LM1117-3.3 电压转换芯片 数据手册 说明书

合集下载

LM1117规格书

LM1117规格书
Electrical Characteristics at IOUT = 0 mA, and TJ = +25°C unless otherwise specified. Parameter
Load Regulation (Notes 2, 3) GC1117-3.3 GC1117-5.0 VIN = 4.75V, 0 ≤ IOUT ≤ 0.8A VIN = 6.5V, 0 ≤ IOUT ≤ 0.8A ∆VOUT , ∆VREF = 1%, IOUT = 0.8A (Note 4) (VIN - VOUT) = 1.5V (V IN - VOUT) = 1.5V (Note 5) (VIN - VOUT) = 1.5V 900
GENERAL DESCRIPTION
The The GC1117 series of adjustable and fixed voltage regulators are designed to provide up to0.8A outputcurrent and to operate down to 1V input-to-output differential. The dropout voltage of the device is guaranteed maximum 1.3V, decreasing at lower load currents. On-chip trimming adjusts the reference voltage to 1.5%. Current limit is set to minimize the stress under overload conditions on both the regulator and power source circuitry. The GC1117 devices are pin compatible with other t hree-terminal SCSI regulators and are offered in the low profile surface mount SOT-223 package, in the 8L SOIC package and in the TO-252 (DPAK) plastic package.

MEMORY存储芯片LM1117MPX-3.3中文规格书

MEMORY存储芯片LM1117MPX-3.3中文规格书

LM1117800mA Low-Dropout Linear RegulatorGeneral DescriptionThe LM1117is a series of low dropout voltage regulators with a dropout of1.2V at800mA of load current.It has the same pin-out as National Semiconductor’s industry standard LM317.The LM1117is available in an adjustable version,which can set the output voltage from1.25V to13.8V with only two ex-ternal resistors.In addition,it is also available in five fixed voltages,1.8V,2.5V,2.85V,3.3V,and5V.The LM1117offers current limiting and thermal shutdown.Its circuit includes a zener trimmed bandgap reference to as-sure output voltage accuracy to within±1%.The LM1117series is available in SOT-223,TO-220,and TO-252D-PAK packages.A minimum of10µF tantalum ca-pacitor is required at the output to improve the transient re-sponse and stability.Featuresn Available in1.8V,2.5V,2.85V,3.3V,5V,and Adjustable Versionsn Space Saving SOT-223Packagen Current Limiting and Thermal Protectionn Output Current800mA n Temperature Range0˚C to125˚C n Line Regulation0.2%(Max) n Load Regulation0.4%(Max)Applicationsn 2.85V Model for SCSI-2Active Terminationn Post Regulator for Switching DC/DC Convertern High Efficiency Linear Regulatorsn Battery Chargern Battery Powered InstrumentationTypical ApplicationActive Terminator for SCSI-2BusDS100919-5Fixed Output RegulatorDS100919-28LM1117 800mA Low-Dropout Linear RegulatorOrdering InformationPackageTemperature Range Packaging Marking Transport Media NSC Drawing 0˚C to +125˚C 3-lead SOT-223LM1117MPX-ADJN03A Tape and Reel MA04A LM1117MPX-1.8N12A Tape and Reel *LM1117MPX-2.5N13A Tape and Reel LM1117MPX-2.85N04A Tape and Reel LM1117MPX-3.3N05A Tape and Reel LM1117MPX-5.0N06A Tape and Reel 3-lead TO-220LM1117T-ADJLM1117T-ADJ Rails T03B LM1117T-2.85LM1117T-2.85Rails LM1117T-3.3LM1117T-3.3Rails LM1117T-5.0LM1117T-5.0Rails 3-lead TO-252LM1117DTX-ADJLM1117DT-ADJ Tape and Reel TD03BLM1117DTX-1.8LM1117DT-1.8Tape and Reel *LM1117DTX-2.5LM1117DT-2.5Tape and Reel LM1117DTX-2.85LM1117DT-2.85Tape and Reel LM1117DTX-3.3LM1117DT-3.3Tape and Reel LM1117DTX-5.0LM1117DT-5.0Tape and Reel Note:*Contact factory for availability.Block DiagramDS100919-1L M 1117Absolute Maximum Ratings (Note 1)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.Maximum Input Voltage (V IN to GND)LM1117-ADJ,LM1117-1.8,LM1117-2.5,LM1117-3.3,LM1117-5.020V Power Dissipation (Note 2)Internally Limited Junction Temperature (T J )(Note 2)150˚C Storage Temperature Range-65˚C to 150˚C Lead Temperature TO-220(T)Package 260˚C,10sec SOT-223(IMP)Package 260˚C,4sec ESD Tolerance (Note 3)2000V Operating Ratings (Note 1)Input Voltage (V IN to GND)LM1117-ADJ,LM1117-1.8,LM1117-2.5,LM1117-3.3,LM1117-5.015V LM1117-2.8510V Junction Temperature Range (T J )(Note 2)0˚C to 125˚CElectrical CharacteristicsTypicals and limits appearing in normal type apply for T J =25˚C.Limits appearing in Boldface type apply over the entire junc-tion temperature range for operation,0˚C to 125˚C.SymbolParameter Conditions Min (Note 5)Typ (Note 4)Max (Note 5)Units V REF Reference Voltage LM1117-ADJI OUT =10mA,V IN -V OUT =2V,T J =25˚C10mA ≤I OUT ≤800mA,1.4V ≤V IN -V OUT≤10V1.2381.225 1.2501.250 1.2621.270V V V OUT Output Voltage LM1117-1.8I OUT =10mA,V IN =3.8V,T J =25˚C0≤I OUT ≤800mA,3.2V ≤V IN ≤10V1.7821.746 1.8001.800 1.8181.854V V LM1117-2.5I OUT =10mA,V IN =4.5V,T J =25˚C0≤I OUT ≤800mA,3.9V ≤V IN ≤10V2.4752.450 2.5002.500 2.5252.550V V LM1117-2.85I OUT =10mA,V IN =4.85V,T J =25˚C0≤I OUT ≤800mA,4.25V ≤V IN ≤10V0≤I OUT ≤500mA,V IN =4.10V2.8202.7902.790 2.8502.8502.850 2.8802.9102.910V V V LM1117-3.3I OUT =10mA,V IN =5V T J =25˚C0≤I OUT ≤800mA,4.75V ≤V IN ≤10V3.2673.235 3.3003.300 3.3333.365V V LM1117-5.0I OUT =10mA,V IN =7V,T J =25˚C0≤I OUT ≤800mA,6.5V ≤V IN ≤12V4.9504.9005.0005.000 5.0505.100V V ∆V OUT Line Regulation(Note 6)LM1117-ADJ I OUT =10mA,1.5V ≤V IN -V OUT ≤13.75V0.0350.2%LM1117-1.8I OUT =0mA,3.2V ≤V IN ≤10V16mV LM1117-2.5I OUT =0mA,3.9V ≤V IN ≤10V16mV LM1117-2.85I OUT =0mA,4.25V ≤V IN ≤10V16mV LM1117-3.3I OUT =0mA,4.75V ≤V IN ≤15V16mV LM1117-5.0I OUT =0mA,6.5V ≤V IN ≤15V 110mVL M 1117Typical Performance CharacteristicsDropout Voltage(V IN-V OUT)DS100919-22Short-Circuit CurrentDS100919-23Load RegulationDS100919-24LM1117-ADJ Ripple RejectionDS100919-6LM1117-ADJ Ripple Rejection vs.CurrentDS100919-7Temperature StabilityDS100919-25LM1117。

