE :参比电极3、离子选择电极类型及其相应机理1玻璃电极:玻璃在纯水或稀酸中浸泡时,玻璃中的+Na 与溶液里的+H 发生交换,在玻璃表面形成水化胶层。

此时玻璃的结构为:内外水化胶层+中间干玻璃层;干玻璃层靠+Na 导电,而水化胶层靠+H 扩散导电。

2晶体膜电极A 、氟离子单晶电极:敏感膜为3LaF 的单晶薄片,氟离子能扩散进入膜相的缺陷空穴,膜中的氟离子也可以进入溶液,因而在两相界面上产生了膜电位。

B 、硫、卤素离子电极。

电位分析法

电位分析法
M
RT Pot z / m Pot z / n K ln a M K m a K ...... ,i i m, ja j ZF


0.059 Pot z / m Pot z / n M K ln a M K m a K ...... ,i i m, j a j Z
★ 试样组分较稳定的试液,如火力发电厂水 蒸气中Na+的测定。
<二> 校准曲线法: 配制试液和一系列标准溶液,加 1. 方法要点: 入总离子强度调节缓冲溶液,使 各溶液的实验条件一致。分别测 定它们的电动势,根据标准系列 溶液的浓度,作E~C曲线,再用 内插法求试液中被测物含量。 2. 适用范围: ★ 适用于大批量试样的分析。
二、膜电位的产生: 〈一〉膜电位: ● 膜电位: 膜两侧接触不同浓度电解质 溶液而产生的电位差。
〈一〉膜电位产生的模型: 1.扩散电位:
●C1>C2:产生浓差扩散 ●H+迁移较Cl-快:造 成溶液界面上的电荷 分布不匀 ●C1负电荷多而C2正电 荷多:在相界面产生 电位差 ●电位差的产生,使离子 的扩散速度减慢,最后 达到平衡,使两相界面 之间有稳定的界面电位
① 当正、负离子的迁移数相等时,扩散电位 等于零;
② 扩散电位可以出现在液体、固体界面上; ③ 扩散电位不具备强制性和选择性; ④ 扩散电位是膜电位的组成部,它存在于膜 相内部。
2.道南电位:
●渗透膜:它至少能阻止 一种离子从一个液相扩 散到另一个液相。 ●C1>C2:产生浓差扩散
●仅允许少量的K+通过,
§3—1 电位分析法原理
一、电位分析法:
●将指示电极和参比电极同时浸入试液,组 成电池,在通过电路的电流为零的条件下, 测量指示电极的平衡电位,从能斯特方程 式求待测离子浓度的方法,称电位分析法。

电化学分析方法之一电位分析法

电化学分析方法之一电位分析法

)
(K2
0.0592
lg
aH 内 aH 内表面
)
K
0.0592
lg
a H

K
0.0592
pH
C、PH玻璃电极的电极电位:
E玻 E内参 E膜 E内参 K 0.0592 pH试
E玻 K玻 0.0592 pH试
D、电位法测定溶液pH的基本原理 电位法测定溶液的pH,是以玻璃电
极作批示电极,饱和甘汞电极作参比电 极,浸入试液中构成原电池: E = E甘 – E玻
电位滴定法中拟定终点的办法重 要有下列几个:
第一种办法:以测得的电动势和 对应的体积作图,得到E~V曲线, 由曲线上的拐点拟定滴定终点。
第二种办法:作一次微商曲线, 由曲线的最高点拟定终点。具体 由△E/△V对V作图,得到△E/△V 对V曲线,然后由曲线的最高点拟 定终点。
第三种办法:由二次微商求终点
其中,批示电极是看待测离子的 浓度变化或对产物的浓度变化有 响应的电极,参比电极是含有固 定电位值的电极。
在滴定过程中,随着滴定剂的加 入,待测离子或产物离子的浓度 要不停地变化,特别是在计量点 附近,待测离子或产物离子的浓 度要发生突变,这样就使得批示 电极的电位值也要随着滴定剂的 加入而发生突变。
惯用的有Ag/AgCl、甘汞电极 (Hg/Hg2Cl2电极)。
对于甘汞电极,其电极反映为: Hg2Cl2+2e=2 Hg+2Cl-
3. 第三类电极:它由金属,该金属 的难溶盐、与此难溶盐含有相似阴离 子的另一难溶盐和与此难溶盐含有相 似阳离子的电解质溶液所构成。表达 为M (MX,NX,N+)。如: Zn| ZnC2O4(s),CaC2O4(s),Ca2+ Ca2+ + ZnC2O4 +2e CaC2O4+ Zn

