带转速微分负反馈直流双闭环调试系统设计

合集下载

双闭环直流调速系统设计

双闭环直流调速系统设计

一、课程设计目的在《电机与拖动》、《电力电子技术》、《伺服系统》和《电力拖动自动控制系统》课程知识的基础上,完成课程的综合性设计。

通过课程设计环节的训练,包括设计方案的论证、参数计算、系统仿真和设计报告的撰写,掌握系统综合应用项目的设计流程和方法,加深对完整项目开发的的理解和掌握,培养应用系统的设计能力,初步积累双闭环直流调速系统的设计方法,以及分析问题和解决问题的能力,并进一步拓宽专业知识面,培养实践应用技能和创新意识。

电力系统综合课程课程设计是电气工程及其自动化专业的一门专业课程,它是一次综合性的理论与实践相结合的训练,也是本专业的一次基本技能训练,其主要目的是:1、理论联系实际,掌握根据实际工艺要求设计电力拖动自动控制系统的基本方法。

2、对一种典型的双闭环调速自动控制系统进行综合性分析设计,掌握各部件和整个系统的设计调试步骤、方法及操作实际系统的方法。

加强基本技能训练。

3、掌握参数变化对系统性能影响的规律,培养灵活运用所学理论解决控制系统中各种实际问题的能力。

4、培养分析问题、解决问题的独立工作能力,学会实验数据的分析与处理能力及编写设计说明书和技术总结报告的能力。

为下学期毕业设计作准备。

5、通过设计熟练地查阅有关资料和手册。

二、课程设计内容与要求1、本课程设计的对象直流伺服电机:学生自行查找电机型号直流测速机:学生根据设计任务选择2、本课程设计的内容要求设计一个直流双闭环调速系统。

其主要内容为:1、测定综合实验中所用控制对象的参数(在实验室完成)。

2、根据给定指标设计电流调节器和转速调节器,并选择调节器参数和具体实现电路。

3、按设计结果组成系统,以满足给定指标。

4、研究参数变化对系统性能的影响。

5、在时间允许的情况下进行调试。

3、本课程设计的设计要求a.调速范围D=5~10,静差率S≤5%。

b.空载启动时电流超调σi≤5%,转速超调σn≤10%(在额定转速时)。

c.动态速降小于10%。

d.振荡次数小于2次。

带转速微分负反馈直流双闭环调试系统设计

带转速微分负反馈直流双闭环调试系统设计

成绩运动控制系统课程设计题目: 带转速微分负反馈直流双闭环调试系统设计院系名称:专业班级:学生姓名:学号:指导教师:评语:电力拖动实现了电能与机械能之间的能量转换,运动控制系统的任务是通过控制电动机电压、电流、频率等输入量,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。

直流电动机具有良好的启动、制动性能,宜于在宽范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。

单闭环系统用PI调节器实现转速稳态无静差,消除负载转矩干扰对转速稳态的影响。

但单闭环系统并不能充分按照理想要求控制电流的动态过程。

因此常采用双闭环系统,因为电流调节器是内环,因此首先设计电流调节器,对其进行必要的变化和近似处理,电流环设计完后,把电流环等效成转速环的一个环节进行处理,从而设计转速调节器。

再根据设计要求设计转速微分负反馈,使系统的转速无超调。

同时双闭环直流调速系统的设计进行了分析及其原理进行了一些说明,介绍了其主电路、检测电路的设计,并介绍电流调节器和转速调节器的设计和一些参数选择、计算,使其设计参数要求的指标。