1117 3.3稳压芯片怎么接 lm1117

1117 3.3稳压芯片怎么接 lm1117
电容。
由于只是做基准,负载电路很小,大约只有5mA.现在出问题了,在
常温的时候,5.0V,很准确,但是到了-40度,输出电压只有4.81V,
通过这次问题的解决,有几点感受与大家分享:
1.对于元件的选择,除了输出输出等特性外,一定要确认是否满足你
所需要的工作环境温度,这一点及其重要。
2.使用LM1117这一类的LDO,特别是对于固定输出的,其环路参
出电压稳压精度高,尤其是高低温时候的温漂要小。对高功率密度电源,还
要求外围电路简单。在以往的多次电源设计中,我一般都是选择LM1117-
5.0V,也是看中其外围电路极其简单,性能极其强大的特点,如下图所示,
只需要输入输出各加一个电容就可以稳定输出5.0V。输出电流高达0.8A,电
压稳定度0.2%,负载稳定度0.4%。还有SOT223封装。体积小。
11173.3稳压芯片怎么接lm1117
本文主要是关于lm1117-3.3的相关介绍,并着重对lm1117-3.3稳压
芯片接法及电路图进行了详尽的阐述。
11173.3稳压芯片怎幺接
从左至右依次是输入、接地、输出。此外C3和C4是输出滤波电
容,作用是抑制自激振荡,如果不接这两个电容,通常线性稳压器的输出会
我首先检查了LM1117的使用温度范围,确认为,LM1117I,−40°C
to125°C的工作环境。使用没有问题。又用示波器测试了一下低温的输出电
压,发现问题了,环路有震荡,输出纹波大。仔细查看规格书,发现问题
了,LM1117对输出电容有要求。最好使用钽电容,ESR必须控制在0.3-
22ohm!
但是由于钽电容的安全性以及可靠性的问题,公司严格限制使用,后
来想出来一个替代的解决方法,如下图所示,输出串入一个1ohm的电阻,