电位分析法

电位分析法
1.分类 直接电位分析:通过测定指示电极的电位, 直接电位分析:通过测定指示电极的电位, 根据电位与待测离子活度之间的定量关系进 行定量分析。 行定量分析。 电位滴定分析: 电位滴定分析:通过测定滴定过程中电极电 位突变来确定滴定终点进行分析。 位突变来确定滴定终点进行分析。
2.特点 (1)仪器设备简单,操作方便,适合现场 仪器设备简单,操作方便, 操作; 操作; 选择性好,测定简便快速; (2)选择性好,测定简便快速; 试样用量少; (3)试样用量少; 自动化程度高; (4)自动化程度高; 精密度较差。 (5)精密度较差。
ϕ玻璃
ϕ甘汞
2.303RT E = K′ + pH F 25 °C: E = K′ + 0.059pH
比较法确定待测溶液pH 比较法确定待测溶液pH
pH已知的标准缓冲溶液 和 pH待测的试液 。 测定 已知的标准缓冲溶液s和 待测的试液 待测的试液x。 已知的标准缓冲溶液 各自的电动势为 的电动势为: 各自的电动势为:
测定待测溶液的电位值, 测定待测溶液的电位值, 通过标准曲线求出其浓度。 通过标准曲线求出其浓度。
Ex
lgcx lg c i
总离子强度调节缓冲溶液( TISAB )的作用 保持较大且相对稳定的离子强度,使活度系数恒定; ①保持较大且相对稳定的离子强度,使活度系数恒定; 范围内, ②维持溶液在适宜pH范围内,满足离子电极的要求; 维持溶液在适宜 范围内 满足离子电极的要求; ③掩蔽干扰离子。 掩蔽干扰离子。 测 F- 过 程 所 使 用 的 TISAB 典 型 组 成 : 1mol/L 的 NaCl,使溶液保持较大稳定的离子强度 ; 0.25mol/L的 , 使溶液保持较大稳定的离子强度; 的 HAc 和 0.75mol/L 的 NaAc, 使 溶 液 pH 在 5 左 右 ; 0.001mol/L的柠檬酸钠 掩蔽 3+、Al3+等干扰离子。 的柠檬酸钠, 掩蔽Fe 等干扰离子。 的柠檬酸钠

第九章--电位分析法(2014)PPT课件

第九章--电位分析法(2014)PPT课件

H水 合层 H溶 液
E内K内0.059lgaaHH内 内 参 水比 化溶 层液 E外K外0.059lgaaH H外 外 部 水溶 化液 层
.
13/6193
E内K内0.059lgaaHH内 内 参 水比 化溶 层液 E外K外0.059lgaaH H外 外 部 水溶 化液 层
同一玻璃电极,膜内外表面性质可以看成是相同 的,所以常数K内=K外;
属于非晶体膜电极。 最早使用的离子选择性电极。 核心部分是玻璃膜。
.
6/696
玻璃膜的不同组成可制成对不同 阳离子响应的玻璃电极。
pH玻璃膜电极的敏感膜是在SiO2 基质中加入Na2O、Li2O和CaO烧 结而成的特殊玻璃膜。厚度约为 100 mm左右。
原理:玻璃膜产生的膜电位与待 测溶液的pH值有关。
.
19/6199
3.3 pH值的测定
pHlogH[] pH loagH
饱和甘汞电极为参比电 极 , 玻 璃 电 极 作 为 H+ 活 度 指 示电极,两者插入溶液中组 成电池:
A A g ,0 . g 1 m C L 1 H ol 玻 lC 试 l 璃 K ( 饱 液 C ) 膜 ,H 2 C l 和 2 H g l
.
34/6394
二氧化碳气敏电极
电极浸入待测液,试液中 待测CO2通过透气膜扩散 ,直到透气膜内外CO2的 分压相等。
CO2引起的内电解质溶液 pH变化用pH玻璃电极指 示,由此测定试液中CO2 的浓度。
.
35/6395
气敏电极一览表:
.
36/6396
7. 酶电极
将 生物酶 涂剂:二癸基磷酸钙+苯基磷酸二辛酯溶液。
.
32/6392

