人教A版数学必修一1.1.1《集合的含义与表示》教案

合集下载

1.1.1集合的含义与表示教学设计

1.1.1集合的含义与表示教学设计

1.1.1集合的含义与表示一、教材分析本节课选自人教版《普通高中课程标准实验教科书数学》必修1,第一章1.1.1集合的含义与表示。

《课程标准》对本课内容的要求是:通过实例,了解集合的含义,理解元素与集合的属于关系;针对具体问题,能够在自然语言和图形语言的基础上,用符号语言刻画集合。

集合在高中阶段的数学课程中,具有十分重要的地位。

集合是高中阶段数学课程引入的第一个概念,是整个高中数学课程内容的基础,集合的初步知识与后续内容的学习有着密切的联系。

集合是学习掌握使用数学语言的基础,集合形象化的将生活实际问题用数学符号表示出来,从而简化了用数学分析实际问题的语言,为相关数学知识奠定一定的理论基础。

许多重要的高中数学内容,如函数,方程,不等式,立体几何解析几何,概率统计的,都需要用集合的语言来表述相关问题及核对这些内容的后续学习均发挥了显著作用。

集合是集合论中的原始的不定义只描述的概念。

在初中数学不等式解集的定义中涉及过集合,学生已经有了一定的感性认识,在此基础上,本节结合实例引出集合与集合中元素的相关概念,集合中元素的特征,及集合的表示方法等。

