真值有效值转换芯片AD637

合集下载

程控滤波器

程控滤波器

程控滤波器设计报告0.摘要:本系统由可控增益放大器、程控滤波器、信号发生部分、控制部分等组成。

可控增益放大部分以DAC7541为核心,实现了输出增益的动态调整。

滤波器部分采用四通道通用滤波器LTC1068实现了低通滤波、高通滤波截止频率和Q值可调。

频率特性测试仪用DDS做信号源。

以STM32单片机作为控制核心,以OCMJ4X8C液晶作为显示部分,实现了增益和截止频率的预置,并实现功能测试和显示。

系统性能达到了设计要求,安全可靠,用户界面良好。

关键字:程控滤波器 DAC7541 LTC1068 STM32 OCMJ4X8C液晶一.方案论证与比较根据题目要求,本系统设计主要包括:可控增益放大器、程控滤波器、幅频特性测试仪等部分构成。

1.1 可控增益放大器设计方案一:采用控制电压与增益成线性关系的可编程增益放大器PGA202、PGA03构成,此方案控制简单,但是PGA202、PGA203不能实现0dB到60dB的步进,需要一级调整增益电路,实现困难。

方案二:采用双运放LF353,带宽增益可以达到4MHZ,两级级联可以使电路增益达到60dB,采用继电器改变增益电阻阻值,实现10dB步进可调,基本要求可以实现。

但是由于电阻阻值误差,精度可能达不到设计要求。

方案三:基于程控放大的基本原理,利用权电阻式DA电阻网络,通过改变DAC7541权电阻网络的值对电阻进行控制实现程控衰减。

而在进入DA之前采用TI公司的INA128和OPA606对信号进行两级放大,将电压幅值放大1000倍。

通过改变DA控制字,可以达到程控放大的目的。

由于INA128很适合对小信号的放大,而OPA606具有较宽的频带宽度,所以能较好的实现对信号的放大。

同时DAC7541是十二位的DA转换芯片,其内部的电阻精度可以实现更小的程控步进(5dB)。

综上所述,本设计采用方案三。

1.2 程控滤波器的设计方案一:采用集成的开关电容滤波器如MAX262,开关电容滤波器可直接处理模拟信号,简化电路设计,容易实现功能。

AD637的简单正确使用

AD637的简单正确使用

采用激光修正的先进工艺制造而成,一般不需加外部
调整元件。
电源电压范围宽,规定为土3~±18 V。
1.2.3 AD637的工作原理
AD637大多采用DIP-14封装,其内部主要包括5部
分:(1)有源整流器;(2)平方/除法器;(3)滤波放大器;(4)
缓冲放大器;(5)偏置电路。输入电压通过有源整流器A,
精度还要受限于A/D转换器的量化误差、非线性误差、周
期误差¨。7。及采取的软件数字处理是否得当等因素。
考虑从硬件上直接将测量信号进行真有效值转换。
目前市面上常见的真有效值转换器的型号较多,下面以美
国模拟器件公司的产品AD637为代表论述通过真有效值
转换器实现高精度测鼍的可行性。
1.2.2 AD637的主要特点
1有效值转换电路
1.1精密整流电路 为克服上述问题,本文利用集成运算放大器的放大作
·20·
万方数据
用和深度负反馈作用克服了二极管非线性和门槛电压带 来的信号失真,设计了一种高精度、低损耗、价格便宜的精 密整流滤波电路。其原理图如图1所示。
图1精密整流滤波电路
司的亳意墓篙差嚣是墨嚣羔淼?曼羹44-娄主篙篆
0引

众所周知,在电站测试和电网检修中,所监测的交流 电压的主要参数有电压有效值(y。)、平均值(11)和峰值 (V,)。其中,唯电压有效值能够反映被测信号能量的大小, 因此测量有效值要比平均值或峰值更有实用价值¨]。
一般对有效值的测量大多是利用二极管的单向导电 性,构成整流电路,如全波整流、桥式整流等将交流电整流 成直流信号,再通过电容或电感滤波,最终得到的是平均 值形式,根据平均值与有效值确定的系数关系,通过平均 值将有效值表示出来乜]。事实上无论是全波整流还是桥 式整流,它们的整流精度都不高,所转换后的有效值误差 很大。原因就是它们所采用的二极管的非线性将产生相 当大的误差,特别是当信号幅度小于二极管的门槛电压 时,电流基本上过不去,其转换误差更为严重∞]。

