数字信号处理实验
数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号处理实验报告

《数字信号处理》实验报告学院:信息科学与工程学院专业班级:通信1303姓名学号:实验一 常见离散时间信号的产生和频谱分析一、 实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法;(2) 加深对常用离散时间信号的理解;(3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。
二、 实验原理(1) 常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ0≠=n k n b )单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2)离散傅里叶变换:设连续正弦信号()x t 为0()sin()x t A t φ=Ω+这一信号的频率为0f ,角频率为002f πΩ=,信号的周期为00012T f π==Ω。
如果对此连续周期信号()x t 进行抽样,其抽样时间间隔为T ,抽样后信号以()x n 表示,则有0()()sin()t nT x n x t A nT φ===Ω+,如果令w 为数字频率,满足000012s sf w T f f π=Ω=Ω=,其中s f 是抽样重复频率,简称抽样频率。
为了在数字计算机上观察分析各种序列的频域特性,通常对)(jw e X 在[]π2,0上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n), 有∑-=-=10)()(N n n jw jw k k e n x e X其中 1,,1,02-==M k k Mw k ,π 通常M 应取得大一些,以便观察谱的细节变化。
取模|)(|k jw e X 可绘出幅频特性曲线。
数字信号实验报告材料 (全)

数字信号处理实验报告实验一:用 FFT 做谱分析 一、 实验目的1、进一步加深 DFT 算法原理和基本性质的理解。
2、熟悉 FFT 算法原理和 FFT 子程序的应用。
3、学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用 FFT 。
二、实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ≤D 。
可以根据此时选择FFT 的变换区间N 。
误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号的频谱时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
三、实验内容和步骤对以下典型信号进行谱分析:⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(32414()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+6()cos8cos16cos20x t t t t πππ=++对于以上信号,x1(n)~x5(n) 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论;;x6(t)为模拟周期信号,选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。
数字信号处理实验4

实验4 离散时间系统的频域分析一、实验目的(1)了解离散系统的零极点与系统因果性和稳定性的关系; (2)加深对离散系统的频率响应特性基本概念的理解; (3)熟悉MATLAB 中进行离散系统零极点分析的常用子函数; (4)掌握离散系统幅频响应和相频响应的求解方法。
二、知识点提示本章节的主要知识点是频率响应的概念、系统零极点对系统特性的影响;重点是频率响应的求解方法;难点是MATLAB 相关子函数的使用。
三、实验原理1.离散时间系统的零极点及零极点分布图设离散时间系统系统函数为NMzN a z a a z M b z b b z A z B z H ----++++++++==)1()2()1()1()2()1()()()(11 (4-1) MATLAB 提供了专门用于绘制离散时间系统零极点图的zplane 函数: ①zplane 函数 格式一:zplane(z, p)功能:绘制出列向量z 中的零点(以符号"○" 表示)和列向量p 中的极点(以符号"×"表示),同时画出参考单位圆,并在多阶零点和极点的右上角标出其阶数。
如果z 和p 为矩阵,则zplane 以不同的颜色分别绘出z 和p 各列中的零点和极点。
格式二:zplane(B, A)功能:绘制出系统函数H(z)的零极点图。
其中B 和A 为系统函数)(z H (4-1)式的分子和分母多项式系数向量。
zplane(B, A) 输入的是传递函数模型,函数首先调用root 函数以求出它们的零极点。
②roots 函数。
用于求多项式的根,调用格式:roots(C),其中C 为多项式的系数向量,降幂排列。
2.离散系统的频率特性MATLAB 提供了专门用于求离散系统频响特性的freqz 函数,调用格式如下: ①H = freqz(B,A,W)功能:计算由向量W (rad )指定的数字频率点上(通常指[0,π]范围的频率)离散系统)(z H 的频率响应)e (j ωH ,结果存于H 向量中。
数字信号处理实验

数字信号处理实验实验一信号、系统及系统响应1、实验目的认真复习采样理论、离散信号与系统、线性卷积、序列的z 变换及性质等有关内容;掌握离散时间序列的产生与基本运算,理解离散时间系统的时域特性与差分方程的求解方法,掌握离散信号的绘图方法;熟悉序列的z 变换及性质,理解理想采样前后信号频谱的变化。
2、实验内容a. 产生长度为500 的在[0,1]之间均匀分布的随机序列,产生长度为500 的均值为0 单位方差的高斯分布序列。
b. 线性时不变系统单位脉冲响应为h(n)=(0.9)nu(n),当系统输入为x(n)=R10(n)时,求系统的零状态响应,并绘制波形图。
c. 描述系统的差分方程为:y(n)-y(n-1)+0.9y(n-2)=x(n),其中x(n)为激励,y(n)为响应。