二、学情分析学生在初中阶段的学习中,已经有了对集合的初步认知,有了对周围事物的发现总结能力。

对部分粗心大意的学生,培养其细致的观察力,在本节的学习中学生可能会对集合的表示方法:列举法和描述法会有所混淆,通过不断的练习巩固来达到标准要求。

学生可能会用初中熟知的记忆学习方法来学习,鼓励学生理解学习,事半功倍。

三、教学目标1、知识与技能目标:通过实例,了解集合的含义,理解元素与集合的属于关系;针对具体问题,能够在自然语言和图形语言的基础上,用符号语言刻画集合。

2、过程与方法目标:通过集合含义教学,培养学生的抽象思维能力。

通过集合表示方式的教学,培养学生运用数学语言学习数学、进行交流的能力。

树立用集合语言表示数学内容的意识。

3、情感态度与价值观目标:学生在掌握集合相关的基本概念的基础上,解决相关问题,获得数学学习的成就感;学生的数学学习进入到新阶段,培养学生对数学学习的兴趣。

人教课标A版数学必修一1.1.1集合的含义与表示教案

人教课标A版数学必修一1.1.1集合的含义与表示教案

1.1.1《集合的含义与表示》导学案班级组名:姓名【学习目标】A级目标:通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识.B级目标:了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题,提高学生分析问题和解决问题的能力,培养学生的应用意识.【重点难点】重点:集合的基本概念与表示方法.难点:选择恰当的方法表示一些简单的集合.【学习过程】一、课题引入问题1.军训前学校通知:8月30日8点,高一年级学生到操场集合进行军训.试问这个通知的对象是全体的高一学生还是个别学生?问题2.首先教师提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?二、自主探究得出结论阅读课本第2~3页,完成下列探究任务[问题一]①请我们班的全体女生起立!接下来问:“咱班的所有女生能不能构成一个集合啊?”②下面请班上身高在1.75以上的男生起立!他们能不能构成一个集合啊?③其实,生活中有很多东西能构成集合,比如新华字典里所有的汉字可以构成一个集合等等.那么,大家能不能再举出一些生活中的实际例子呢?请你给出集合的含义.④如果用A表示高一(1)班全体学生组成的集合,用a表示高一(1)班的一位同学,b是高一(2)班的一位同学,那么a、b与集合A分别有什么关系?由此看见元素与集合之间有什么关系?⑤世界上最高的山能不能构成一个集合?⑥世界上的高山能不能构成一个集合?⑦问题⑥说明集合中的元素具有什么性质?⑧由实数1、2、3、1组成的集合有几个元素?⑨问题⑧说明集合中的元素具有什么性质?⑩由实数1、2、3组成的集合记为M,由实数3、1、2组成的集合记为N,这两个集合中的元素相同吗?这说明集合中的元素具有什么性质?由此类比实数相等,你发现集合有什么结论?[问题二]阅读课本P3中:数学中一些常用的数集及其记法.快速写出常见数集的记号.[问题三]①前面所说的集合是如何表示的?②阅读课本中的相关内容,并思考:除字母表示法和自然语言之外,还能用什么方法表示集合?③集合共有几种表示法?三、合作交流,解决问题例1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点例2.在数集{2x,x 2-x}中,实数x 的取值范围是什么?例3.试分别用列举法和描述法表示下列集合:(1) 小于10的所有自然数组成的集合;(2) 方程x 2=x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合.四.突破疑难例4.若集合A={}23,21,4a a a ---且3A -∈,求实数a 的值组成的集合.例5.已知集合A={x|ax 2-3x+2=0,a ∈R},若A 中至少有一个元素,求a 的取值范围.【当堂检测】1. (1) A={1,3},判断元素3,5和集合A 的关系,并用符号表示.(2) 所有素质好的人能否表示为集合?(3) A={2,2,4}表示是否准确?(4) A={太平洋,大西洋},B={大西洋,太平洋}是否表示同一集合?2.方程ax 2+5x+c=0的解集是{21,31},则a=________,c=_______.3.已知A={x ∈R |x=abcabc bc bc ac ac ab ab c c b b a a ||||||||||||||++++++,abc ≠0},用列举法表示集合A.4.用列举法表示下列集合:(1) 所有绝对值等于8的数的集合A;(2) 所有绝对值小于8的整数的集合B.5.试分别用列举法和描述法表示下列集合:(1) 方程x 2-2=0的所有实数根组成的集合;(2) 由大于10小于20的所有整数组成的集合.【课后反思】1.今天你的收获是什么?2.你有哪些方面需要努力?【课后巩固提高】1.说出下面集合中的元素:(1) {大于3小于11的偶数};(2) {平方等于1的数};(3) {15的正约数}.2.判断正误:(1)所有属于N 的元素都属于N *. ( )(2)所有属于N 的元素都属于Z . ( )(3)所有不属于N *的数都不属于Z . ( )(4)所有不属于Q 的实数都属于R . ( )(5)不属于N 的数不能使方程4x=8成立. ( )3.用列举法表示下列集合:(1)小于5的正奇数组成的集合;(2)能被3整除且大于4小于15的自然数组成的集合;(3)方程x 2-9=0的解组成的集合;(4){15以内的质数}; (5){x|x-36∈Z ,x ∈Z }. (6){(x,y)|x ∈N 且1≤x<4,y-2x=0};(7){(x,y)|x+y=6,x ∈N ,y ∈N }.4.用描述法分别表示下列集合:(1)二次函数y=x 2图象上的点组成的集合;(2)数轴上离原点的距离大于6的点组成的集合;(3)不等式x-7<3的解集.(4)方程ax+by=0(ab ≠0)的解;(5)平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6)能被3整除的整数.5.定义集合运算:A ⊙B={z|z=xy(x+y),x ∈A,y ∈B},设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为( )A.0B.6C.12D.186.集合A 中的元素由关于x 的方程kx 2-3x+2=0的解构成,其中k ∈R,若A 中仅有一个元素,求k 的值.7. 已知集合A 有三个元素2+a ,2)1(+a ,332++a a(1)若1A ∈,则集合A 中还有哪些元素?(2)若1A ∉,则a 应满足什么条件?拓展提升1.集合A={x|x=a+2b,a ∈Z ,b ∈Z },判断下列元素x=0、121-、231-与集合A 之间的关系.2.已知集合C={x|x=a+b,a ∈A,b ∈B}.(1)若A={0,1,2,3},B={6,7,8,9},求集合C 中所有元素之和S;(2)若A={0,1,2,3,4,…,2 005},B={5,6,7,8,9},试用代数式表示出集合C 中所有元素之和S;(3)联系高斯求S=1+2+3+4+…+99+100的方法,试求出(2)中的S.思路分析:先用列举法写出集合C,然后解决各个小题.答案:(1)列举法表示集合C={6,7,8,9,10,11,12},进而易求得S=6+7+8+9+10+11+12=63.(2)列举法表示集合C={5,6,7,…,2 013,2 014},由此可得S=5+6+7+…+2 013+2 014.(3)高斯求S=1+2+3+4+…+99+100时,利用1+100=2+99=3+98=…=50+51=101,进而得S=1+2+3+4+…+99+100=101×50=5 050.本题(2)中S=5+6+7+…+2 013+2 014=2 019×1 005=2 029 095.。

1.1.1 集合的含义及其表示教案

1.1.1 集合的含义及其表示教案

§1.1.1 集合的含义及其表示一、教学目标(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;初步了解属于关系和集合相等的意义(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;(3)熟记有关数集,培养学生认识事物的能力二、教学重点集合的基本概念与表示方法;三、教学难点运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;四、教学过程1、创设情境,引入新课在小学和初中我们已经接触了一些集合,例如自然数的集合,有理数的集合,不等式x-7<3的解的集合,到一个定点的距离的定长的集合(即圆),到一条线段的两个端点距离相等的点的集合(即这条线段的垂直平分线)……那么集合的含义是什么呢?我们再来看看下面的一些例子:(1)1~20以内的所有质数(2)2010年4月1日之前与我国建立外交关系的所有国家(2)所有的正方形(3)高一<2>班的学生在上数学课(4)方程x2+3x-2=0的所有实数解上面这些例子有什么共同的特征?2、推进新课(1)元素与集合的概念:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。