第七章 电位分析法

第七章 电位分析法

离子敏感场效应晶体管(ISFET)
16-4 离子选择性电极性能参数


一、检测限与响应斜率 离子选择性电极能够检测到被测离子的最低浓 度。如图16-10中的CD与FG两延长线交叉点A 所对应的离子活度。 依能斯特方程直线的理论斜率为:
2.303 RT 理论斜率 zF
实际测定时斜率与理论值不一定相同。
(二)氟电极
氟电极的敏感膜由LaF3单晶片制成,为提高导电性, 在其中参杂少量Eu2+,Ca2+ ,二价离子的引入,使晶 格点阵中La3+被Eu2+,Ca2+取代,形成较多空的F-点 阵,增强了晶体的导电性,导电由F-完成。 氟离子选择性电极是目前最成功的单晶膜电极。
RT EF k ln a F F
能斯特方 程比较
EM
RT k ln a Ag F
二、电位选择性系数


电极选择性是指:电极对被测离子 和干扰离子响应的差异。 这种差异可用电极选择性系数Ki,j表 示。
RT z/m EM k ln( ai K iPot a ) ,j j zF
Ki,j表征了干扰离子对被测离子干扰的程度
玻璃电极的电位与溶液PH关系

玻璃电极的电位与溶液的PH有如下关系 RT E玻 k玻 ln aH F 2.303 RT E玻 k玻 pH 试 F
E玻 k玻 0.0592pH试
(三)阳离子玻璃电极
二、晶体电极

(一)电极结构 晶体电极的基本结构图16-5,其敏感膜 材料系难溶盐加压或拉制成的。能满足 室温下导电的难溶盐晶体只有少数几种, 氟化镧、硫化银、卤化银等。这类晶体 晶格能比较小,离子半径最小电荷最少 的离子F ,Ag+等参与导电。

电位分析

电位分析

而产生电极电位的,即电极上发生氧化还原反应—电极上
有电子的得失与转移; 离子选择性电极是以敏感膜为基体,选择性地让一些 离子渗透,同时包含着离子的交换过程。因此,离子选择 性电极电位是由离子的交换和扩散作用产生的。 敏感膜是一种能分开两种电解质溶液,并对溶液中某种 物质有选择性响应的薄膜,它能形成膜电位,ISE被认为是 一种电化学传感器,是电位分析中应用最广泛的指示电极。
Chapter 10 Potentiometry
第十章
电位分析法
§10-1 概 述
一、定义
电位分析法指在零电流条件下,利用电极电位和 溶液中某种离子的活度或浓度之间的关系来测定待测 物含量的方法,包括直接电位法和电位滴定法。
直接电位法 电位滴定法
1. 直接电位法 (direct potentiometry) :
将电极插入被测液中,根据测得的电池电动势与
被测溶液中待测物质某种型体的平衡浓度的关系直接
求出待测物质含量的方法。 2. 电位滴定法 (potentiometric titration) : 借助滴定过程中电池电动势的突变来确定滴定 终点,根据滴定剂的体积和浓度来求得待测物质的 含量,所得是某种参与滴定反应物质的总浓度。
3. 任意的i离子选择性电极电位
任意阳离子i 的离子选择性电极的电位均等于膜内扩散
电位和膜与电解质溶液形成的内外界面的界面电位的代数 和。
膜内外表面性质完全相同,所以,内外界面扩散电位 大小相等,方向相反,相互抵消。
而膜内外界面的界面电位为:
外 内
a1 RT K1 ln ’ nF a1 a2 RT K2 ln ’ nF a2
对整个玻璃电极而言,其电极电位应是内参比电极
电位和玻璃膜电位之和:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电位(对SCE) ,已知 Cu 0.344 V 2 / Cu
(6)
解:由于 0.344 V,是铜电极对NHE而言 故铜电极对NHE的电极电位为: 0.059 log[Cu 2 ] 2 0.059 0.344 log[0.01] 2 0.285(V )
(1) H+活度 为1; (2) 氢气分压为101325Pa。 规定:任何温度下,氢电极的电位为“零”。 习惯上以标准氢电极为负极,以待测电极为 正极: 标准氢电极||待测电极 此时,待测电极进行还原反应,作为正极,测得
电动势为正值。若测得电动势为负值,则待测电
极进行氧化反应,是负极,氢电极为正极。
8-2 电位分析法原理及应用
电位分析法:电化学分析法的重要分支,其实 质是通过零电流情况下测得两电极之间的电 位差(即所构成原电池的电动势)进行分析 测定。 电位分析法包括: 电位测定法 电位滴定法
一、能斯特方程--电位分析法的依据
0.059 [Ox] log n [Re d ]