关键词:双闭环系统电流调节器转速环转速微分负反馈1 概述 (1)2 设计要求与方案 (1)2.1 设计要求 (1)2.2 设计方案 (1)3 系统电路的设计 (3)3.1 转速给定电路的设计 (3)3.2 系统主电路的设计 (4)3.3 转速检测电路的设计 (5)3.4 电流检测电路的设计 (6)3.5 触发电路的设计 (7)3.6 电流调节器电路的设计 (9)3.7 转速调节器电路的设计 (10)3.8 转速微分负反馈电路的设计 (11)4 系统参数的整定 (12)4.1 电流调节器参数的整定 (12)4.1.1 电流调节器的简化与选型 (12)4.1.2 电流调节器参数的计算 (13)4.2 转速调节器参数的整定 (14)4.2.1 转速调节器的简化与选型 (14)4.2.2 转速调节器参数的计算 (16)4.2.2 转速微分负反馈的计算 (17)5 设计心得 (17)6 参考文献 (18)1概述闭环调速比开环调速具有更好的调速性能。

带转速微分负反馈的双闭环直流调速系

带转速微分负反馈的双闭环直流调速系

目录摘要 (2)一、概述 (2)二、设计任务与要求 (3)2.1 设计任务 (3)2.2 设计要求 (3)三、理论设计 (4)3.1 方案论证 (4)3.2 系统设计 (4)3.2.1 电流调节器设计 (4)3.2.1.1 电流环结构框图的化简 (5)3.2.1.2 确定时间常数 (6)3.2.1.3 选择电流调节器的结构 (6)3.2.1.4 校验近似条件 (6)3.2.1.5 计算调节器电阻和电容 (6)3.2.2 速度调节器设计 (7)3.2.2.1 确定时间常数 (8)3.2.2.2 选择转速调节器结构 (9)3.2.2.3 检验近似条件 (9)3.2.2.4 计算调节器电阻和电容 (9)3.2.2.5 校核转速超调量 (9)3.2.3 转速微分负反馈设计 (10)四、系统建模及仿真实验 (11)4.1 MATLAB 仿真软件介绍 (11)4.2 仿真建模及实验 (11)4.2.1 单闭环仿真实验 (12)4.2.2 双闭环仿真实验 (14)4.2.3 带转速微分负反馈的双闭环仿真实验 (16)4.2.4 仿真波形分析 (17)五、实际系统设计及原理 (19)5.1 系统组成及工作原理 (19)5.2 设备及仪器 (19)5.3 实验过程 (20)5.3.1 实验内容 (20)5.3.2 实验步骤 (20)六、总结与体会 (21)参考文献 (22).摘要从七十年代开始,由于晶闸管直流调速系统的高效、无噪音和快速响应等优点而得到广泛应用。

双闭环直流调速系统就是一个典型的系统,该系统一般含晶闸管可控整流主电路、移相控制电路、转速电流双闭环调速控制电路、以及缺相和过流保护电路等.给定信号为0~10V直流信号,可对主电路输出电压进行平滑调节。

采用双PI调节器,可获得良好的动静态效果。

电流环校正成典型I型系统。

为使系统在阶跃扰动时无稳态误差,并具有较好的抗扰性能,速度环设计成典型Ⅱ型系统。

根据转速、电流双闭环调速系统的设计方法,用Simulink 做了带转速微分负反馈的双闭环直流调速系统进行仿真综合调试,分析系统的动态性能,并进行校正,得出正确的仿真波形图。

双闭环直流调速系统设计方案

双闭环直流调速系统设计方案

关键词:双闭环晶闸管转速调节器电流调节器目录1引言 (1)2总体方案设计 (1)2.1 方案比较 (1)2.2 方案论证 (2)2.3 方案选择 (3)2.4 设计要求 (3)3单元模块设计 (4)3.1 转速给定电路设计 (4)3.2 转速检测电路设计 (4)3.3 电流检测电路设计 (4)3.4 整流及晶闸管保护电路设计 (4)3.4.1 过电压保护和du/dt限制 (5)3.4.2 过电流保护和di/dt限制 (5)3.4.3 整流电路参数计算 (6)3.5电源设计 (8)3.6 控制电路设计 (8)4系统调试 (13)5系统部分电气原理图 (17)6结论 (17)7总结与体会 (18)8参考文献 (18)1引言许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求具有良好的稳态、动态性能。