(2)集合的性质○1确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。

○2互异性:集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个。

○3无序性:集合中的元素间是无次序关系的。

(3)集合相等:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。

练习:1.判断以下元素的全体是否组成集合(1)大于3小于11的偶数。

(2)我国的小河流。

2.说出集合A={a,b,c}和集合B={b, a,c}的关系。

(4)集合与元素的表示:集合通常用大括号或大写的拉丁字母表示,如{1,2,3,4,5}与{高一(2)班的所有学生},又如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……如果a是集合A的元素,就说a属于A,记作a∈A。

集合第一课时教案数学必修第一章集合与函数概念11人教A版

集合第一课时教案数学必修第一章集合与函数概念11人教A版

第一章集合与函数的概念1.1 集合第一课时 1.1.1 集合的含义与表示1 教学目标[1]通过实例,使学生初步理解集合的概念,知道常用数集的概念及其记法[2]使学生体会元素与集合的“属于”关系[3]能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2 教学重点/难点教学重点:集合的基本概念与表示方法理解元素与集合之间的从属关系教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合掌握集合中元素的特性的应用3 专家建议这是高中数学的第一节课。

虽说在小学、初中都已渗透了这方面的内容,但集合这个概念还是很抽象。

在本节中,新的符号会比较多,对学生而言是一个难点,应让学生知道在某种意义上数学是一门研究符号的科学,在第一堂课就对数学符号有一个正确的认识。

要适当穿插学习数学的方法,让学生知道数学要自己摸索自己的学习方法。

在教学中尽可能创设一些情境,让学生自然、快乐、自觉地学习数学。

本节课要记的东西多,可让学生自己阅读,然后在老师的引导下思考问题,进一步解决问题。

在本节课的学习过程中,教师一方面让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想.在教学过程中通过恰当的应用信息技术,从而突破难点4 教学方法启发式讲授法5 教学过程5.1 复习引入【师】我们初中学过的实数自然数都还记得吗?它们之间有什么关系呢?【板演/PPT】5.2 实例引入【师】我们来看下下面这些实例【板演/PPT】⑴ 1~20以内的所有整数;⑵我国从1991~2015的25年内所发射的所有人造卫星;⑶某汽车厂2015年生产的所有汽车;⑷所有的正方形;⑸某中学2015年9月入学的高一学生全体.5.3 新知介绍[1]元素与集合的相关概念【师】我们试着总结下这些事例它们有什么共同点?【生】思考交流【师】我们生活中的很多东西都能构成集合,你能举出一些例子吗?通过以上分析,能给出集合的含义吗【板书\PPT】一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)集合常用大写字母A,B,C,D,…表示,元素常用小写字母a,b,c,d…表示[2]元素与集合的关系【师】如果用A表示我们学校全体高一学生组成的集合,用a表示高一学生中的一位同学,b 是高二年级的一位同学,那么a、b与集合A分别有什么关系?由此可见元素与集合之间有什么关系?我们怎样才能简单明了地表示它们的关系呢?【生】讨论交流【板书\PPT】如果a是集合A的元素,就说a属于集合A,记作a∈A如果b不是集合A的元素,就说b属于集合A,记作b?A[3]集合的表示方法【师】我们用什么方法来表示我们的集合呢【生】讨论与理解【师】归纳总结【板书/PPT】列举法:把集合中的元素一个一个地写在一对大括号内表示集合的方法描述法:把集合中元素共有的,也只有该集合中元素才有的属性描述出来,已确定集合的方法【师】同学们请看题【板书\PPT】用适当的方法表示下列集合(1)方程 -4=0的解组成的集合{-2,2}或{x| -4=0}(2)大于3小于9的实数组成的集合{x|3<x<9,x∈R}(3)所有奇数组成的集合{y|y=2n-1,n∈Z}[4]集合元素的性质【师】我们观察一下实例中的数据它们能不能构成组合它们都有什么特征呢?【生】理解与交流【师】总结【板书/PPT】(1)确定性:集合中的元素必须是确定的,任何一个元素都能明确它是或不是某个集合的元素(2)互异性:集合中的元素必须是互不相同的(3)无序性:集合中的元素是无先后顺序的。