ad637工作原理

ad637工作原理

ad637工作原理AD637是一种带有直接数字输出的宽动态范围(WDR)功率谱密度(PSD)估计器,它用于从输入信号中提取能源。

它基于高速V / V放大器技术和积分器电路,可以将信号的功率谱密度测量到22位有效位。

它还可以测量宽带信号,如噪声信号,具有高线性度和低误差。

下面将详细介绍AD637的工作原理:1. 高速V / V放大器在AD637中,V / V放大器被用来降低输入信号噪声,并增加输入信号的保真度。

V / V放大器具有高速和宽带特性,能够实现高级别放大和高速增益控制。

在AD637中,它被用来放大输入信号和交流耦合到积分器电路。

2. 积分器电路积分器电路由两个交流耦合的积分器组成。

积分器电路中的每个积分器都包含一个电容和一个电阻,其中电容用于存储电荷,而电阻用于限制电流。

输入信号被积分器电路分离,并分为交流分量和直流分量。

交流分量被存储在电容器中,并通过电阻放电。

电容器的电压与输入信号的交流分量成正比例关系,而电阻的阻值确定了放电时间常数。

这样就可以轻松地计算出输入信号的功率谱密度。

3. 总放大和数字输出AD637中的香农采样器用于将积分器电路的输出数字化,并将数字输出到转换器中。

转换器可以将数字输出转换为电压或电流输出。

这种数字化技术可以大大提高测量效率和精度,并且输出用于数字数据处理,例如将信号整合到DSP器中。

总之,AD637通过高速V / V放大器技术和积分器电路从输入信号中提取能量,实现了高线性度和低误差的宽动态范围功率谱密度估计。

它的数字化技术还可以使数据处理更加高效。

因此,AD637广泛应用于无线通信、医疗诊断和科学研究等领域。

真值有效值转换芯片AD637

真值有效值转换芯片AD637

真值有效值转换芯片AD637简介赵亮1 器件用途及特点AD637是AD公司生产的真有效值-直流转换芯片,它的功能是把外部输入的交流信号有效值变成直流信号输出,可以计算各种复杂波形的真有效值。

可测量的输入信号有效值可高达7V,对于1vRMS的信号,它的3dB带宽为8MHz,并且可以对输入信号的电平以dB形式指示,当输入电压为100mV 时,带宽标值为600kHz;输入电压为2V时,带宽标称值为8MHz。

另外,AD637通过片选(CS)管脚作用,可以使静态电流从2.2mA降至350µA。

因此,在数据采集和仪器仪表等场合,有很广泛的应用。

2 管脚功能描述AD637的管脚图如图1所示,对应的管脚功能如表一。

图1 AD637管脚图表1 AD637管脚功能描述管脚号名称功能IN 输入缓冲1 BUFF2 NC 空脚3 COMMON 模拟公共端输出偏移OFFSET4 OUTPUT5 CS 片选端INPUT 分母输入端6 DENOUTPUT dB 格式输出7 dB8 Cav 均值滤波电容OUT 有效值输出9 RMS10 -Vs 负电源11 +Vs 正电源12 NC 空脚13 Vin 信号输入OUT 输出缓冲14 BUFF3 典型应用电路如果单纯使用AD637的真有效值输出的这个功能,电路连接非常的简单,典型电路如图2所示。

输入缓冲和输出偏移接到内部的模拟公共端,一起接地;dB输出端悬空;输出缓冲悬空;CS通过一个外部的上拉电阻接Vs,降低系统在静态时的工作电流;外部的输入信号如果是交流信号,需要在输入端串接一个无极性的耦合电容;电容Cav作用是调整输出的直流信号纹波大小。

图2 AD637典型电路4 注意事项经实际测量,AD637在输入信号为2MHz以下、有效值为0.7 ~ 7V范围内能保证测量误差≤± 0.2%+0.5mV。

当被测信号的有效值远小于1V时,会出现较大的测量误差,所以当被测信号幅值较小时,须在前级对被测信号进行放大,以保证测量精度。

交流检测真有效值芯片原理介绍及实用电路

交流检测真有效值芯片原理介绍及实用电路

交流检测真有效值芯片原理介绍及实用电路1、真有效值数字电压表的基本原理利用真有效值(TRMS)数字仪表,可以准确、实时地测量各种波形的有效值电压,满足现代电子测量之需要。

,借助于电路对输入电压u进行“平方→ 取平均值→开平方”运算,就能获得交流电压的有效值。

因这是由有效值定义而求出的,故称之为真有效值。

目前生产的真有效值/直流转换器(如美国ADI公司的AD636、AD736,美国LT公司的LTC1966等),都是采用这种原理而设计的。

真有效值电压表比平均值电压表测量典型波形的误差更小。

下面来介绍工程上常用的LTC1966的原理及使用。

2、LTC1966工作原理LTC1966是美国凌特公司(LT)于2002年最新推出的真有效值RMS/DC转换器,与其他RMS/DC产品相比较,它在完成乘法/除法运算时,未采用通常的对数-反对数的计算方法,而是采用了全新的D-S计算技术。