而直流调速系统调速范围广、静差率小、稳定性好以及具有良好的动态性能,在高性能的拖动技术领域中,相当长时期内几乎都采用直流电力拖动系统。

双闭环直流调速系统是直流调速控制系统中发展得最为成熟,应用非常广泛的电力传动系统。

转速、电流双闭环控制直流调速系统是性能好、应用最广的直流调速系统。

它具有动态响应快、抗干扰能力强等优点。

我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。

采用转速负反馈和PI调节器的单闭环的调速系统可以再保证系统稳定的条件下实现转速无静差。

本设计是以直流PWM控制调速系统进行调速,采用转速调节器ASR、以及电流调节器ACR并用PI调节器进行校正,对反馈信号进行采集,处理起到无静差效果。

用25LJPF40电力二极管进行整流,以及滤波,通过驱动电路的作用将控制电路输出的PWM信号得到IGBT可靠的导通和关断,并用霍尔传感器对电流取样进而反馈至电流调节器,系统同时设有过流保护,为此达到双闭环可逆调速。

2总体方案设计2.1 方案比较方案一:单闭环直流调速系统单闭环直流调速系统是指只有一个转速负反馈构成的闭环控制系统。

双闭环直流调速系统课程设计

双闭环直流调速系统课程设计

目录目录 (1)第一章双闭环调速系统的组成 (2)第一节系统电路原理图 (2)第二节系统的稳态结构图 (3)第三节系统的动态结构图 (6)第二章双闭环系统调节器的设计 (9)第一节电流调节器的设计 (10)第二节转速调节器的设计 (14)第三节转速超调的抑制——转速微分负反馈 (18)第三章系统的仿真 (20)总结 (23)参考文献 (24)第一章 双闭环调速系统的组成第一节 系统电路原理图转速、电流双闭环调速系统的原理图如图1-1所示,图中两个调节器ASR 和ACR 分别为转速调节器和电流调节器,二者串级连接,即把转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。

电流环在内,称之为内环;转速环在外,称之为外环。

为了获得良好的静、动态特性,双闭环调速系统的两个调节器都采用PI 调节器,其原理图如图所示。

在图中标出了两个调节器输入输出电压的实际极性,它们都是按照触发装置GT 的控制电压U ct 为正电压的情况标出的,并考虑到运算放大器的倒相作用。

两个调节器输出都带有限幅,ASR 的输出限幅什im U 决定了电流调节器ACR 的给定电压最大值im U ,对就电机的最大电流;电流调节器ACR 输出限幅电压cm U 限制了整流器输出最大电压值,限最小触发角α。

图1-1双闭环直流调速系统电路原理第二节系统的稳态结构图转速电流双闭环调速系统的稳态结构图如图1-2所示,PI调节器的稳态特性一般存在两种状况:饱和—输出达到限幅值,不饱和—输出未达到限幅值。

当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和;换句话说,饱和的调节器暂时隔断了输入与输出的联系,相当于使该调节器开环。

当调节器不饱和时,PI作用使输入偏差电压ΔU在稳定时总是零。

在实际运行时,电流调节器是不会达到饱和状态的,因此对于静特性来说,只有转速调节器饱和与不饱和两种状况。

双闭环直流电机调速系统设计参考案例

双闭环直流电机调速系统设计参考案例

《运动控制系统》课程设计指导书一、课程设计的主要任务(一)系统各环节选型1、主回路方案确定。

2、控制回路选择:给定器、调节放大器、触发器、稳压电源、电流截止环节,调节器锁零电路、电流、电压检测环节、同步变压器接线方式(须对以上环节画出线路图,说明其原理)。