高中数学人教A版必修1《1.1.1集合的含义与表示》教案3

高中数学人教A版必修1《1.1.1集合的含义与表示》教案3

必修一《1.1.1集合的含义与表示》教学案教学目标1.了解集合的含义;理解元素与集合的“属于”关系;熟记常用数集专用符号.2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3.能选择不同的形式表示具体问题中的集合.重点难点教学重点:集合的基本概念与表示方法.教学难点:选择适当的方法表示具体问题中的集合.教学过程导入新课思路1.集合对我们来说可谓是“最熟悉的陌生人”.说它熟悉,是因为我们在现实生活中常常用到“集合”这个名词;比如说,军训的时候,教官是不是经常喊:“高一(4)班的同学,集合啦!”那么说它陌生,是因为我们还未从数学的角度理解集合,从数学的层面挖掘集合的内涵.那么,在数学的领域中,集合究竟是什么呢?集合又有着怎样的含义呢?就让我们通过今天这堂课的学习,一起揭开“集合”神秘的面纱.思路2.你经常会谈论你的家庭,你的班级.其实在讲到你的家庭、班级的时候,你必定在联想构成家庭、班级的成员,例如:家庭成员就是被你称为父亲、母亲、哥哥、姐姐、妹妹、弟弟……的人;班级成员就是与你在同一个教室里一起上课、一起学习的人;一些具有特定属性的人构成的群体,在数学上就是一个集合.那么,在数学中,一些对象的总体怎样才可以构成集合、集合中的元素有哪些特性?集合又有哪些表示方法呢?这就是本节课我们所要学习的内容.思路3.“同学们,在小学和初中的学习过程中,我们已经接触过一些集合的例子,比如说:有理数集合,到一个定点的距离等于定长的点的集合(圆),那么大家是否能够举出更多关于集合的例子呢?”(通过两个简单的例子,引导大家进行类比,运用发散性思维思考说出更多的关于集合的实例,然后教师予以点评.)“那么,集合的含义究竟是什么?它又该如何表示呢?这就是我们今天要研究的课题.”推进新课新知探究提出问题①中国有许多传统的佳节,那么这些传统的节日是否能构成一个集合?如果能,这个集合由什么组成?②全体自然数能否构成一个集合?如果能,这个集合由什么组成?③方程x2-3x+2=0的所有实数根能否构成一个集合?如果能,这个集合由什么组成?④你能否根据上述几个问题总结出集合的含义?讨论结果:①能.这个集合由春节、元宵节、端午节等有限个种类的节日组成,称为有限集.②能.这个集合由0,1,2,3,……等无限个元素组成,称为无限集.③能.这个集合由1,2两个数组成.④我们把研究对象统称为“元素”,把一些元素组成的总体叫做“集合”.提出问题通过以上的学习我们已经知道集合是由一些元素组成的总体,那么是否所有的元素都能构成集合呢?请看下面几个问题.①近视超过300度的同学能否构成一个集合?②“眼神很差”的同学能否构成一个集合?③比较问题①②,说明集合中的元素具有什么性质?④我们知道冬虫夏草既是一种植物,又是一种动物.那么在所有动植物构成的集合中,冬虫夏草出现的次数是一次呢还是两次?⑤组成英文单词every的字母构成的集合含有几个元素?分别是什么?⑥问题④⑤说明集合中的元素具有什么性质?⑦在玩斗地主的时候,我们都知道3,4,5,6,7是一个顺子,那比如说老师出牌的时候把这五张牌的顺序摆成了5,3,6,7,4,那么这还是一个顺子么?类比集合中的元素,一个集合中的元素是3,4,5,6,7,另外一个集合中的元素是5,3,6,7,4,这两个集合中的元素相同么?集合相同吗?这体现了集合中的元素的什么性质?讨论结果:①能.②不能.③确定性.问题②对“眼神很差”的同学没有一个确定的标准,到底怎样才算眼神差,是近视300度?400度?还是说“眼神很差”只是寓意?我们不得而知.因此通过问题①②我们了解到,对于给定的集合,它的元素必须是确定的,即任何一个元素要么在这个集合中,要么不在这个集合中,这就是集合中元素的确定性.④一次.⑤4个元素.e,v,r,y这四个字母.⑥互异性.一个集合中的元素是互不相同的,也就是说,集合中的元素不能重复出现.⑦是.元素相同.集合相同.体现集合中元素的无序性,即集合中的元素的排列是没有顺序的.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.提出问题①如果用A表示所有的自然数构成的集合,B表示所有的有理数构成的集合,a=1.58,那么元素a和集合A,B分别有着怎样的关系?②大家能否从问题①中总结出元素与集合的关系?③A表示“1~20内的所有质数”组成的集合,那么3__________A,4__________A.讨论结果:①a是集合B中的元素,a不是集合A中的元素.②a是集合B中的元素,就说a属于集合B,记作a∈B;a不是集合A中的元素,就说a不属于集合A,记作a∉A.因此元素与集合的关系有两种,即属于和不属于.③3∈A,4∉A.提出问题①从这堂课的开始到现在,你们注意到我用了几种方法表示集合吗?②字母表示法中有哪些专用符号?③除了自然语言法和字母表示法之外,课本还为我们提供了几种集合的表示方法?分别是什么?④列举法的含义是什么?你能否运用列举法表示一些集合?请举例!⑤能用列举法把下列集合表示出来吗?小于10的质数;不等式x-2>5的解集.⑥描述法的含义是什么?你能否运用描述法表示一些集合?请举例!⑦集合的表示方法共有几种?讨论结果:①两种,自然语言法和字母表示法.②非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.③两种,列举法与描述法.④把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.例如“地球上的四大洋”组成的集合可以用列举法表示为{太平洋,大西洋,印度洋,北冰洋},方程x2-3x+2=0的所有实数根组成的集合可以用列举法表示为{1,2}.⑤“小于10的质数”可以用列举法表示出来;“不等式x-2>5的解集”不能够用列举法表示出来,因为这个集合是一个无限集.因此,当集合是无限集或者其元素数量较多而不便于无一遗漏地列举出来的时候,如果我们再用列举法来表示集合就显得不够简洁明了.⑥用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.例如,不等式x-2>5的解集可以表示为{x∈R|x>7};所有的正方形的集合可以表示为{x|x是正方形},也可写成{正方形}.⑦自然语言法、字母表示法、列举法、描述法.应用示例例1下列所给对象不能构成集合的是__________.(1)高一数学课本中所有的难题;(2)某一班级16岁以下的学生;(3)某中学的大个子;(4)某学校身高超过1.80米的学生.活动探究:教师首先引导学生通过读题、审题,了解本题考查的基本知识点——集合中元素的确定性;然后指导学生对4个选项进行逐一判断;判断所给元素是否能构成集合,关键是看是否满足集合元素的确定性.解析:(1)不能构成集合.“难题”的概念是模糊的,不确定的,无明确的标准,对于一道数学题是否是“难题”无法客观地判断.实际上一道数学题是“难者不会,会者不难”,因而“高一数学课本中所有的难题”不能构成集合.(2)能构成集合,其中的元素是某班级16岁以下的学生.(3)因为未规定大个子的标准,所以(3)不能组成集合.(4)由于(4)中的对象具备确定性,因此,能构成集合.答案:(1)(3)例2用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合.活动探究:讲解例2的过程中,可以设计如下问题引导学生:针对例2(1):①自然数中是否含有0?②小于10的自然数有哪些?③如何用列举法表示小于10的所有自然数组成的集合?针对例2(2):①解一元二次方程的方法有哪些?分别是什么?②方程x2=x的解是什么?③如何用列举法表示方程x2=x的所有实数根组成的集合?针对例2(3):①如何判断一个数是否为质数(即质数的定义是什么)?②1~20以内的质数有哪些?