计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位脉冲响应h(n);计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位阶跃响应s(n);由h(n)表征的这个系统是稳定系统吗?d. 序列x(n)=(0.8)nu(n),求DTFT[x(n)],并画出它幅度、相位,实部、虚部的波形图。
观察它是否具有周期性?e. 线性时不变系统的差分方程为y(n)=0.7y(n-1)+x(n),求系统的频率响应H(ejω),如果系统输入为x(n)=cos(0.05πn)u(n),求系统的稳态响应并绘图。
f. 设连续时间信号x(t)=e-1000|t|,计算并绘制它的傅立叶变换;如果用采样频率为每秒5000 样本对x(t)进行采样得到x1(n),计算并绘制X1(ejω),用x1(n)重建连续信号x(t),并对结果进行讨论;如果用采样频率为每秒1000 样本对x(t)进行采样得到x2(n),计算并绘制X2(ejω),用x2(n)重建连续信号x(t),并对结果进行讨论。
加深对采样定理的理解。
g. 设X1(z)=z+2+3z-1,X2(z)=2z2+4z+3+5z-1,用卷积方法计算X1(z)X2(z)。
数字信号处理实验(民航无线电监测关键技术研究)
《数字信号处理》实验报告实验名称数字信号处理实验(民航无线电监测关键技术研究)实验时间一、实验目的:通过实验,理解和掌握民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术,培养学生对数字信号处理技术的兴趣,并提高学生基于数字信号处理技术的工程应用能力。
二、实验环境:Matlab三、实验原理、内容与分析(包括实验内容、MATLAB程序、实验结果与分析)实验总体框图如上图所示,主要实现民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术。
1.有限长单位脉冲(FIR)滤波器的设计FIR 数字滤波器是一种非递归系统,其冲激响应h(n)是有限长序列,其差分方程表达式为:系统传递函数可表达为:N-1 为FIR 滤波器的阶数。
在数字信号处理应用中往往需要设计线性相位的滤波器,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性。
为了使滤波器满足线性相位条件,要求其单位脉冲响应h(n)为实序列,且满足偶对称或奇对称条件,即h(n)=h(N-1-n)或h(n)=-h(N-1-n)。
这样,当N 为偶数时,偶对称线性相位FIR 滤波器的差分方程表达式为:由上可见FIR 滤波器不断地对输入样本x(n)延时后,再做乘法累加算法,将滤波器结果y(n)输出,因此,FIR 实际上是一种乘法累加运算。
而对于线性相位FIR 而言,利用线性相位FIR 滤波器系数的对称特性,可以采用结构精简的FIR 结构将乘法器数目减少一半。
2.AM 调制解调AM 调制解调过程如下:3.多采样率数字信号处理一般认为,在满足采样定理的前提下,首先将以采样率F1 采集的数字信号进行D/A 转换, 变成模拟信号,再按采样率F2 进行A/D 变换,从而实现从F1 到F2 的采样率转换。
但这样较麻烦,且易使信号受到损伤,所以实际上改变采样率是在数字域实现的。
数字信号处理实验报告_五个实验
实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。
二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。
对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。
其延拓周期为采样角频率(T /2π=Ω)。
只有满足采样定理时,才不会发生频率混叠失真。
在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。
公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。
为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。
数字信号处理实验报告
数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
重邮课程实验报告
一、实验名称数字信号处理实验二、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握数字滤波器的设计方法及其应用。
3. 熟悉数字信号处理软件的使用,提高实验技能。
三、实验原理数字信号处理(Digital Signal Processing,DSP)是研究数字信号的产生、处理、分析和应用的科学。
本实验主要涉及以下几个方面:1. 数字滤波器的基本概念:数字滤波器是一种对数字信号进行频率选择的装置,可以用于信号的滤波、增强、抑制等。
2. 滤波器的设计方法:主要包括有限脉冲响应(FIR)滤波器和无限脉冲响应(IIR)滤波器的设计方法。
3. 数字信号处理软件的使用:利用MATLAB等软件进行数字信号处理实验,提高实验效率。
四、实验器材1. 实验计算机2. MATLAB软件3. 实验指导书五、实验步骤1. 实验一:FIR滤波器设计(1)打开MATLAB软件,创建一个新的脚本文件。
(2)根据实验指导书的要求,输入FIR滤波器的参数,如滤波器的阶数、截止频率等。
(3)运行脚本文件,观察滤波器的频率响应曲线。
(4)根据实验结果,分析滤波器的性能。
2. 实验二:IIR滤波器设计(1)打开MATLAB软件,创建一个新的脚本文件。
(2)根据实验指导书的要求,输入IIR滤波器的参数,如滤波器的阶数、截止频率等。
(3)运行脚本文件,观察滤波器的频率响应曲线。
(4)根据实验结果,分析滤波器的性能。
3. 实验三:数字信号处理软件的使用(1)打开MATLAB软件,创建一个新的脚本文件。
(2)根据实验指导书的要求,输入信号处理的参数,如采样频率、滤波器类型等。
(3)运行脚本文件,观察信号处理的结果。
(4)根据实验结果,分析数字信号处理软件的应用。
六、实验结果与分析1. 实验一:FIR滤波器设计实验结果表明,所设计的FIR滤波器具有较好的频率选择性,滤波效果符合预期。
2. 实验二:IIR滤波器设计实验结果表明,所设计的IIR滤波器具有较好的频率选择性,滤波效果符合预期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.