(二)主要电气设备的计算和选择1、整流变压器计算:变压器原副方电压、电流、容量以及联接组别选择。

2、晶闸管整流元件:电压定额、电流定额计算及定额选择。

3、系统各主要保护环节的设计:快速熔断器计算选择、阻容保护计算选择计算。

4、平波电抗器选择计算。

(三)系统参数计算1、电流调节器ACR 中i i R C 、 计算。

2、转速调节器ASR 中n n R C 、计算。

3、动态性能指标计算。

(四)画出双闭环调速系统电气原理图。

使用A1或A2图纸,并画出动态框图和波德图(在设计说明书中)。

二、基本要求1、使学生进一步熟悉和掌握单、双闭环直流调速系统工作原理,了解工程设计的基本方法和步骤。

2、熟练掌握主电路结构选择方法,主电路元器件的选型计算方法。

3、熟练掌握过电压、过电流保护方式的配置及其整定计算。

4、掌握触发电路的选型、设计方法。

5、掌握同步电压相位的选择方法。

6、掌握速度调节器、电流调节器的典型设计方法。

7、掌握电气系统线路图绘制方法。

8、掌握撰写课程设计报告的方法。

三、 课程设计原始数据有以下四个设计课题可供选用:A 组:直流他励电动机:功率P e =1.1KW ,额定电流I e =6.7A ,磁极对数P=1,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =2.34Ω,主电路总电阻R =7Ω,L ∑=246.25Mh(电枢电感、平波电感和变压器电感之和),K s =58.4,机电时间常数T m =116.2ms ,滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值10V U im =*,速度给定最大值 10V U n=* B 组:直流他励电动机:功率P e =22KW ,额定电压U e =220V ,额定电流I e =116A,磁极对数P=2,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =0.112Ω,主电路总电阻R=0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数C e =0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116ms ,机电时间常数T m =0.157ms ,滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im=*,速度给定最大值 10V U n=* C 组:直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=0.0015Ω,主电路总电阻R =0.036Ω,Ks=41.5,电磁时间常数TL=0.0734ms ,机电时间常数Tm=0.0926ms ,滤波时间常数Ton=Toi=0.01s ,过载倍数λ=1.2,电流给定最大值 8V U im =*,速度给定最大值 10V U n =*D 组:直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=6.5A,磁极对数P=1,ne=1500r/min,励磁电压220V,电枢绕组电阻Ra=3.7Ω,主电路总电阻R =7.4Ω,Ks=27,电磁时间常数TL=0.033ms ,机电时间常数Tm=0.26ms ,滤波时间常数Toi=0.0031s ,Ton=0.01s ,过载倍数λ=1.5,电流给定最大值8V U im =*,速度给定最大值 10V U n =*,β=0.77V/A ,α=0.007 Vmin /r双闭环直流电机调速系统设计参考案例第一章 绪 论1.1 直流调速系统的概述三十多年来,直流电机调速控制经历了重大的变革。

双闭环直流调速系统的设计与仿真实验报告

双闭环直流调速系统的设计与仿真实验报告

TGn ASR ACR U *n + -U n U i U *i + - U c TAV M + -U d I dUP E L- M T 双闭环直流调速系统的设计与仿真1、实验目的1.熟悉晶闸管直流调速系统的组成及其基本原理。

2.掌握晶闸管直流调速系统参数及反馈环节测定方法。

3.掌握调节器的工程设计及仿真方法。

2、实验内容1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析 3、实验要求用电机参数建立相应仿真模型进行仿真 4、双闭环直流调速系统组成及工作原理晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机—发电机组等组成。

本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压U ct 作为触发器的移相控制电压,改变U ct 的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。