③如何用列举法表示由1~20以内的所有质数组成的集合?在用列举法表示集合的过程中,应让学生先明确集合中的元素,再把元素写入“{}”内,并用逗号隔开.解:(1)小于10的自然数有0,1,2,3,4,5,6,7,8,9,设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9};(2)方程x2=x的两个实根为x1=0,x2=1,设方程x2=x的所有实数根组成的集合为B,那么B={0,1};(3)1~20以内的质数有2,3,5,7,11,13,17,19,设由1~20以内的所有质数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.点评:本题主要考查了集合表示法中的列举法,通过本题的教学可以体会利用集合表示教学内容的严谨性和简洁性.例3试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.活动探究:讲解例3的过程中,可以设计如下问题引导学生:针对例3(1)——列举法①方程x2-2=0的解是什么?②如何用列举法表示方程x2-2=0的所有实数根组成的集合?针对例3(1)——描述法①描述法的定义是什么?②所求集合中元素有几个共同特征?分别是什么?③如何用描述法表示所求集合?针对例3(2)——列举法①大于10小于20的所有整数有哪些?②由大于10小于20的所有整数组成的集合用列举法如何表示?针对例3(2)——描述法①所求集合中元素有几个共同特征?分别是什么?②如何用描述法表示所求集合?解:(1)设方程x2-2=0的实数根为x,并且满足x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0};方程x2-2=0的两个实根为x1=-2,x2=2,因此,用列举法表示为A ={-2,2}.(2)设大于10小于20的整数为x,它满足条件x∈Z且10<x<20,因此,用描述法表示为B ={x∈Z|10<x<20};大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为{11,12,13,14,15,16,17,18,19}.点评:例2和例3是通过“问题引导”的方式,使学生逐步逼近答案的过程.在此过程中,既帮助学生理清了解答问题的基本思路,又使得列举法和描述法在实例中得到进一步的巩固.知能训练课后练习1,2.【补充练习】1.考查下列对象能否构成集合:(1)著名的数学家;(2)某校2013年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体.答案:(1)(2)(5)(6)不能组成集合,(3)(4)能组成集合.2.用适当的符号填空:(1)0__________N ,5__________N ,16__________N ;(2)-12__________Q ,π__________Q ,e __________C R Q (e 是个无理数);(3)2-3+2+3=__________{x |x =a +6b ,a ∈Q ,b ∈Q }.答案:(1)∈ ∉ ∈ (2)∈ ∉ ∈ (3)∈3.已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,求实数m 的值. 解:∵2∈A ,∴m =2或m 2-3m +2=2.若m =2,则m 2-3m +2=0,不符合集合中元素的互异性,舍去.若m 2-3m +2=2,求得m =0或3.m =0不合题意,舍去.∴m 只能取3.4.用适当方法表示下列集合:(1)函数y =ax 2+bx +c (a ≠0)的图象上所有点的集合;(2)一次函数y =x +3与y =-2x +6的图象的交点组成的集合;(3)不等式x -3>2的解集;(4)自然数中不大于10的质数集.答案:(1)描述法:{(x ,y )|y =ax 2+bx +c ,x ∈R ,a ≠0}.(2)描述法:⎩⎨⎧ (x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y =x +3y =-2x +6=⎩⎨⎧ (x ,y )⎪⎪⎪⎭⎬⎫⎩⎪⎨⎪⎧ x =1y =4.列举法:{(1,4)}.(3)描述法:{x |x >5}(4)列举法:{2,3,5,7}.拓展提升问题1:设集合P ={x -y ,x +y ,xy },Q ={x 2+y 2,x 2-y 2,0},若P =Q ,求x ,y 的值及集合P ,Q .活动探究:首先,应让学生思考两个数集相等的条件——集合中的元素分别对应相等;然后,再引导学生讨论:本题中集合P ,Q 对应相等时,其元素可能出现的几种情况,并根据讨论的结果进行计算;最后,应当指导学生自主探究,应用集合中元素的性质检验所求结果是否符合要求.解:∵P =Q 且0∈Q ,∴0∈P .若x +y =0或x -y =0,则x 2-y 2=0,从而Q ={x 2+y 2,0,0},与集合中元素的互异性矛盾,∴x +y ≠0且x -y ≠0;若xy =0,则x =0或y =0.当y =0时,P ={x ,x ,0},与集合中元素的互异性矛盾,∴y ≠0;当x =0时,P ={-y ,y ,0},Q ={y 2,-y 2,0},由P =Q 得⎩⎪⎨⎪⎧ -y =y 2,y =-y 2,y ≠0, ① 或⎩⎪⎨⎪⎧ -y =-y 2,y =y 2,y ≠0.②由①得y =-1,由②得y =1,∴⎩⎪⎨⎪⎧ x =0,y =-1或⎩⎪⎨⎪⎧ x =0,y =1,此时P =Q ={1,-1,0}.点评:本题综合性地考查了两数集相等的条件、集合中元素的性质以及学生的运算能力和分类讨论能力.问题2:已知集合A ={x |ax 2-3x +2=0},若A 中的元素至多只有一个,求a 的取值范围. 活动探究:讨论关于x 的方程ax 2-3x +2=0实数根的情况,从中确定a 的取值范围,依题意,方程有一个实数根或两个相等的实数根或无实数根.解:(1)a =0时,原方程为-3x +2=0,x =23,符合题意.(2)a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98.∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合(1)(2),知a =0或a ≥98.点评:“a =0”这种情况最容易被忽视,只有在“a ≠0”的条件下,方程ax 2-3x +2=0才是一元二次方程,才能用判别式Δ解决问题.问题3:设S={x|x=m+2n,m,n∈Z}.(1)若a∈Z,则a是否是集合S中的元素?(2)对S中的任意两个x1,x2,则x1+x2,x1·x2是否属于S?活动探究:针对问题(1)——首先引导学生仔细观察集合S中元素的共同特征与构成方式;然后,再引导学生思考题中所给的元素a能否表示成m+2n的形式;如果能,m和n分别是多少,如果不能,请说明理由;最后小结,判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.针对问题(2)——首先引导学生将x1,x2分别表示出来,再引导大家根据正确的表示结果,推断x1+x2,x1·x2是否是集合S中的元素.解:(1)a是集合S中的元素,a=a+2×0∈S.(2)不妨设x1=m+2n,x2=p+2q,m,n,p,q∈Z.则x1+x2=(m+2n)+(p+2q)=(m+p)+2(n+q),m,n,p,q∈Z.∴x1+x2∈S;x1·x2=(m+2n)·(p+2q)=(mp+2nq)+2(mq+np),m,n,p,q∈Z.∴x1·x2∈S.综上,x1+x2,x1·x2都属于S.点评:本题考查集合的描述法以及元素与集合间的关系.课堂小结本节学习了:(1)集合的含义;(2)集合中元素的性质;(3)元素与集合的关系;(4)集合的表示方法.课后作业习题1.1A组3,4.。