网络上的工具箱
/ /matlabcentral/fileexchang e/loadCategory.do
Matlab及其应用
14
1.7 与MATLAB相似的软件
Mathmatica 数学计算功能。复杂符号计 算,主要在理论界 Mathcad 数学文字软件。直接写出报告 Maple 符号计算功能强大 SciLab 免费的matlab科隆体 仿真软件:MATRIXx、VisSim等等
Matlab及其应用 35
4.1 矩阵下标
利用矩阵下标,MATLAB还提供了子矩阵功 能。同样是上面的a(n,m),如果n和m是向 量,而不是标量,则将获得指定矩阵的子块. 同样,矩阵的子块还可以被赋值。如果在取 子块时,n或m是“:”,则返回指定的所有 行或列。 如果在矩阵子块赋值为空矩阵(用[]表示), 则相当于消除相应的矩阵子块. 矩阵的序号编址:按列计数。
2语句生成矩阵
线性等间距格式矩阵,使用from:step:to linspace命令
a=linspace(1,10,5);
logspace命令
b=logspace(0,2,10)
矩阵连接
c=[a b];
zeros ones eye randn []
Matlab及其应用 26
3. 引入特殊的文件格式
3.3 矩阵的超越函数
函数名 MATLAB中exp、sprt、 sin、cos等命令可以 abs 直接使用在矩阵上, sqrt 这种运算只是定义在 real 矩阵的单个元素上, imag 即分别对矩阵的每个 conj 元素进行运算。 MATLAB中也提供了 round fix 基本的三角函数。 floor 注意其中的取整 函数名 ceil
Matlab及其应用 3
1.2 学习Matlab的基本原因 学习 的基本原因 的基
不希望学生在编程上化太多时间,课程目的 不是学习编程 社会化的运行带来的好处:合理利用可以节 约大量的时间 为什么相同的时间别人比自己做出了更多的 事情:硕士论文调查结果 面向对象的思想带来巨大的好处 紧密结合科学的前沿 From BBS:博士论文=Matlab+word
Matlab及其应用
含义 绝对值或者复数模 平方根 实部 虚部 复数共轭 4舍5入到整数 舍入到最接近0的整数 舍入到最接近-∞的整数 舍入到最接近∞的整数
31
3.3 矩阵的超越函数
函数名 sign rem sin cos tan asin acos atan atan2
Matlab及其应用
含义 符号函数 留数 正弦 余弦 正切 反正弦 反余弦 反正切 第四象限反正切
Matlab及其应用 20
2.4.1 特殊变量
特殊变量 ans pi eps flops inf nan i j 取值 用于结果的缺省变量名 圆周率 计算机的最小数 浮点运算书 无穷大 如 1/0 不等量 i=j=
−1
如 0/0
nargin nargout realmin realmax
Matlab及其应用
Matlab及其应用 5
1.4 MATLAB特点
高度适应性、开放性:MATLAB的工具箱可以任 意增减,任何人可以自己生成MATLAB工具箱 可扩充性: MATLAB的函数大多为ASCII文件, 可以直接编辑、修改 基于矩阵运算的工作平台。多版本: windows/unix/dos/Macintosh 极多的工具箱。
Matlab及其应用 33
2 逻辑操作符
逻辑操作符定义了一种与或非的关系表达式。 MATLAB的逻辑操作符有&(与)、|(或)、~(非)。 例如: »c=~(a>4) c= 1 1 1 1 0 0 0 0 0 »c=(a>4)&(a<7) c= 0 0 0 0 1 1 0 0 0
Matlab及其应用 34
快速启动 版本控制 图形粘贴设置
字体的改变
Matlab及其应用
17
2.3帮助的使用
help 命令:已知命令不知道用法 lookfor命令:知道命令的关键词 Matlab Help:命令查找,索引,说明书 Demo 有效的利用帮助
Matlab及其应用
18
2.3.1 怎样获得详尽的帮助信息
1. 首先是MATLAB窗口中的help命令,它最常用、最快,往往也是最 有效的。给出关键字就能找到相应的说明。Help命令简单易用,但 是它要求准确给出关键字,如果记忆不准,就很难找到。这时就应 该用第二种方案。 2. Help Desk:这是MATLAB的HTML格式的帮助文档,有着很好的 组织。可以在命令行键入helpdesk,进入“Matlab Help Desk”。 Help Desk的搜索可以使用不完全关键字,这样即使遇到记忆模糊 的情况也可以很快查到。 3. 前面两种方法所得到的帮助信息常常是不够细致的,需要用第三种 途径来补充,这就是电子版的使用手册。MATLAB里包含了大量关 于MATLAB安装、使用、编程以及各种工具箱等的电子版手册,全 部为PDF格式,具有搜索功能,因此也可以在指定的手册中搜索关键 字,使用非常方便。