为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接,如图4.1。

把转速调节器的输出当作电流调节器的输入,再用电流的输出去控制电力电子变换器UPE 。

在结构上,电流环作为内环,转速环作为外环,形成了转速、电流双闭环调速系统。

为了获得良好的静、动态特性,转速和电流两个调节器采用PI 调节器。

图4.1 转速、电流双闭环调速系统 5、电机参数及设计要求5.1电机参数 直流电动机:220V ,136A ,1460r/min , =0.192V ? min/r ,允许过载倍数=1.5,晶闸管装置放大系数: =40电枢回路总电阻:R=0.5 时间常数: =0.00167s, =0.075s电流反馈系数: =0.05V/A 转速反馈系数:=0.007 V ? min/r 5.2设计要求要求电流超调量 5%,转速无静差,空载起动到额定转速时的转速超调量 10%。

6、调节器的工程设计 6.1电流调节器ACR 的设计 (1)确定电流环时间常数1)装置滞后时间常数 =0.0017s ; 2)电流滤波时间常数 =0.002s ;3)电流环小时间常数之和 = + =0.0037s ; (2)选择电流调节结构根据设计要求5%,并且保证稳态电流无差,电流环的控制对象是双惯性型的,且=0.03/0.0037=8.11<10,故校正成典型?I?型系统,显然应采用PI型的电流调节器,其传递函数可以写成?式中—?电流调节器的比例系数;?—?电流调节器的超前时间常数。

双闭环直流调速系统课程设计报告

双闭环直流调速系统课程设计报告

1双闭环直流调速系统课程设计报告第一章主电路设计与参数计算调速系统方案的选择因为电机上网容量较大又要求电流的脉动小应采纳三相全控桥式整流电路供电方案。

电动机额定电压为220V 为保证供电质量应采纳三相减压变压器将电源电压降低。

为防止三次谐波电动势的不良影响三次谐波电流对电源的扰乱。

主变压器采纳 A/D 联络。

因调速精度要求较高应采纳转速负反应调速系统。

采纳电流截止负反应进行限流保护。

出现故障电流时过电流继电器切断主电路电源。

为使线路简单工作靠谱装置体积小宜采纳 KJ004 构成的六脉冲集成触发电路。

该系统采纳减压调速方案故励磁应保持恒定励磁绕组采纳三相不控桥式整流电路供电电源可从主变压器二次侧引入。

为保证先加励磁后加电枢电压主接触器主触点应在励磁绕组通电后方可闭合同时设有弱磁保护环节电动机的额定电压为 220V 为保证供电质量应采纳三相减 2 压变压器将电源电压降低为防止三次谐波电动势的不良影响三次谐波电流对电源的扰乱主变压器采纳D/Y 联络。

1.1 整流变压器的设计 1.1.1 变压器二次侧电压U2 的计算U2 是一个重要的参数选择过低就会没法保证输出额定电压。

选择过大又会造成延迟角α加大功率因数变坏整流元件的耐压高升增添了装置的成本。

一般可按下式计算即BAUUd2.112 1-1 式中 A-- 理想状况下α0°时整流电压 Ud0 与二次电压U2 之比即AUd0/U2B-- 延缓角为α时输出电压Ud 与 Ud0 之比即BUd/Ud0 ε——电网颠簸系数系数依据设计要求采纳公式11.2——考虑各样因数的安全BAUUd2.112 1-3由表查得A2.34 取ε 0.9 角α考虑 10°裕量则Bcosα 0.985222011.21061272.340.90.985UV 取 U2120V 。