人教版高中数学必修1第一章第一节《集合的含义与表示》第一课时教学设计

人教版高中数学必修1第一章第一节《集合的含义与表示》第一课时教学设计

人教版高中数学必修1第一章第一节《集合的含义与表示》第一课时教学设计一、教材内容分析教学内容为人教版高中数学必修1第一章第一节集合的含义与表示的第一课时。

集合的含义与表示是高中数学生活的开始。

通过学习能够提高同学们对高中数学的学习兴趣。

二、学情分析在初中的时候有基本的数学功底,对知识有一定的积累。

但本节课是高中数学的第一课,这节课同学们要掌握许多新的名词,以及之前没后见过的数学符号,本节课要提高同学们对高中数学生活的兴趣。

三、教学目标1.能够初步掌握集合的概念,感知元素和集合的关系。

2.能够清楚的知道集合中常用的表示符号。

3.了解集合元素的特征:确定性、互异性、无序性。

四、教学重、难点1.教学重点:集合的含义与表示2.教学难点:能够选择准确的表示方法。

五、学法指导以学生的自主学习为主,教师引导为辅。

六、教学用具多媒体七、教学过程的设计(一)创设情境,揭示所学教师引入问题:初中的时候,我们已经接碰到过一些集合,大家能够说一说吗?接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容。