LTC1966具有简单电路接法(只有一个外接平均CAVE)、灵活的输入/输出结构(差分或单端)、灵活的供电方式(2.7V~5.5V单电源,最大范围为±5.5V双电源)、高准确度(50Hz~1kHz的误差只有0.25%)、良好的线性(小于0.02%)、很宽的动态电流范围、易于校准等特性。

图1 LTC1966管脚排列及内部框图LTC1966采用MSOP-8封装,管脚排列及内部框图如图1所示,各引脚功能如下:GND—地;UIN1、UIN2—差分输入端1和2;USS—负电源端,对地接-5.5V电源或直接接地;UOUT—电压输出端。

RMS平均值是通过此引脚与COM引脚之间的平均值电容CAVE来实现转换。

COM—输出电压返回端。

输出电压的产生和该引脚的电压有关。

一般COM端接地,在AC+DC输入情况下,UOUT与COM引脚之间不平衡,该引脚应对地接一小电阻;UDD—正电源端。

电压范围为2.7V~5.5V;EN—使能控制端,低电平有效。

LTC1966内部主要包括4部分电路:D-S调制器、极性转换开关、低通滤波器(LPF)和关断控制电路。

AD637简介

AD637简介

AD637: 高精度、宽带均方根直流转换器PRODUCT DESCRIPTIONAD637是一款完整的高精度、单芯片均方根直流转换器,可计算任何复杂波形的真均方根值。

它提供集成电路均方根直流转换器前所未有的性能,精度、带宽和动态范围与分立和模块式设计相当。

AD637提供波峰因数补偿方案,允许以最高为10的波峰因数测量信号,额外误差小于1%。

宽带宽允许测量200 mV均方根、频率最高达600 kHz的输入信号以及1 V均方根以上、频率最高达8 MHz的输入信号。

与ADI公司以前的单芯片均方根转换器一样,AD637也为用户提供辅助dB输出。

均方根输出信号的对数通过一个单独引脚输出,支持直接dB测量,可用范围为60 dB。

用户利用外部编程的基准电流,可以选择0 dB基准电压与0.1 V至2.0 V均方根范围内的任何电平相对应。

不使用均方根功能时,用户借助AD637的片选连接可以将电源电流从2.2 mA降至350 μA。

对于低功耗至关重要的远程或手持式应用,利用此特性可以方便地实现精密均方根测量。

此外,当AD637关断时,输出进入高阻态。

这一特性还允许将多个AD637连在一起,构成一个宽带真均方根多路复用器。

AD637的输入电路受到保护,可以承受高于电源电平的过载电压。

如果电源电压丧失,输入信号不会损坏输入端。

AD637在商用温度范围(0°C至70°C)内提供J和K两种精度等级,在工业温度范围(−40°C 至+85°C)内提供A和B两种精度等级,在−55°C至+125°C温度范围内提供S精度等级。

所有等级均提供14引脚SBDIP、14引脚CERDIP和16引脚SOIC_W密封封装。

AD637可计算任何复杂交流(或交流加直流)输入波形的真均方根值、均方值或绝对值,并提供等效直流输出电压。

波形的真均方根值与信号功率直接相关,因此比平均整流信号更有用。

AD637原理图用法实测数据

AD637原理图用法实测数据

说明:该文档包含AD637原理图,正弦波,方波,锯齿波实测数据问题:偏置调节电位器R1无明显调节作用,估计原因,由于接入限流电阻R2为1M,过大。

与内部电阻分压后,输出运放的电压几乎为零,所以偏置调节无效,具体内部电路如下图所示。

(注:由于手里就一个芯片,不敢改小限流电阻,怕烧坏芯片,因为紧接着就要使用该模块,且对使用的影响不大,所以留待后者实验。

若有发现请百度私信我)一、原理图二、实测数据1、正弦波真有效值转换(Vpp=2V,Vp=1V)频率/HZ 理论值/v 4位半测量值/v 转换值/v1 0.707 0 0.51715 0.707 0.7654 0.686410 0.707 0.7234 0.696350 0.707 0.7041 0.698860 0.707 0.7037 0.698680 0.707 0.7029 0.698100 0.707 0.7021 0.6975200 0.707 0.7019 0.6975300 0.707 0.7018 0.6975400 0.707 0.7017 0.6976500 0.707 0.7015 0.69771K 0.707 0.7008 0.697750K 0.707 0.7274 0.6974100K 0.707 0.5976 0.696300K 0.707 0.0264 0.6877400K 0.707 0 0.6854500K 0.707 0 0.6831700K 0.707 0.68041M 0.707 0.67675M 0.707 0.58368M 0.707 0.40062、方波:Vpp=2V,f=50HZ 理论值:1V VOUT= 0.9895V3、锯齿波:Vpp=2V,f=50HZ 理论值:0.5774V VOUT= 0.5702V。