Matlab及其应用
6
1.5 Matlab能做什么
基本的数据处理 优化和解方程 动态过程仿真:实时的和非实时的 数据来源:Excel、数据库、A/D等等 嵌入式的控制:Pc/104和DSP 神经元网络、小波分析、GA等等 虚拟现实仿真
Matlab及其应用 7
Matlab产品家族
Matlab扩展支持在 matlab中队系统的 实施和开发。 工具箱:专用的函数 库,解决特定领域的 问题。 Simulink非线性系 统仿真 Blockset是专门为 simulink建立的模块。
MATLAB 基础及其应用
第一讲 MATLAB基础
> > > > > • • • • • 概述 MATLAB基本使用 MATLAB的基本矩阵分析 矩阵操作 流程控制
Matlab及其应用
1
一、概述
MATLAB是一种交互式的以矩阵为基础的系 统计算平台,它用于科学和工程的计算与可 视化。它的优点在于快速开发计算方法,而 不在于计算速度。
Matlab及其应用
24
三、MATLAB的基本矩阵运算
3.1 简单矩阵输入 命令行简单键盘输入
用于很少数据输入 矩阵的方向:, ; NaN Inf
文件形式输入
可以用来读入试验数据 大量的数据输入
load数据
文本文件:全部是数据,不含有数据 mat文件:matlab自有的数据格式
Matlab及其应用 25
函数的输入变量数目 函数的输出变量数目 最小的可用正实数 最大的可用正实数
21
2.4.2 复数
不需要特殊的处理。复数可以表示为: a=10-9i 复数运算不需要特殊处理,可以直接进行
Matlab及其应用
22
2.4.3 显示格式
MATLAB中所有的量为双字长浮点数,显示按 下面显示规则:
1. 在缺省情况下,当结果为整数,作为整数显示;当 结果为实数,以小数后4位的精度近似显示。 4 2. 如果结果中的有效数字超出了这一范围,以科学计 数法显示结果。 3. format命令改变显示格式,常用的的格式有
Matlab及其基本运算
变量:直接使用,无需定义 逗号、分号的意义 行内编辑、注释、运算规则
变量要求(文件名最好使用相同的规则)
变量区分字母的大小写 名字不能超过19个字符,第19个字符后的字符被忽略 变量必须以字母开头,之后可以是任意字母、数字或者下滑 线 变量中不能含有标点符号。
Matlab及其应用 8
Matlab是所有系统工具的基础
Matlab及其应用
9
设计自动化工具
Matlab及其应用
10
一般用途工具
Matlab及其应用
11
信号和图像处理
Matlab及其应用
12
控制系统设计和分析
Matlab及其应用
13
1.6 网络资源
1. USENET新闻组
MATLAB的新闻组是comp.soft-sys.MATLAB。浏览器指向
函数名 sinh cosh tanh exp log log10 bessel gamma rat
含义 双曲正弦 双曲余弦 双曲正切 自然指数 自然对数 以10为底的对数 贝赛尔函数 伽吗函数 有理逼近
32
3.4 关系和逻辑运算
1 关系操作符
MATLAB常用的关系操作符有:<(小于)、<=(小于或等于)、 >(大于)、>=(大于或等于)、 = =(等于)、 !=(不等于)。 MATLAB的关系操作符可以用来比较两个大小相同的数组,或者 比较一个数组和一个标量。在与标量比较时,结果和数组大小一 样。 »a=1:9; b=a>4 b= 0 0 0 0 1 1 1 1 1 »c=a(a>4) c= 5 6 7 8 9
Matlab及其应用 4
1.3 Matlab的版本演化
Matlab 1.0 Pc matlab->matlab 386 Matlab3.5+simulink Matlab 4.0:simlink内嵌 Matlab 5.0 :全面的面向对象 Matlab 5.1~5.3 Matlab 6.0 Matlab 6.5:购并了MATRIXx Matlab 7.0:2004
Matlab及其应用
29
3.2 矩阵运算
矩阵的转置 用符号’来表示和实现 非共轭转置 .’ 矩阵的四则运算 +-*/ \ 点乘:.* 右除:./ 左除:.\ 矩阵的乘方 ^矩阵乘方 .^元素对元素的乘方 矩阵的范数 norm 1-范数 2-范数 –无穷范数 条件数 cond
Matlab及其应用 30