LT1117-3[1].3+

LT1117-3[1].3+

12Input VoltageOperating VoltageLT1117, LT1117-3.3, LT1117-5......................15V LT1117-2.85...................................................10V Surge VoltageLT1117, LT1117-3.3, LT1117-5 (20V)Operating JunctionTemperature RangeC Grade .................................................0°C to 125°C I Grade .............................................–40°C to 125°C Storage Temperature Range.................–65°C to 150°C Lead Temperature...................(See Soldering Methods)ABSOLUTE AXI U RATI GSW W WU PACKAGE/ORDER I FOR ATIOU U W(Note 1)34C C HARA TERISTICSU WA TYPICAL PERFOR CE LT1117-5Line Transient ResponseLT1117-2.8Line Transient ResponseLT1117 Ripple RejectionL T1117 Ripple Rejection vs CurrentTemperature StabilityLT1117-2.85LT1117-5A djust Pin CurrentLoad Transient ResponseLoad Transient ResponseTEMPERATURE (°C)–500A J U S T P I N C U R R E N T (µA )205010050100150LT1117 • TPC0880–252575125103040607090TIME (µs)L O A D C U R R E N T (A )205070100LT1117 • TPC09103060804090O U P U T V O L T A G ED E V I A T I O N (V )TIME (µs)L O A D C U R R E N T (A )205070100LT1117 • TPC10103060804090O U P U T V O L T A G E D E V I A T I O N (V )TIME (µs)I N P U T V O L T A G E (V )40100140200LT1117 • TPC11206012016080180O U P U T V O L T A G E D E V I A T I O N (m V )TIME (µs)I N P U T V O L T A G E (V )40100140200LT1117 • TPC12206012016080180O U P U T V O L T A G E D E V I A T I O N (m V )FREQUENCY (Hz)20R I P PL E R E J E C T I O N (d B )406080100101k 10k 100kLT1117 • TPC051009070503010OUTPUT CURRENT (A)0R I P P L E R E J E C T I O N (d B )203050801000.20.40.60.8LT1117 • TPC061040607090TEMPERATURE (°C)–50–2.0O U T P U T V O L T A G E C H A N G E (%)–1.02.050100150LT1117 • TPC071.0–25257512556The adjust pin can be driven, on a transient basis, ±25V with respect to the output without any device degradation.Diodes between input and output are not usually needed.The internal diode between the output and input pins of the device can withstand microsecond surge currents of 10A to 20A. Normal power supply cycling can not generate currents of this magnitude. Only with extremely large output capacitors, such as 1000µF and larger, and with the input pin instantaneously shorted to ground can damage occur. A crowbar circuit at the input of the LT1117 in combination with a large output capacitor could generate currents large enough to cause damage. In this case a diode from output to input is recommended, as shown in Figure 1.to set the overall output voltage. Normally this current is chosen to be the specified minimum load current of 10mA.Because I ADJ is very small and constant when compared to the current through R1, it represents a small error and can usually be ignored. For fixed voltage devices R1 and R2 are included in the device.Load RegulationBecause the LT1117 is a 3-terminal device, it is not possible to provide true remote load sensing. Load regu-lation will be limited by the resistance of the wire connect-ing the regulator to the load. The data sheet specification for load regulation is measured at the output pin of the device. Negative side sensing is a true Kelvin connection,with the bottom of the output divider returned to the negative side of the load. Although it may not be immedi-ately obvious, best load regulation is obtained when the top of the resistor divider (R1) is returned directly to the output pin of the device, not to the load. This is illustrated in Figure 3. Connected as shown, R P is not multiplied by the divider ratio. If R1 were connected to the load, the effective resistance between the regulator and the load would be:R R R R R P P ×+=211,Parasitic Line Resistance Figure 2. Basic Adjustable RegulatorOutput VoltageThe LT1117 develops a 1.25V reference voltage between the output and the adjust terminal (see Figure 2). By placing a resistor between these two terminals, a constant current is caused to flow through R1 and down through R2Figure 1D11N4002FV OUT VLT1117 • TA03V OUTVFigure 3. Connections for Best Load RegulationV R LFor fixed voltage devices the top of R1 is internally Kelvinconnected, and the ground pin can be used for negative side sensing.APPLICATIO HI TSThermal ConsiderationsLT1117 series regulators have internal thermal limiting circuitry designed to protect the device during overload conditions. For continuous normal load conditions how-ever, the maximum junction temperature rating of 125°C must not be exceeded.It is important to give careful consideration to all sources of thermal resistance from junction to ambient. For the SOT-223 package, which is designed to be surface mounted, additional heat sources mounted near the de-vice must also be considered. Heat sinking is accom-plished using the heat spreading capability of the PC board and its copper traces. The thermal resistance of the LT1117 is 15°C/W from the junction to the tab. Thermal resistances from tab to ambient can be as low as 30°C/W. The total thermal resistance from junction to ambient can be as low as 45°C/W. This requires a reasonable sized PC board with at least one layer of copper to spread the heat across the board and couple it into the surrounding air. Experiments have shown that the heat spreading copper layer does not need to be electrically connected to the tab of the device. The PC material can be very effective at transmitting heat between the pad area, attached to the tab of the device, and a ground plane layer either inside or on the opposite side of the board. Although the actual thermal resistance of the PC material is high, the Length/Area ratio of the thermal resistor between layers is small. The data in Table 1 was taken using 1/16" FR-4 board with 1oz. copper foil. It can be used as a rough guideline in estimating thermal resistance.Table 1.COPPER AREA THERMAL RESISTANCE TOPSIDE*BACKSIDE BOARD AREA(JUNCTION-TO-AMBIENT) 2500 Sq. mm2500 Sq. mm2500 Sq. mm45°C/W1000 Sq. mm2500 Sq. mm2500 Sq. mm45°C/W225 Sq. mm2500 Sq. mm2500 Sq. mm53°C/W100 Sq. mm2500 Sq. mm2500 Sq. mm59°C/W1000 Sq. mm1000 Sq. mm1000 Sq. mm52°C/W1000 Sq. mm01000 Sq. mm55°C/W* Tab of device attached to topside copper The thermal resistance for each application will be affected by thermal interactions with other components on the board. Some experimentation will be necessary to deter-mine the actual value.The power dissipation of the LT1117 is equal to:P D = ( V IN – V OUT )( I OUT )Maximum junction temperature will be equal to:T J=T A(MAX) + P D(Thermal Resistance (junction-to-ambient))Maximum junction temperature must not exceed 125°C. Ripple RejectionThe curves for Ripple Rejection were generated using an adjustable device with the adjust pin bypassed. These curves will hold true for all values of output voltage. For proper bypassing, and ripple rejection approaching the values shown, the impedance of the adjust pin capacitor, at the ripple frequency, should be < R1. R1 is normally in the range of 100Ω to 200Ω. The size of the required adjust pin capacitor is a function of the input ripple frequency. At 120Hz, with R1 = 100Ω, the adjust pin capacitor should be >13µF. At 10kHz only 0.16µF is needed.For fixed voltage devices, and adjustable devices without an adjust pin capacitor, the output ripple will increase as the ratio of the output voltage to the reference voltage (V OUT/V REF). For example, with the output voltage equal to 5V, the output ripple will be increased by the ratio of 5V/1.25V. It will increase by a factor of four. Ripple rejection will be degraded by 12dB from the value shown on the curve.APPLICATIO HI TS781.2V to 10V Adjustable Regulator5V Regulator with ShutdownRemote SensingAdjusting Output Voltage of Fixed RegulatorsRegulator with ReferenceLT1117 • TA05FV OUT †V V OUT = 1.25V 1 + R2—R1NEEDED IF DEVICE IS FAR FROM FILTER CAPACITORS* † ()µF5VVVµF5V TO 10V V IN 10LT1117 • TA05* OPTIONAL IMPROVES RIPPLE REJECTIONµF10V V IN 10TYPICAL APPLICATIO SU910High Efficiency Dual Linear SupplyLow Dropout Negative SupplyLT1117 • TA12*MDA L1 = 1 % FILM RESISTORS = MOTOROLA= PULSE ENGINEERING, INC. #PE-92106LT1117 • TA13= –5VTYPICAL APPLICATIO SU11LT1117/LT1117-2.85LT1117-3.3/LT1117-5Information furnished by Linear Technology Corporation is believed to be accurate and reliable.However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.12LT1117/LT1117-2.85LT1117-3.3/LT1117-5© LINEAR TECHNOLOGY CORPORA TION 19931117fc LT/TP 0500 2K REV C • PRINTED IN USAHigh Efficiency RegulatorµF+28V INPUTTYPICAL APPLICATIOULinear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417(408) 432-1900 q FAX: (408) 434-0507 q RELATED PARTSPART NUMBER DESCRIPTIONCOMMENTSLT1120125mA Low Dropout Regulator with 20µA I Q Includes 2.5V Reference and Comparator LT1121150mA Micropower Low Dropout Regulator 30µA I Q , SOT-223 Package LT1129700mA Micropower Low Dropout Regulator 50µA Quiescent CurrentLT1175500mA Negative Low Dropout Micropower Regulator 45µA I Q , 0.26V Dropout Voltage, SOT-223 Package LT1374 4.5A, 500kHz Step-Down Converter4.5A, 0.07Ω Internal Switch, SO-8 Package LT1521300mA Low Dropout Micropower Regulator with Shutdown 15µA I Q , Reverse Battery Protection LT1573UltraFast TM Transient Response Low Dropout Regulator Drives External PNPLT1575UltraFast Transient Response Low Dropout Regulator Drives External N-Channel MOSFET LT1735Synchronous Step-Down ConverterHigh Efficiency, OPTI-LOOP TM CompensationLT1761 Series 100mA, Low Noise, Low Dropout Micropower Regulators in SOT-2320µA Quiescent Current, 20µV RMS Noise, SOT-23 Package LT1762 Series 150mA, Low Noise, LDO Micropower Regulators 25µA Quiescent Current, 20µV RMS Noise, MSOP Package LT1763 Series 500mA, Low Noise, LDO Micropower Regulators 30µA Quiescent Current, 20µV RMS Noise, SO-8 Package LT1764 Series 3A, Low Noise, Fast Transient Response LDO 40µV RMS Noise, DD and TO-220 Packages LT1962300mA, Low Noise, LDO Micropower Regulator 20µV RMS Noise, MSOP Package LT19631.5A, Low Noise, Fast Transient Response LDO40µV RMS Noise, SOT-223 PackageUltraFast and OPT-LOOP are trademarks of Linear Technology Corporation.。