RT ox ln (能斯特方程) nF red

式中 :

-平衡时电极电位(单位:伏特v) -标准电极电位 (v) -分别为电极反应中氧化态和还原态的活度; -为电极反应中的电子得失数
ox,red
n
在25℃时,如以浓度代替活度,则上式可写成:
0.059 [Ox] log n [Re d ]
若测量时条件相同,则有KS=KX,所以:
E X E S 0.059PH X 0.059PH S E X ES PH X PH S 0.059
可见,以标准缓冲溶液的PHS为基准 ,通 过比较ES和EX的值来求出PHX, 这就是PH标度 的意义。PH计也是以此唯理论依据的。
3、pH 标准溶液
2、溶液pH值得测定
参比电极:饱和甘汞电极 指示电极:玻璃电极 两电极同时插入待测液形成如下电池:
Ag, AgCl | HCl | 玻璃膜 | 试液溶液 KCl(饱和) | Hg2Cl2(固), Hg
玻璃
E电池 右 左 电池电动势:
SCE
甘汞

SCE 常数 0.059PH试液) K 0.059PH试液
AgCl+e=Ag+Cl-

AgCl / Ag
0.222 V
与甘汞电极相同,其电极电位取决于Cl的浓度。
4、电极的极化
若一电极的电极反应可逆,通过电极的电流非 常小,电极反应在平衡电位下进行该电极称为可逆 电极。如Ag|AgCl等都可近似为可逆电极。 只有可逆电极才满足能斯特方程。 当较大电流通过电池时,电极电位将偏离可逆 电位,不在满足能斯特方程,电极电位改变很大, 而电流变化很小,这种现象称为电极极化。电池的 两个电极均可发生极化。
一种浸泡的很好的玻璃薄膜的图解
如图所示:在两相界面形成双电层产生电位差。当H+ 在两相间扩散速度达到平衡时, 可用下式表示:

[H k1 0.0 5 9lo g [H

]2 ]s
Байду номын сангаас
内 k 2
[ H ]1 0.0 5 9lo g [ H ]s
玻璃膜内外表面结构状态相同,故K1=K2,玻璃电 极膜内外测之间的电位差称为膜电位:
3 2 3 1
2)
[ Fe ] / 1m ol* l 0.059log 2 [ Fe ] / 1m ol* l 1
(3)
H 2 2 H 2e 0.059 ([H ] / 1m ol* l ) log 2 pH 2 / 101.325kPa
1 2
K的影响因素: 玻璃电极的成分、内外参比电极的电位差、不对 称电位、温度
K在一定条件下为定值,但无法确定,故无 法用上式求得pH值。
实际测定中,式样的pH是同已知pH的标准缓冲 溶液相比求得的。 设pH标准缓冲容液为S,待测溶液为X,有:
E x K x 0.059PH x Es K S 0.059PH S
上式(能斯特方程),给出了电极电位与溶液中对应离 子活度的简单关系。 对于氧化还原体系,应用该公式,通过测定一个可逆电 池的电位来确定溶液中某组分的离子活度或浓度的方法 就是电极电位法。
电位测定法:根据测量某一电极的电位,再由 能斯特方程直接求得待测物质的浓度(活度)。 电位滴定法:根据滴定过程中,某个电极电位 的突变来确定滴定终点,从滴定剂的体积和 浓度来计算待测物的含量。