电压比KU1/U2380/1203.2 。

1.1.2 一次、二次相电流 I1 、I2 的计算由表查得 KI10.816 KI20.816 考虑变压器励磁电流得取1.1.3 变压器容量的计算S1m1U1I1 1-4 S2m2U2I2 1-5S1/2S1S2 1-6 式中 m1、m2 -- 一次侧与二次侧绕组的相数表查得 m13m23 S1m1U1I13× 380×1415.6KVA由S2m2U2I23×110×44.914.85 KVA考虑励磁功率LP220×1.60.352kW 取 S15.6kvA 1.2 晶闸管元件的选择晶闸管的额定电压晶闸管实质蒙受的最大峰值电压TNU 乘以 23 倍的安全裕量参照标准电压等级即可确立晶闸管的额定电压 TNU 即 TNU 23mU 整流电路形式为三相全控桥查表得26UUm 则223236236110539808TNmUUUV 3-7 取晶闸管的额定电流选择晶闸管额定电流的原则是一定使管子同意经过的额定电流有效值TNI 大于实质流过管子电流最大有效值TI8 即 4 TNI 1.57AVTITI 或AVTI57.1TI57.1TIddIIKdI 1-8 考虑 1.52 倍的裕量AVTI1.52KdI 1-9 式中KTI/1.57dI-- 电流计算系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成绩运动控制系统课程设计题目: 带转速微分负反馈直流双闭环调试系统设计院系名称:专业班级:学生姓名:学号:指导教师:评语:电力拖动实现了电能与机械能之间的能量转换,运动控制系统的任务是通过控制电动机电压、电流、频率等输入量,来改变工作机械的转矩、速度、位移等机械量,使各种工作机械按人们期望的要求运行,以满足生产工艺及其他应用的需要。

直流电动机具有良好的启动、制动性能,宜于在宽范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。

单闭环系统用PI调节器实现转速稳态无静差,消除负载转矩干扰对转速稳态的影响。

但单闭环系统并不能充分按照理想要求控制电流的动态过程。

因此常采用双闭环系统,因为电流调节器是内环,因此首先设计电流调节器,对其进行必要的变化和近似处理,电流环设计完后,把电流环等效成转速环的一个环节进行处理,从而设计转速调节器。

再根据设计要求设计转速微分负反馈,使系统的转速无超调。

同时双闭环直流调速系统的设计进行了分析及其原理进行了一些说明,介绍了其主电路、检测电路的设计,并介绍电流调节器和转速调节器的设计和一些参数选择、计算,使其设计参数要求的指标。

关键词:双闭环系统电流调节器转速环转速微分负反馈1 概述 (1)2 设计要求与方案 (1)2.1 设计要求 (1)2.2 设计方案 (1)3 系统电路的设计 (3)3.1 转速给定电路的设计 (3)3.2 系统主电路的设计 (4)3.3 转速检测电路的设计 (5)3.4 电流检测电路的设计 (6)3.5 触发电路的设计 (7)3.6 电流调节器电路的设计 (9)3.7 转速调节器电路的设计 (10)3.8 转速微分负反馈电路的设计 (11)4 系统参数的整定 (12)4.1 电流调节器参数的整定 (12)4.1.1 电流调节器的简化与选型 (12)4.1.2 电流调节器参数的计算 (13)4.2 转速调节器参数的整定 (14)4.2.1 转速调节器的简化与选型 (14)4.2.2 转速调节器参数的计算 (16)4.2.2 转速微分负反馈的计算 (17)5 设计心得 (17)6 参考文献 (18)1概述闭环调速比开环调速具有更好的调速性能。

而双闭环调速系统又要比单环调速系统具有更好的动态性能和抗扰性能。

为了使转速和电流两种负反馈分别起作用,可在系统中设计两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行嵌套连接。

把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。

从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。

这就形成了转速、电流反馈控制直流调速系统。

为了获得良好的静、动态性能,转速和电流两个调节器一般都采用PI调节器,但由于当转速调节器采用PI调节器时,转速必然有超调,该控制系统中要求转速超调为0,所以需引入转速微分负反馈来抑制消除超调。

2设计要求与方案2.1设计要求1. 稳态指标无静差,且动态指标的电流超调量σi≤ 5%;采用转速微分负反馈使转速超调量等于0。

2.确定设计方案。

3.按照确定的方案设计单元电路。

要求画出单元电路图,元件及元件参数选择要有依据,各单元电路的设计要有详细论述。

2.2设计方案根据设计要求确定该系统的设计方案。

串级控制系统与单回路控制系统相比具有单回路控制系统的全部优点,同时有单回路控制系统没有的优点,如提高了被控对象的等效时间常数;提高了系统的工作频率;对负载的变化具有一定的自适应能力等。