1117 3.3v稳压芯片

1117 3.3v稳压芯片

1117 3.3v稳压芯片1117 3.3V稳压芯片概述:1117 3.3V稳压芯片是一种常用的线性稳压芯片,用于电子设备中对电压的稳定和调整。

它广泛应用于各种电子设备中,如电源模块、无线通信设备、计算机、嵌入式系统等。

本文将介绍1117 3.3V稳压芯片的工作原理、特点和常见应用场景。

工作原理:1117 3.3V稳压芯片采用线性稳压的方式来提供稳定的输出电压。

其核心组件是一个三端可调的稳压器,由稳压器管脚中的电压参考和电流限制来控制输出电压的稳定性。

当输入电压高于输出电压时,芯片将调整电压,保持输出电压恒定。

当输出电流变化时,芯片会自动调整输出电压以保持稳定。

特点:1. 低功耗:1117 3.3V稳压芯片采用低功耗设计,具有较高的转换效率和低的静态电流消耗,能有效提高系统的整体效率。

2. 稳定性高:该芯片具有较高的输出稳定性,在输入电压或输出电流变化时,能够快速响应并维持稳定的输出电压。

3. 低压差:1117 3.3V稳压芯片的最小输出电压差仅为0.8V,能够满足低电压要求的电子设备。

4. 高负载能力:该芯片具有较高的负载能力,能够稳定输出较大电流,并提供足够的电源供应给系统各个模块。

5. 过温保护:1117 3.3V稳压芯片内置过温保护电路,当温度超过设定阈值时,芯片会自动减小输出电压,以保护芯片和系统。

应用场景:1. 电源模块:1117 3.3V稳压芯片广泛应用于各种电源模块中,如线性电源、开关电源等。

它能够提供稳定的输出电压并具有较高的负载能力,使得整个电源模块的工作更加稳定可靠。

2. 无线通信设备:在无线通信设备中,对于各个模块的供电电压要求较高而且要稳定。

1117 3.3V稳压芯片能够提供固定的输出电压,保持通信设备的正常运行。

3. 计算机:在计算机系统中,各个芯片、模块的供电电压要求不同,需要稳定的电源供应。

1117 3.3V稳压芯片能够提供3.3V的稳定输出,满足计算机系统的电源需求。

LM1117_3.3中文PDF资料

LM1117_3.3中文PDF资料

符号
测试条件
最小值 典型值 最大值 单位
X1117-ADJ,
VREF IOUT=10mA, VIN-VOUT=2V, TJ=25°C 1.238 1.250 1.262 V
10mA≤IOUT≤1A, 1.4V≤VIN-VOUT≤10V 1.225 1.250 1.270
X1117 -1.2,
IOUT=10mΑ, VIN=3.2V ,TJ=25°C 1.176 10mA≤IOUT≤1A, 3.0V≤VIN≤10V 1.152
UX
X1117
封装 SOT-223-3L
打印名称 X 1117H - ADJ X 1117H - 1.8 X 1117H - 3.3 X 1117H - ADJ X 1117H - 1.8 X 1117H - 3.3
材料 无铅 无铅 无铅 无卤 无卤 无卤
包装 编带 编带 编带 编带 编带 编带
内部框图
X1117
最小值 典型值 最大值 单位
0.5
%
0. 3
%
0.003
%
120
100
60
°C/W
165
60
Xபைடு நூலகம்117
X1117
X1117
X1117
X1117
管脚描述
管脚号 1 2 3
管脚名称 GND/ADJ
VOUT VIN
I/O
功能
--/O 地/ADJ。
O
输出电压。
I
输入工作电压。
X1117
功能描述
X1117 是一个低漏失电压调整器,它的稳压调整管是由一个PNP驱动的NPN 管组成的,漏失
VIN 3
带隙 F1 A

1117稳压芯片参数

1117稳压芯片参数

1117稳压芯片参数
稳压芯片参数是指一种半导体元件,其主要功能是提供调节和稳定的电压输出,用于维护电子系统的性能和安全的稳定运转。

这种半导体芯片是一种非常重要的元件,它可以控制和调整电路的电压,从而保证电子设备的正常运行。

1117稳压芯片是一种常用的稳压芯片,它有三种型号:
LM1117-2.5V、LM1117-3.3V和LM1117-5.0V。

它采用恒流恒压工作模式,其最大输出电流在1A左右,并且可以承受较大的负载波动。

其参数如下:
1)输出电压:2.5V,3.3V,5.0V;
2)输出电流:最大1A,最大输入电压为36V;
3)保护功能:具有短路保护和过压保护功能;
4)输出噪声:低于50μV/V;
5)开关频率:1.2MHz;
6)热型号:SOT-223、 PDIP-8或TO-251-2。