(设计意图:温故而知新。

)(二)引入新知同学们,我们班所有同学站起来。

同学们做动作。

老师提问:老师口令的对象是谁,是全班的同学还是某些同学?老师总结:这些是一个集合,他们是一个整体而不是个体。

所以,今天我们要学习新的一个概念:集合。

多媒体出示课件:1)20以内的所有的偶数;2)我国都有哪些省份;3)所有的三角形;同学们讨论,这些例子有什么共同的特征?概括这些例子的共同特征:一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.老师强调全体我们称为集合,整体中的部分就是集合的元素。

老师指出:集合常用大写字母A,B,C,D,。

表示,元素常用小写字母a,b,c,d。

表示.(设计意图:通过自己的发现,让同学们对集合的概念有明确的认识。

知道正确的区分集合和元素两个概念。

)(三)根据资料,探索集合中元素的特点(1)阅读教材中的相关内容,集合中元素有什么特点?注意个别同学的指导,解答学生疑难.让学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.(2)判断以下元素的全体是否组成集合,并说明理由:(1)大于5小于18的偶数;(2)我国的直辖市。

新课标人教A版高中数学必修1教案完整版

第一章 集合与函数概念§1.1.1集合的含义与表示一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)海南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)国兴中学2004年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

人教版高中数学必修1第一章教案

1.1.1集合的含义通过本节学习应到达如下目标:(1)初步理解集合的含义,知道常用数集及其记法.,初步了解“∈〞关系的意义.。

.(2)通过实例,初步体会元素与集合的〞属于〞关系,从观察分析集合的元素入手,正确地理解集合.(3)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义.(4)学会借助实例分析、探究数学问题(如集合中元素确实定性、互异性).(5)在学习运用集合语言的过程中,增强认识事物的能力,初步培养实事求是、扎实严谨的科学态度.学习重点:集合概念的形成。

学习难点:理解集合的元素确实定性和互异性.学习过程〔一〕自主学习阅读课本,完成以下问题:1、例〔3〕到例〔8〕和例〔1〕〔2〕是否具有相同的特点,它们能否构成集合,如果能,他们的元素是什么?结合现实生活,请你举出一些有关集合的例子。

2、一般地,我们把研究对象称为.,把一些元素组成的总体叫做。

3、集合的元素必须是不能确定的对象不能构成集合。

4、集合的元素一定是的,相同的几个对象归于同一个集合时只能算作一个元素。

5、集合通常用大写的拉丁字母表示,如。

元素通常用小写的拉丁字母表示,如。

6、如果a是集合A 的元素,就说a属于A ,记作,读作〞〞。

如果a不是集合A的元素,就说a不属于A ,记作,读作〞〞。

7、非负整数集〔或自然数集〕,正整数集,整数集,有理数集,有理数集,实数集。

〔二〕合作探讨1、以下元素全体是否构成集合,并说明理由〔1〕世界上最高的山〔2〕世界上的高山。

(3) 2的近似值(4)爱好唱歌的人〔5〕本届奥运会我国取得优秀成绩的运发动。

〔6〕本届奥运会我国参加的所有运动工程。

2、结合具体例子,请你说明你对集合中元素具有的互异性和确定性的理解。

3、如果用A表示高一〔3〕班全体学生组成的集合,用a表示高一〔3〕班的一位同学,b是高一〔4〕班的一位同学,那么a, b与集合A有什么关系?由此可见元素与集合间有什么关系?4、请你指出以下集合中的元素。

人教A版必修一 第一章 1.1.1集合的含义与表示方法 教案

小于10的所有自然数组成的集合;
方程x=x2
③由1到20以内的所有整数组成的集合。
所有正数
所有奇数
x-7<3的解集
y=x中y的取值组成的集合
y=1/x中x的取值组成的集合
一次函数y=x+3与y=-2x+6的图像的交点组成的集合
直角坐标系中,第一象限内所有的点组成的集合(不包括x轴y轴上的点)
对于③可以一一列举,但是20个数都写出来还是有点麻烦的;对于 如果用列举法,会出现省略号,要求读者找规律,才能知道这个集合表示的是正数集,奇数集。而至于 ,用列举法显然不适合。那有没有更好的办法呢?
4.集合的三种表示方法:自然语言,列举法,描述法
我们班所有的学生
我们班所有男生
③我们班所有高个子男生
我们班所有身高超过1米6的超级爱好DOTA游戏的男生。
我们班幸福的人
以上③ 都不是集合,因为它们所研究的对象都是不确定的,高个子?多高算高呢?每个人心中都有不一样的标准。超级爱好,幸福都是模棱两可的。
(三)集合元素的互异性,一个给定的集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的。(四)通常用大写的英文字母A,B,C……表示集合,用小写的啊,a,b,c……表示集合中的元素。如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于集合A,记作aA。
(六)集合的表示方法:列举法,描述法,Venn图
从上面例子,我们已经看到,可以用自然语言描述一个集合。除此之外Байду номын сангаас有什么方法呢?
列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。(强调花括号,元素之间用逗号隔开,无序性,互异性)说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序;集合中同一元素不能重复出现。