而且该系统有两个控制参数即被控制量,一个是电流,一个是转速。

由于系统希望最终能获得很好的转速,所以主变量应为转速,即将转速环设置为外环;同时电流环就成为了内环。

通过转速调节器和电流调节器控制系统的转速的变换,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。

同时转速调节器和电流调节器使用PI 调节器,从而获得更好地静态和动态性能。

但由于当转速调节器采用PI 调节器时,转速必然有超调,该控制系统中要求转速超调为0,所以需引入其他控制方式来抑制消除超调,可以采用转速微分负反馈。

从而形成带转速微分负反馈直流双闭环调速系统设计。

该系统的设计仍然采用直流双闭环调速系统设计,只是在最后单独设计转速微分负反馈。

系统组成有电流调节器,转速调节器,电流变换器(检测电流值),整流电路,转速测量等。

系统整流装置采用三相桥式整流,同时注意系统的过电保护。

直流双闭环调速系统原理图如图 2.2.1。

直流双闭环调速系统动态结构图如图2.2.2所示。

-图2.2.1 双闭环直流调速系统原理图ASR ——转速 ACR ——电流调节器 TG ——测速发电机TA ——电流互感器 UPE ——电力电子变换器*n U ——转速给定电压n U ——转速反馈电压 *i U ——电流给定电压 i U ——电流反馈电压-图2.2.2 双闭环调速系统的动态结构图3系统电路的设计3.1转速给定电路的设计转速检测电路的主要作用是将转速信号变换为与转速称正比的电压信号,滤除交流分量,为系统提供满足要求的转速反馈信号。

转速检测电路主要由测速发电机组成,将测速发电机与直流电动机同轴连接,测速发电机输出端即可获得与转速成正比的电压信号,经过滤波整流之后即可作为转速反馈信号反馈回系统。

转速给定电路设计图如图3.1所示。

n*G图3.1 转速给定电路图3.2系统主电路的设计主电路采用晶闸管三相全控整流,整流变压器将公共电网的交流电压变换成整流桥可用的电源电压,而整流晶闸管组构成三相全控桥,将交流电变换成直流电,从而作为直流电动机的电源电压。

直接整流得到的电流和电压往往有较大的脉动,若直接作为直流电动机的电源电压,将会引起电机振动及噪声。

为此,需要在主电路的直流侧加入平波电抗器和RC滤波电路,从而减小整流器输出电流脉动以及输出电压脉动。

系统主电路图如图3.2所示。

图3.2 系统主电路图主电路中包含了系统的过电保护电路的设计。

晶闸管的过电流保护,如图3.2,通过快速熔断器进行保护。

晶闸管的过电压保护是通过并联RC 电路。

因直流侧的电压也会出现过电压,所以也需要通过RC 电路来保护过电压对电路的影响。

3.3 转速检测电路的设计转速检测电路的主要作用是将转速信号变换为与转速称正比的电压信号,滤除交流分量,为系统提供满足要求的转速反馈信号。

转速检测电路主要由测速发电机组成,将测速发电机与直流电动机同轴连接,测速发电机输出端即可获得与转速成正比的电压信号,经过滤波整流之后即可作为转速反馈信号反馈回系统,其原理图如图3.3所示。