1117稳压芯片具有非常多的优势,它可以具有短路保护,热保护和过压保护功能,从而保证电路的可靠性。

它的封装和热型号也可以根据客户要求定制,使用非常方便。

此外,它还具有良好的静态性能和动态性能,因此可以很好地适应高频或工业应用环境。

1117稳压芯片的应用也非常广泛,它可以用于电脑,网络设备,电源适配器,数字家电,汽车电子和通讯设备等领域。

它可以提供稳定的电压输出,保证电子系统正常工作,可靠性更好。

综上,1117稳压芯片参数具有较高的性能,可以很好地保证电子系统的可靠性。

它的应用非常广泛,可以满足多种不同的电子设备的需求。

它的优势使它成为一种非常有价值的稳压芯片元件,也是电路设计中的一种重要元件。

LM1117数据手册

LM1117数据手册

LM1117/LM1117I800mA Low-Dropout Linear RegulatorGeneral DescriptionThe LM1117is a series of low dropout voltage regulators with a dropout of 1.2V at 800mA of load current.It has the same pin-out as National Semiconductor’s industry standard LM317.The LM1117is available in an adjustable version,which can set the output voltage from 1.25V to 13.8V with only two external resistors.In addition,it is also available in five fixed voltages,1.8V,2.5V,2.85V,3.3V,and 5V.The LM1117offers current limiting and thermal shutdown.Its circuit includes a zener trimmed bandgap reference to as-sure output voltage accuracy to within ±1%.The LM1117series is available in LLP ,TO-263,SOT-223,TO-220,and TO-252D-PAK packages.A minimum of 10µF tantalum capacitor is required at the output to improve the transient response and stability.Featuresn Available in 1.8V,2.5V,2.85V,3.3V,5V,and Adjustable Versionsn Space Saving SOT-223and LLP Packages n Current Limiting and Thermal Protection n Output Current 800mA n Line Regulation 0.2%(Max)n Load Regulation 0.4%(Max)n Temperature Range —LM11170˚C to 125˚C —LM1117I −40˚C to 125˚CApplicationsn 2.85V Model for SCSI-2Active Termination n Post Regulator for Switching DC/DC Converter n High Efficiency Linear Regulators n Battery ChargernBattery Powered InstrumentationTypical ApplicationActive Terminator for SCSI-2Bus10091905Fixed Output Regulator10091928June 2004LM1117/LM1117I 800mA Low-Dropout Linear Regulator©2004National Semiconductor Corporation Ordering InformationPackage TemperatureRange Part Number Packaging MarkingTransport Media NSC Drawing 3-lead SOT-2230˚C to +125˚CLM1117MPX-ADJ N03A Tape and Reel MP04ALM1117MPX-1.8N12A Tape and Reel LM1117MPX-2.5N13A Tape and Reel LM1117MPX-2.85N04A Tape and Reel LM1117MPX-3.3N05A Tape and Reel LM1117MPX-5.0N06A Tape and Reel −40˚C to +125˚CLM1117IMPX-ADJ N03B Tape and Reel LM1117IMPX-3.3N05B Tape and Reel LM1117IMPX-5.0N06B Tape and Reel3-lead TO-2200˚C to +125˚CLM1117T-ADJ LM1117T-ADJ Rails T03B LM1117T-1.8LM1117T-1.8Rails LM1117T-2.5LM1117T-2.5Rails LM1117T-2.85LM1117T-2.85Rails LM1117T-3.3LM1117T-3.3Rails LM1117T-5.0LM1117T-5.0Rails 3-lead TO-2520˚C to +125˚CLM1117DTX-ADJ LM1117DT-ADJ Tape and Reel TD03B LM1117DTX-1.8LM1117DT-1.8Tape and Reel LM1117DTX-2.5LM1117DT-2.5Tape and Reel LM1117DTX-2.85LM1117DT-2.85Tape and Reel LM1117DTX-3.3LM1117DT-3.3Tape and Reel LM1117DTX-5.0LM1117DT-5.0Tape and Reel −40˚C to +125˚CLM1117IDTX-ADJ LM1117IDT-ADJ Tape and Reel LM1117IDTX-3.3LM1117IDT-3.3Tape and Reel LM1117IDTX-5.0LM1117IDT-5.0Tape and Reel 8-lead LLP0˚C to +125˚CLM1117LDX-ADJ 1117ADJ Tape and Reel LDC08A LM1117LDX-1.81117-18Tape and Reel LM1117LDX-2.51117-25Tape and Reel LM1117LDX-2.851117-28Tape and Reel LM1117LDX-3.31117-33Tape and Reel LM1117LDX-5.01117-50Tape and Reel −40˚C to 125˚CLM1117ILDX-ADJ 1117IAD Tape and Reel LM1117ILDX-3.31117I33Tape and Reel LM1117ILDX-5.01117I50Tape and Reel TO-2630˚C to +125˚CLM1117SX-ADJ LM1117SADJ Tape and Reel TS3B LM1117SX-2.85LM1117S2.85Tape and Reel LM1117SX-3.3LM1117S3.3Tape and Reel LM1117SX-5.0LM1117S5.0Tape and ReelL M 1117/L M 1117I 2Block Diagram10091901Connection DiagramsSOT-22310091904Top ViewTO-22010091902Top ViewTO-25210091938Top ViewTO-26310091944Top View10091945Side ViewLLP10091946When using the LLP packagePins2,3&4must be connected together andPins5,6&7must be connected togetherTop ViewLM1117/LM1117I3Absolute Maximum Ratings (Note 1)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.Maximum Input Voltage (V IN to GND)20VPower Dissipation (Note 2)Internally LimitedJunction Temperature (T J )(Note 2)150˚CStorage Temperature Range -65˚C to 150˚CLead TemperatureTO-220(T)Package 260˚C,10sec SOT-223(IMP)Package 260˚C,4secESD Tolerance (Note 3)2000VOperating Ratings (Note 1)Input Voltage (V IN to GND)15VJunction Temperature Range (T J )(Note 2)LM11170˚C to 125˚C LM1117I−40˚C to 125˚CLM1117Electrical CharacteristicsTypicals and limits appearing in normal type apply for T J =25˚C.Limits appearing in Boldface type apply over the entire junc-tion temperature range for operation,0˚C to 125˚C.Symbol Parameter ConditionsMin (Note 5)Typ (Note 4)Max (Note 5)UnitsV REFReference VoltageLM1117-ADJI OUT =10mA,V IN -V OUT =2V,T J =25˚C 10mA ≤I OUT ≤800mA,1.4V ≤V IN -V OUT ≤10V1.2381.2251.2501.2501.2621.270V VV OUTOutput VoltageLM1117-1.8I OUT =10mA,V IN =3.8V,T J =25˚C 0≤I OUT ≤800mA,3.2V ≤V IN ≤10V 1.7821.746 1.8001.800 1.8181.854V V LM1117-2.5I OUT =10mA,V IN =4.5V,T J =25˚C 0≤I OUT ≤800mA,3.9V ≤V IN ≤10V 2.4752.450 2.5002.500 2.5252.550V V LM1117-2.85I OUT =10mA,V IN =4.85V,T J =25˚C 0≤I OUT ≤800mA,4.25V ≤V IN ≤10V 0≤I OUT ≤500mA,V IN =4.10V 2.8202.7902.790 2.8502.8502.850 2.8802.9102.910V V V LM1117-3.3I OUT =10mA,V IN =5V T J =25˚C 0≤I OUT ≤800mA,4.75V ≤V IN ≤10V 3.2673.235 3.3003.300 3.3333.365V V LM1117-5.0I OUT =10mA,V IN =7V,T J =25˚C 0≤I OUT ≤800mA,6.5V ≤V IN ≤12V4.9504.9005.0005.000 5.0505.100V V ∆V OUTLine Regulation (Note 6)LM1117-ADJI OUT =10mA,1.5V ≤V IN -V OUT ≤13.75V 0.0350.2%LM1117-1.8I OUT =0mA,3.2V ≤V IN ≤10V 16mV LM1117-2.5I OUT =0mA,3.9V ≤V IN ≤10V 16mVLM1117-2.85I OUT =0mA,4.25V ≤V IN ≤10V 16mV LM1117-3.3I OUT =0mA,4.75V ≤V IN ≤15V 16mV LM1117-5.0I OUT =0mA,6.5V ≤V IN ≤15V110mVL M 1117/L M 1117I 4LM1117Electrical Characteristics(Continued)Typicals and limits appearing in normal type apply for T J=25˚C.Limits appearing in Boldface type apply over the entire junc-tion temperature range for operation,0˚C to125˚C.Symbol Parameter ConditionsMin(Note5)Typ(Note4)Max(Note5)Units∆V OUT Load Regulation(Note6)LM1117-ADJV IN-V OUT=3V,10≤I OUT≤800mA0.20.4% LM1117-1.8V IN=3.2V,0≤I OUT≤800mA110mVLM1117-2.5V IN=3.9V,0≤I OUT≤800mA110mVLM1117-2.85V IN=4.25V,0≤I OUT≤800mA110mV LM1117-3.3V IN=4.75V,0≤I OUT≤800mA110mV LM1117-5.0V IN=6.5V,0≤I OUT≤800mA115mVV IN-V OUT Dropout Voltage(Note7)I OUT=100mA 1.10 1.20V I OUT=500mA 1.15 1.25V I OUT=800mA 1.20 1.30VI LIMIT Current Limit V IN-V OUT=5V,T J=25˚C80012001500mAMinimum Load Current(Note8)LM1117-ADJV IN=15V 1.75mAQuiescent Current LM1117-1.8V IN≤15V510mALM1117-2.5V IN≤15V510mALM1117-2.85V IN≤10V510mALM1117-3.3V IN≤15V510mALM1117-5.0V IN≤15V510mA Thermal Regulation T A=25˚C,30ms Pulse0.010.1%/W Ripple Regulation f RIPPLE=120Hz,V IN-V OUT=3V V RIPPLE=1V PP6075dB Adjust Pin Current60120µAAdjust Pin Current Change 10≤I