如果电对中某一物质是固体或水,则它们的浓 度均为常数,即[]=1;如果电对中某一物质为气体, 则它的浓度可用气体分压表示。
例 (1)
Zn 2 2e Zn 0.059 2 1 log[Zn ] / 1m ol* l 2 [ Zn 2 ] 1
Fe e Fe
第八章 电位分析法
8-1 8-2 8-3 8-4 择 电位 电位分析法原理及应用 电位滴定法 电位滴定法的应用和指示电极的选
第四章 电位分析法
8-1 电位
一、电位 1、电极电位的产生 两种导体接触时,其界面的两种物质可以是固体-固 体,固体-液体及液体-液体。因两相中的化学组成不同, 故将在界面处发生物质迁移。若进行迁移的物质带有电 荷,则在两相之间产生一个电位差。如锌电极浸入 ZnSO4溶液中,铜电极浸入CuSO4溶液中。
温度 t ℃ 10 15 20 25 30 35 40 0.05M 草 酸 25 ℃ 饱 和 酒 0.05M 邻 苯 三氢钾 石酸氢钾 二甲酸氢钾 1.671 3.996 1.673 1.676 1.680 1.684 1.688 1.694 3.559 3.551 3.547 3.547 3.996 3.998 4.003 4.010 4.019 4.029
pH 2 代表电极表面所受到的 H 2的分压,以( Pa)表示
(4)
Cr2O72 14H 6e 2Cr 3 7 H 2O [Cr2O ] [ H ] 14 ( )( ) 1 0 . 059 1m ol* l log 1m ol* l 3 [Cr ] 2 6 ( ) 1 1m ol* l [ H 2O] 1
M=Mn++ne
若金属失去电子的倾向大于获得电子的倾向,达
到平衡时将是金属离子进入溶液,使电极上带负电, 电极附近的溶液带正电;反之,若金属失去电子的倾 向小于获得电子的倾向,结果是电极带正电而其附近 溶液带负电。因此,在金属于电解质溶液界面形成一 种扩散层,亦即在两相之间产生了一个电位差,这种 电位差就是电极电位。实验表明:金属的电极电位大 小与金属本身的活波性,金属离子在溶液中的浓度, 以及温度等因素有关。
膜 外 内
[ H ]2 0.059log [ H ]1
玻璃电极中,内参比溶液中的[H+] 是常数故:
膜 常数 0.059log[H ] 2

常数 0.059PH 试
由上式可见,通过测量膜电位即可得到膜外 溶液得H+ 浓度 [H+]2,这就是玻璃电极测溶液 PH的理论依据。
极化程度的影响因素: (1)电极的大小、形状 (2)电解质溶液的组成 (3)温度 (4)搅拌情况 (5)电流密度
极化可分为浓差极化和化学极化
浓差极化:电极反应中,电极表面附近溶液的浓度和 主体溶液浓度发生了差别所引起的。 电化学极化:由某些动力学因素引起的。若电化学反 应的某一步反应速度较慢,为 克服反应速度的障碍 能垒,需多加一定的电压。这种由反应速度慢所引 起的极化称为化学极化或动力学极化。
2 7 1
(5)
AgCl e Ag Cl 1 0.059log [Cl ] / 1m ol* l 1

0.059log[Cl ] / 1m ol* l 1 [ AgCl] [ Ag] 1
计算[Cu 2 ] 0.01m ol* l 1时,铜电极的

换算成对SCE的电极电位为:
Cu 0.285 0.242 0.043(V )
3、电极电位的测量
单个电极的电位是无法测 量的,因此,由待测电极 与参比电极组成电池用电 位计测量该电池的电动势, 即可得到该电极的相对电 位。相对于同一参比电极 的的不同电极的相对电位 是可以相互比较的,并可 用于计算电池的电动势。 常用的参比电极有标准氢 电极与甘汞电极。
在标准氢电极中有如下平衡:
2H++2e=H2
氢电极电位为:
2H

/H 2
[H ] ( ) 1 0.059 m ol*l log 2 PH 2 /101325Pa
当[H+] =1mol/l, PH2 = 101325Pa时,
称为标准氢电极。

2H / H2
标准氢电极的条件为:
Na2O 22%
CaO SiO2 6% 72%
玻璃泡中装有PH一定的溶液(内参比溶液,0.1 mol· l-1),其中插入一根银-氯化银电极作为内参比电 极。
当玻璃电极与待测溶液接触时,发生如下离 子交换反应:
H++Na+GI=Na++H+GI
溶液 玻璃 溶液 玻璃
上述反应的平衡常数很大,有利于反应相右进行, 进而在酸性和中性环境下,在玻璃表面上形成一个硅 酸水化层。由硅酸水化层到膜内部,H+数目逐渐减 少,Na+数目 逐渐增加,再膜的中部为“干玻璃层”。
铜与CuSO4界面所产生的电极电位小于锌与ZnSO4界面 所产生的电极电位。 Zn2+(Cu2+) 浓度越大,则平衡时 电极电位也越大。
2、能斯特公式
电极电位的大小,不但取决于电极的本质,而且与溶 液中离子的浓度,温度等因素有关,对于一个电极来 说,其电极反应可以写成:
相关文档
最新文档