简易功率测量装置

简易功率测量装置

1 系统方案论证1.1 直流供电负载功率测量方案的选择方案一:采用差分放大测量负载电流,外接ADC 获取负载电压。

利用双运放构成的差分放大器获取采样电阻上的电压,从而计算出负载上面的电流,利用ADC0809采集负载两端电压,通过计算得出负载功率。

方案二:使用仪表运放INA128测量采样电压,MSP430采集负载电压。

INA128是高精度运算放大器,共模抑制比高,测量采样电阻上电压信号准确,通过二级放大,利用MSP430内部12位ADC 模块采集电压,通过计算得到负载上的电流,通过信号调理电路,利用MSP430内部ADC 采集负载电压,通过计算得到负载上面的电压,最终计算出负载上的功率[1]。

上述两种方案比较,由于设计要求误差不高于1%,应采用低噪声的仪表运放精密型运放,由于设计要求采集电压、电流参数,如果单独外接ADC 模块完成信号的采集,不仅增加了设计成本和难度。

基于此,采用方案二作为直流供电负载功率测量方案。

1.2 交流供电负载功率测量方案的选择方案一:采用单相供电功率HLW8012测量芯片,实现功率测量。

HLW8012是市面上比较常见的交流功率测量芯片,内部集成了信号处理模块,DSP 运算模块等。

能够测量单相电上负载的功率。

方案二:采用真有效值转换芯片AD637测量交流信号参数,实现设计。

采用高精度、高带宽的真有效值检测器件AD637,实现对交流信号的有效值测量,输出为直流电平,该电平为交流信号的有效值。

通过对直流信号的采集,实现对负载电参数的测量[2]。

比较这两种方案,由于HLW8012模块,在测量交流电功率时候,必须搞直流对其供电才能正常工作,需要非隔离AD-DC 电路进行交流转直流,增加了设计难度与成本,而采用AD637芯片完成对交流信号转换,只需处理直流信号即可对负载上电压与电流的测量,因此采用方案二完成对交流负载功率的测量。

1.3 交直流供电识别方案的选择方案一:采用光耦采集信号,来分辨电源性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真值有效值转换芯片AD637简介
赵亮
1 器件用途及特点
AD637是AD公司生产的真有效值-直流转换芯片,它的功能是把外部输入的交流信号有效值变成直流信号输出,可以计算各种复杂波形的真有效值。

可测量的输入信号有效值可高达7V,对于1vRMS的信号,它的3dB带宽为8MHz,并且可以对输入信号的电平以dB形式指示,当输入电压为100mV 时,带宽标值为600kHz;输入电压为2V时,带宽标称值为8MHz。

另外,AD637通过片选(CS)管脚作用,可以使静态电流从2.2mA降至350µA。

因此,在数据采集和仪器仪表等场合,有很广泛的应用。

2 管脚功能描述
AD637的管脚图如图1所示,对应的管脚功能如表一。

图1 AD637管脚图
表1 AD637管脚功能描述
管脚号名称功能
IN 输入缓冲
1 BUFF
2 NC 空脚
3 COMMON 模拟公共端
输出偏移
OFFSET
4 OUTPUT
5 CS 片选端
INPUT 分母输入端
6 DEN
OUTPUT dB 格式输出
7 dB
8 Cav 均值滤波电容
OUT 有效值输出
9 RMS
10 -Vs 负电源
11 +Vs 正电源
12 NC 空脚
13 Vin 信号输入
OUT 输出缓冲
14 BUFF
3 典型应用电路
如果单纯使用AD637的真有效值输出的这个功能,电路连接非常的简单,典型电路如图2所示。

输入缓冲和输出偏移接到内部的模拟公共端,一起接地;dB输出端悬空;输出缓冲悬空;CS通过一个外部的上拉电阻接Vs,降低系统在静态时的工作电流;外部的输入信号如果是交流信号,需要在输入端串接一个无极性的耦合电容;电容Cav作用是调整输出的
直流信号纹波大小。

图2 AD637典型电路
4 注意事项
经实际测量,AD637在输入信号为2MHz以下、有效值为0.7 ~ 7V范围内能保证测量误差≤± 0.2%+0.5mV。

当被测信号的有效值远小于1V时,会出现较大的测量误差,所以当被测信号幅值较小时,须在前级对被测信号进行放大,以保证测量精度。

相关文档
最新文档