OUT≤800mA,1.4V≤V IN-V OUT≤10V0.25µATemperature Stability0.5% Long Term Stability T A=125˚C,1000Hrs0.3% RMS Output Noise(%of V OUT),10Hz≤f≤10kHz0.003%Thermal Resistance Junction-to-Case 3-Lead SOT-22315.0˚C/W 3-Lead TO-220 3.0˚C/W 3-Lead TO-25210˚C/WThermal Resistance Junction-to-Ambient (No air flow)3-Lead SOT-223(No heat sink)136˚C/W3-Lead TO-220(No heat sink)79˚C/W3-Lead TO-252(Note9)(No heat sink)92˚C/W3-Lead TO-26355˚C/W8-Lead LLP(Note10)40˚C/WLM1117/LM1117I5LM1117I Electrical CharacteristicsTypicals and limits appearing in normal type apply for T J =25˚C.Limits appearing in Boldface type apply over the entire junc-tion temperature range for operation,−40˚C to 125˚C.Symbol Parameter ConditionsMin (Note 5)Typ (Note 4)Max (Note 5)UnitsV REFReference VoltageLM1117I-ADJI OUT =10mA,V IN -V OUT =2V,T J =25˚C 10mA ≤I OUT ≤800mA,1.4V ≤V IN -V OUT ≤10V1.2381.2001.2501.2501.2621.290V VV OUTOutput VoltageLM1117I-3.3I OUT =10mA,V IN =5V,T J =25˚C 0≤I OUT ≤800mA,4.75V ≤V IN ≤10V 3.2673.168 3.3003.300 3.3333.432V V LM1117I-5.0I OUT =10mA,V IN =7V,T J =25˚C 0≤I OUT ≤800mA,6.5V ≤V IN ≤12V4.9504.8005.0005.000 5.0505.200V V ∆V OUTLine Regulation (Note 6)LM1117I-ADJI OUT =10mA,1.5V ≤V IN -V OUT ≤13.75V 0.0350.3%LM1117I-3.3I OUT =0mA,4.75V ≤V IN ≤15V 110mV LM1117I-5.0I OUT =0mA,6.5V ≤V IN ≤15V115mV ∆V OUTLoad Regulation (Note 6)LM1117I-ADJV IN -V OUT =3V,10≤I OUT ≤800mA 0.20.5%LM1117I-3.3V IN =4.75V,0≤I OUT ≤800mA 115mV LM1117I-5.0V IN =6.5V,0≤I OUT ≤800mA120mV V IN -V OUTDropout Voltage (Note 7)I OUT =100mA 1.10 1.30V I OUT =500mA 1.15 1.35V I OUT =800mA1.20 1.40V I LIMITCurrent Limit V IN -V OUT =5V,T J =25˚C 80012001500mA Minimum Load Current (Note 8)LM1117I-ADJ V IN =15V 1.75mA Quiescent CurrentLM1117I-3.3V IN ≤15V 515mA LM1117I-5.0V IN ≤15V515mA Thermal Regulation T A =25˚C,30ms Pulse0.010.1%/W Ripple Regulation f RIPPLE =120Hz,V IN -V OUT =3V V RIPPLE =1V PP6075dBAdjust Pin Current 60120µA Adjust Pin Current Change10≤I OUT ≤800mA,1.4V ≤V IN -V OUT ≤10V 0.210µA Temperature Stability 0.5%Long Term Stability T A =125˚C,1000Hrs0.3%RMS Output Noise (%of V OUT ),10Hz ≤f ≤10kHz 0.003%Thermal Resistance Junction-to-Case 3-Lead SOT-22315.0˚C/W 3-Lead TO-25210˚C/W Thermal Resistance Junction-to-Ambient No air flow)3-Lead SOT-223(No heat sink)136˚C/W 3-Lead TO-252(No heat sink)(Note 9)92˚C/W 8-Lead LLP(Note 10)40˚C/WNote 1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is intended to be functional,but specific performance is not guaranteed.For guaranteed specifications and the test conditions,see the Electrical Characteristics.L M 1117/L M 1117I 6Note 2:The maximum power dissipation is a function of T J(max),θJA ,and T A .The maximum allowable power dissipation at any ambient temperature is P D =(T J(max)–T A )/θJA .All numbers apply for packages soldered directly into a PC board.Note 3:For testing purposes,ESD was applied using human body model,1.5k Ωin series with 100pF.Note 4:Typical Values represent the most likely parametric norm.Note 5:All limits are guaranteed by testing or statistical analysis.Note 6:Load and line regulation are measured at constant junction room temperature.Note 7:The dropout voltage is the input/output differential at which the circuit ceases to regulate against further reduction in input voltage.It is measured when the output voltage has dropped 100mV from the nominal value obtained at V IN =V OUT +1.5V.Note 8:The minimum output current required to maintain regulation.Note 9:Minimum pad size of 0.038in 2Note 10:Thermal Performance for the LLP was obtained using JESD51-7board with six vias and an ambient temperature of 22˚C.For information about improved thermal performance and power dissipation for the LLP ,refer to Application Note AN-1187.Typical Performance CharacteristicsDropout Voltage (V IN -VOUT )Short-Circuit Current1009192210091923Load Regulation LM1117-ADJ Ripple Rejection1009194310091906LM1117/LM1117I7Typical Performance Characteristics(Continued)LM1117-ADJ Ripple Rejection vs.CurrentTemperature Stability1009190710091925Adjust Pin Current LM1117-2.85Load Transient Response1009192610091908LM1117-5.0Load Transient Response LM1117-2.85Line Transient Response1009190910091910L M 1117/L M 1117I 8Typical Performance Characteristics(Continued) LM1117-5.0Line Transient Response10091911Application Note1.0External Capacitors/Stability1.1Input Bypass CapacitorAn input capacitor is recommended.A10µF tantalum on theinput is a suitable input bypassing for almost all applications.1.2Adjust Terminal Bypass CapacitorThe adjust terminal can be bypassed to ground with a by-pass capacitor(C ADJ)to improve ripple rejection.This by-pass capacitor prevents ripple from being amplified as theoutput voltage is increased.At any ripple frequency,theimpedance of the C ADJ should be less than R1to prevent theripple from being amplified:1/(2π*f RIPPLE*C ADJ)<R1The R1is the resistor between the output and the adjust pin.Its value is normally in the range of100-200Ω.For example,with R1=124Ωand f RIPPLE=120Hz,the C ADJ should be>11µF.1.3Output CapacitorThe output capacitor is critical in maintaining regulator sta-bility,and must meet the required conditions for both mini-mum amount of capacitance and ESR(Equivalent Series Resistance).The minimum output capacitance required by the LM1117is10µF,if a tantalum capacitor is used.Any increase of the output capacitance will merely improve the loop stability and transient response.The ESR of the output capacitor should range between0.3Ω-22Ω.In the case of the adjustable regulator,when the C ADJ is used,a larger output capacitance(22µf tantalum)is required.2.0Output VoltageThe LM1117adjustable version develops a1.25V reference voltage,V REF,between the output and the adjust terminal. As shown in Figure1,this voltage is applied across resistor R1to generate a constant current I1.The current I ADJ from the adjust terminal could introduce error to the output.But since it is very small(60µA)compared with the I1and very constant with line and load changes,the error can be ig-nored.The constant current I1then flows through the output set resistor R2and sets the output voltage to the desired level.For fixed voltage devices,R1and R2are integrated inside the devices.3.0Load RegulationThe LM1117regulates the voltage that appears between itsoutput and ground pins,or between its output and adjustpins.In some cases,line resistances can introduce errors tothe voltage across the load.To obtain the best load regula-tion,a few precautions are needed.Figure2,shows a typical application using a fixed outputregulator.The Rt1and Rt2are the line resistances.It isobvious that the