U-图3.3 转速检测电路图3.4电流检测电路的设计电流检测电路的主要作用是获得与主电路电流成正比的电流信号,经过滤波整流后,用于控制系统中。

该电路主要由电流互感器构成,将电流互感器接于主电路中,在输出端即可获得与主电路电流成正比的电流信号,起到电气隔离的作用,其电路原理图如图3.4所示。

TA12TA21TA22TA31TA32图3.4 电流检测电路图3.5触发电路的设计由于设计中采用三相全控桥式整流电路,所以需要设计移向触发电路。

采用K04可控硅移向触发器,K04输出两路相位差180度的移相脉冲,可方便地构成全控桥式触发电路。

该电路具有输出负载能力大,移相性能好,正负半周相位值均衡性好,移相范围宽,对同步电压要求小。

K04电路内部原理图如图3.5所示。

同步电压信图3.5 K04电路内部原理图C1接在T5的基极,组成密勒积分器,形成线性增大的锯齿波,锯齿波的斜率由“3”端外接的电阻和积分电容C1的数值所决定。

T6是比较放大级,锯齿波、外部的移相电压及偏移电压在T6的基极进行综合比较放大,当输入T6基极的电流大于零时,T6导通,外接的R和C将T6集电极的脉冲进行微分,输入T7基极,在T7集电极得到一定宽度的移相脉冲。

在T7集电极上得到的脉冲是正负半周都有的相隔180度的脉冲。

经过T8和T12分别截去副半周和正半周的脉冲,得到正向和负向的触发脉冲。

T9~ T15是功放极,分别对正、负半周的脉冲作功率放大,使两个输出端都有100mA的输出能力。

13、14端提供脉冲列调制和脉冲封锁的控制端。

其中脉冲列调制和脉冲封锁是由KC41和KC42两种器件组成,经过它们的作用后,1和15端输出的脉冲触发序列可直接接与整流电路,使整流电路移相触发。

3.6电流调节器电路的设计电流调节器作为内环的调节器,在转速外环的调节过程中,它的作用是使电流紧紧跟随其给定电压*U(即外环调节器的输出量)变化。

对电网电压的波动i起及时的抵抗作用。

在转速动态过程中,保证获得电动机的最大电流,从而加快动态过程。

当电动机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。

一旦故障消失,系统立即自动恢复正常。

这个作用对系统的可靠运行来说是非常重要的。

所以电流调节器电路的设计至关重要。

由于反馈信号检测中常含有谐波和其他扰动量,所以需加低通滤波,但由于低通滤波的引入,滤波环节也延迟了反馈信号的作用,为了平衡这个延迟作用,在给定信号通道上加入一个等同时间常数的惯性环节,称作给定滤波环节。

所以电流调节器应设计为含有给定滤波和反馈滤波的模拟式PI型电流调节器。

设计电路图如图3.3所示。

图3.3 含有给定滤波和反馈滤波的模拟式PI型电流调节器电路原理图图中*iU为电流给定电压,d-Iβ为电流负反馈电压,eU为调节器的输出即电力电子变换器的控制电压。

根据运算放大器的电路原理,可推导出ii RRK=,iiiCR=τ,i00i41CRT=。

3.7转速调节器电路的设计转速调节器作为外环,是调速系统的主导调节器,它使转速n很快的跟随给定电压*nU变化,稳态时可减小转速误差,如果采用PI调节器,则可实现无静差。

对负载的变化起抵抗作用。

其输出限幅值决定电动机允许的最大电流。

所以转速调节器电路的设计也至关重要。

同电流调节器原理,转速调节器给定滤波和反馈滤波的模拟式PI型转速调节器。

设计电路图如图3.7所示。

图3.7 含有给定滤波和反馈滤波的模拟式PI 型转速调节器电路原理图根据运算放大器的电路原理,可推导出0n n R R K =,n n n C R =τ, on 0on 41C R T =。

3.8 转速微分负反馈电路的设计由于转速有超调,所以需要引入转速微分负反馈。

转速微分负反馈设计电路图如图3.8所示图3.8含有给定滤波和反馈滤波的模拟式PI 型转速微分负反馈电路原理图图中dn C 为微分电容,dn R 为滤波电阻0dn dn R C τ= 0dn dn dn T R C =dndn R C τ=dn0dndn C T R =()N T T n z -n 2-1h 2h 4m *n n ∆++=∑λστ 其中σ为要求允许的超调量。

相关文档
最新文档