V LOAD is less than the V OUT by the sum ofthe voltage drops along the line resistances.In this case,theload regulation seen at the R LOAD would be degraded fromthe data sheet specification.To improve this,the load shouldbe tied directly to the output terminal on the positive side anddirectly tied to the ground terminal on the negative side.10091917FIGURE1.Basic Adjustable RegulatorLM1117/LM1117I9Application Note(Continued)When the adjustable regulator is used (Figure 3),the best performance is obtained with the positive side of the resistor R1tied directly to the output terminal of the regulator rather than near the load.This eliminates line drops from appearing effectively in series with the reference and degrading regu-lation.For example,a 5V regulator with 0.05Ωresistance between the regulator and load will have a load regulation due to line resistance of 0.05Ωx I L .If R1(=125Ω)is con-nected near the load,the effective line resistance will be 0.05Ω(1+R2/R1)or in this case,it is 4times worse.In addition,the ground side of the resistor R2can be returned near the ground of the load to provide remote ground sens-ing and improve load regulation.4.0Protection DiodesUnder normal operation,the LM1117regulators do not need any protection diode.With the adjustable device,the internal resistance between the adjust and output terminals limits the current.No diode is needed to divert the current around the regulator even with capacitor on the adjust terminal.The adjust pin can take a transient signal of ±25V with respect to the output voltage without damaging the device.When a output capacitor is connected to a regulator and the input is shorted to ground,the output capacitor will discharge into the output of the regulator.The discharge current de-pends on the value of the capacitor,the output voltage of the regulator,and rate of decrease of V IN .In the LM1117regu-lators,the internal diode between the output and input pins can withstand microsecond surge currents of 10A to 20A.With an extremely large output capacitor (≥1000µF),and with input instantaneously shorted to ground,the regulator could be damaged.In this case,an external diode is recommended between the output and input pins to protect the regulator,as shown in Figure 4.5.0Heatsink RequirementsWhen an integrated circuit operates with an appreciable current,its junction temperature is elevated.It is important to quantify its thermal limits in order to achieve acceptable performance and reliability.This limit is determined by sum-ming the individual parts consisting of a series of tempera-ture rises from the semiconductor junction to the operating environment.A one-dimensional steady-state model of con-duction heat transfer is demonstrated in Figure 5.The heat generated at the device junction flows through the die to the die attach pad,through the lead frame to the surrounding case material,to the printed circuit board,and eventually to the ambient environment.Below is a list of variables that may affect the thermal resistance and in turn the need for a heatsink.R θJC (ComponentVariables)R θCA (ApplicationVariables)Leadframe Size &Material Mounting Pad Size,Material,&Location No.of Conduction Pins Placement of Mounting PadDie SizePCB Size &Material Die Attach Material Traces Length &Width Molding Compound Size and MaterialAdjacent Heat Sources Volume of Air Ambient Temperatue Shape of Mounting Pad10091918FIGURE 2.Typical Application using Fixed OutputRegulator 10091919FIGURE 3.Best Load Regulation using AdjustableOutput Regulator 10091915FIGURE 4.Regulator with Protection Diode L M 1117/L M 1117I10Application Note(Continued)The LM1117regulators have internal thermal shutdown to protect the device from over-heating.Under all possible operating conditions,the junction temperature of the LM1117must be within the range of 0˚C to 125˚C.A heatsink may be required depending on the maximum power dissipation and maximum ambient temperature of the application.To deter-mine if a heatsink is needed,the power dissipated by the regulator,P D ,must be calculated:I IN =I L +I GP D =(V IN -V OUT )I L +V IN I GFigure 6shows the voltages and currents which are present in the circuit.The next parameter which must be calculated is the maxi-mum allowable temperature rise,T R (max):T R (max)=T J (max)-T A (max)where T J (max)is the maximum allowable junction tempera-ture (125˚C),and T A (max)is the maximum ambient tem-perature which will be encountered in the application.Using the calculated values for T R (max)and P D ,the maxi-mum allowable value for the junction-to-ambient thermal resistance (θJA )can be calculated:θJA =T R (max)/P DIf the maximum allowable value for θJA is found to be ≥136˚C/W for SOT-223package or ≥79˚C/W for TO-220package or ≥92˚C/W for TO-252package,no heatsink is needed since the package alone will dissipate enough heat to satisfy these requirements.If the calculated value for θJA falls below these limits,a heatsink is required.As a design aid,Table 1shows the value of the θJA of SOT-223and TO-252for different heatsink area.The copper patterns that we used to measure these θJA s are shown at the end of the Application Notes Section.Figure 7and Figure 8reflects the same test results as what are in the Table 1Figure 9and Figure 10shows the maximum allowable power dissipation vs.ambient temperature for the SOT-223and TO-252device.Figures Figure 11and Figure 12shows the maximum allowable power dissipation vs.copper area (in 2)for the SOT-223and TO-252devices.Please see AN1028for power enhancement techniques to be used with SOT-223and TO-252packages.*Application Note AN-1187discusses improved thermal per-formance and power dissipation for the LLP .TABLE 1.θJA Different Heatsink AreaLayout Copper AreaThermal ResistanceTop Side (in 2)*Bottom Side (in 2)(θJA ,˚C/W)SOT-223(θJA ,˚C/W)TO-25210.0123013610320.0660*******.30846040.530755450.76069526106647700.211584800.49870900.689631000.8825711017957120.0660.06612589130.1750.175937210091937FIGURE 5.Cross-sectional view of Integrated Circuit Mounted on a printed circuit board.Note that the case temperature is measured at the point where the leadscontact with the mounting pad surface 10091916FIGURE 6.Power Dissipation DiagramLM1117/LM1117IApplication Note(Continued)TABLE 1.θJA Different Heatsink Area (Continued)Layout Copper AreaThermal Resistance140.2840.2848361150.3920.3927555160.50.57053*Tab of device attached to topside copperL M 1117/L M 1117IApplication Note(Continued)10091913 FIGURE7.θJA vs.1oz Copper Area for SOT-22310091934 FIGURE8.θJA vs.2oz Copper Area for TO-25210091912 FIGURE9.Maximum Allowable Power Dissipation vs.Ambient Temperature for SOT-22310091936FIGURE10.Maximum Allowable Power Dissipation vs.Ambient Temperature for TO-25210091914FIGURE11.Maximum Allowable Power Dissipation vs.1oz Copper Area for SOT-22310091935FIGURE12.Maximum Allowable Power Dissipation vs.2oz Copper Area for TO-252LM1117/LM1117IApplication Note(Continued)10091941FIGURE 13.Top View of the Thermal Test Pattern in Actual ScaleL M 1117/L M 1117IApplication Note(Continued)10091942FIGURE14.Bottom View of the Thermal Test Pattern in Actual Scale LM1117/LM1117ITypical Application Circuits10091930Adjusting Output of Fixed Regulators10091931Regulator with Reference100919291.25V to 10V Adjustable Regulator with ImprovedRipple Rejection100919275V Logic Regulator with Electronic Shutdown*L M 1117/L M 1117ITypical Application Circuits(Continued)10091932Battery Backed-Up Regulated Supply10091933Low Dropout Negative Supply LM1117/LM1117IPhysical Dimensionsinches (millimeters)unless otherwise noted3-Lead SOT-223NS Package Number MP04A3-Lead TO-220NS Package Number T03BL M 1117/L M 1117IPhysical Dimensions inches(millimeters)unless otherwise noted(Continued)3-Lead TO-263NS Package Number TS3B LM1117/LM1117IPhysical Dimensionsinches (millimeters)unless otherwise noted (Continued)3-Lead TO-252NS Package Number TD03B8-Lead LLPNS Package Number LDC08AL M 1117/L M 1117INotesLIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices orsystems which,(a)are intended for surgical implant into the body,or(b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a lifesupport device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.BANNED SUBSTANCE COMPLIANCENational Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification(CSP-9-111C2)and the Banned Substances and Materials of Interest Specification (CSP-9-111S2)and contain no‘‘Banned Substances’’as defined in CSP-9-111S2.National Semiconductor Americas CustomerSupport CenterEmail:new.feedback@ Tel:1-800-272-9959National SemiconductorEurope Customer Support CenterFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National SemiconductorAsia Pacific CustomerSupport CenterEmail:ap.support@National SemiconductorJapan Customer Support CenterFax:81-3-5639-7507Email:jpn.feedback@Tel:81-3-5639-7560 LM1117/LM1117I 800mA Low-Dropout Linear RegulatorNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1A Low Dropout Positive Voltage RegulatorLM1117L3Features Description●Adjustable or Fixed Output The LM1117 series of positive adjustable and fixed ●Output Current of 1A regulators are designed to provide 1A with high ●Low Dropout, 1.3V max at 1A Output Current efficiency. All internal circuitry is designed to ●0.04% Line Regulation operate down to 1.3V input to output differential. ●0.2% Load Regulation On-chip trimming adjusts the reference voltage to ●100% Thermal Limit Burn-in 1%.●Fast Transient ResponseApplications●High Efficiency Linear Regulators● Post Regulators for Switching Supplies● Adjustable Power SupplyTypical Application DataFixed V oltage RegulatorAdjustable V oltage RegulatorV OUT =V REF ×(1+R2/R1)+I ADJ ×R21) C1 needed if device is far from filter capacitors2) C2 minimum value required for stabilityC2 10μF Tant.MinV OUT =3.3V C110μF Tant V IN >4.75V 1 23IN TAB GND OUT +V OUT =3.45V C2 10μF Tant.Min R2 232 Ohm,1%C1 10μF, Tant V IN >4.75V + IN TAB ADJ OUT+Package InformationSOT-223Absolute Maximum RatingsSymbol ParameterMaximum Units PD Power DissipationInternally Limited W VIN Input Voltage7 V TJ Operating Junction Temperature RangeControl SectionPower Transistor0 to 125 0 to 150 ℃ TSTG Storage Temperature-65 to 150 ℃ TLEAD Lead Temperature(Soldering, 10 sec) 300 ℃Device Selection GuideDeviceOutput Voltage LM1117-AdjAdjustable LM1117-1.51.5V LM1117-1.81.8V LM1117-2.52.5V LM1117-2.852.8 5V LM1117-3.03. 0V LM1117-3.33.3V LM1117-3.53.5V LM1117-5.05.0VElectrical Characteristics @I LOAD =0mA,T J =25℃, unless otherwise specifiedParameter DeviceTest Conditions Min Typ Max Units V IN =5V,I LOAD =10mA 1.238 1.250 1.262Reference voltage(Note 1) Adj VersionV IN =2.65V to 7V,I LOAD =10mA to 1A * 1.225 1.250 1.275V V IN =V OUT +1.5VVariator from nominal V OUT-1 +1 % V IN =V OUT +1.5V to 7VI LOAD =0mA to 1AOutput Voltage (Note 1) Al fixedversion Variator from nominal V OUT * -2 +2 %Line Regulation (Note 1) All I LOAD =10mA,(V OUT +1.5V)≦V ≦7V * 0.040.2Load Regualtion (Note 1) All V IN =V OUT +1.5V, I LOAD =10mA to 1A * 0.2 0.4%Minimum Load Current Adj Version V IN =5V,V ADJ =0V * 3 7mAGround Pin Current All fixed version V IN =V OUT +1.5V,I LOAD =10mA to 1A *713mAAdjust Pin CurrentAdj Version V IN =2.65V to 7V, I LOAD =10mA * 55 90µA Pin Function1 ADJ/GND2 OUTPUT3 INPUT 1 2 3Current Limit All (V IN -V OUT )=1.5V* 1 A Ripple Rejection (Note 2)All V IN =V OUT +1.5V,I LOAD =1A6072dB Dropout Voltage (Note 1,3)All V IN ≧2.65V, I LOAD = 1A* 1.15 1.3V Temperature CoefficientAll V IN =V OUT=1.5V, I LOAD = 10mA * 0.005 %/℃The * denotes the specifications which apply over the full temperature range.Note 1:Low duty pulse testing with Kelvin connections required.Note 2:120Hz input ripple(CADJ for ADJ=25μF)Note 3:△VOUT, △VREF=1%.Representative Circuit DiagramGND V INV OUT FOR FIXEDVOLTAGEDEVICEFORADJUSTABLEVOLTAGEDEVICE ADJ*: TypicalInches Millimeters Inches Millimeters DIM Min. Max. Min. Max. DIM Min. Max. Min. Max.A 0.1142 0.1220 2.90 3.10 G 0.0551 0.0709 1.40 1.80B 0.2638 0.2874 6.70 7.30 H 0.0098 0.0138 0.25 0.35C 0.1299 0.1457 3.30 3.70 I 0.0008 0.0039 0.02 0.10D 0.0236 0.0315 0.60 0.80 a1 *13o - *13o -E *0.0906 - *2.30 - a2 0 o 10 o 0 o 10 oF 0.2480 0.2638 6.30 6.70Notes: 1.Controlling dimension: millimeters.2.Maximum lead thickness includes lead finish thickness, and minimum lead thickness is the minimum thickness of base material.3.If there is any question with packing specification or packing method, please contact your local CYStek sales office. Material:• Lead: 42 Alloy; solder plating• Mold Compound: Epoxy resin family, flammability solid burning class: UL94V-0Important Notice:• All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of CYStek.• CYStek reserves the right to make changes to its products without notice.• CYStek semiconductor products are not warranted to be suitable for use in Life-Support Applications, or systems.• CYStek assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.321FB AC D EG H a1a2I Style: Pin 1.Adj/Gnd 2.Output3.Input3-Lead SOT-223 Plastic Surface Mounted PackageCYStek Package Code: L3左一: 西元年末碼左二: 月碼, 1=A,2=B,…8=H,9=J, …,12=M左三-四: 流水號 Date CodePart number:XX: 15 for 1.5V18 for 1.8V25 for 2.5V33 for 3.3V50 for 5.0VBlank for ADJ。

相关文档
最新文档