集合的含义及其表示1学案(人教A版必修1)

第1章集合§1.1集合的含义及其表示(一)1.一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.集合中的每一个对象称为该集合的元素,简称元.2.集合通常用大写拉丁字母A,B,C…表示,用小写拉丁字母a,b,c,…表示集合中的元素.3.如果a是集合A的元素,就说a属于集合A,记作a∈A,读作“a属于A”,如果a不是集合A的元素,就说a不属于A,记作a A或a∈A,读作“a不属于A”.4.集合中的元素具有确定性、互异性、无序性三种性质.5.实数集、有理数集、整数集、非负整数集、正整数集分别用字母R、Q、Z、N、N*或N+来表示.练习集合的概念【例1】考查下列每组对象能否构成一个集合:(1)著名的数学家;(2)某校2010年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点;(6)3的近似值的全体.规律方法判断指定的对象能不能构成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性.变式迁移1 下面有四个命题:(1)集合N中最小的数是零;(2)0是自然数;(3){1,2,3}是不大于3的自然数组成的集合;(4)若a∈N,b∈N,则a+b的最小值为2.其中正确的命题有________个.集合中元素的特性【例2】已知集合A是由a-2,2a2+5a,12三个元素组成的,且-3∈A,求a.变式迁移2 已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,求实数m的值.元素与集合的关系【例3】若所有形如3a+2b(a∈Z,b∈Z)的数组成集合A,判断6-22是不是集合A中的元素.规律方法 判断一个元素是不是某个集合的元素,就是判断这个元素是否具有这个集合的元素的共同特征.像此类题,主要看能否将所给对象的表达式转化为集合中元素所具有的形式.变式迁移3 集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,判断12-3是不是集合A 中的元素.1.充分利用集合中元素的三大特性是解决集合问题的基础.2.两集合中的元素相同则两集合就相同,与它们元素的排列顺序无关.3.解集合问题特别是涉及求字母的值或范围,把所得结果代入原题检验是不可缺少的步骤.特别是互异性,最易被忽视,必须在学习中引起足够重视.课时作业一、填空题 1.由下列对象组成的集体属于集合的是____ ____(填序号).①不超过π的正整数;②高一数学课本中所有的难题;③中国的大城市;④平方后等于自身的数;⑤某校高一(2)班中考试成绩在500分以上的学生.2.下列四个说法中正确的个数是________.①集合N 中最小数为1;②若a ∈N ,则-a ∉N ;③若a ∈N ,b ∈N ,则a +b 的最小值为2;④所有小的正数组成一个集合.3.用“∈”或“∉”填空.(1)-3______N ;(2)3.14______Q ;(3)13______Z ; (4)-12______R ;(5)1______N *;(6)0________N . 4.集合A ={1,2,3,5},当x ∈A 时,若x -1∉A ,x +1∉A ,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为________.5.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则M 中元素的个数为________. 6.方程x 2-2x +1=0的解集中含有________个元素.7.已知集合S 的三个元素a 、b 、c 是△ABC 的三边长,那么△ABC (填“能”或“不能”)________为等腰三角形.二、解答题8.已知集合M ={-2,3x 2+3x -4,x 2+x -4},若2∈M ,求x .9.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?10.设A 为实数集,且满足条件:若a ∈A ,则11-a∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集.答案:集合的概念【例1】 考查下列每组对象能否构成一个集合:(1)著名的数学家;(2)某校2010年在校的所有高个子同学;(3)不超过20的非负数;(4)方程x 2-9=0在实数范围内的解;(5)直角坐标平面内第一象限的一些点; (6)3的近似值的全体.解 (1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合;类似地,(2)也不能构成集合;(3)任给一个实数x ,可以明确地判断是不是“不超过20的非负数”,即“0≤x ≤20”与“x >20或x <0”,两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合;类似地,(4)也能构成集合;(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;(6)“3的近似值”不明确精确到什么程度,因此很难判断一个数比如“2”是不是它的近似值,所以(6)不能构成集合.规律方法 判断指定的对象能不能构成集合,关键在于能否找到一个明确标准,对于任何一个对象,都能确定它是不是给定集合的元素,同时还要注意集合中元素的互异性、无序性.变式迁移1 下面有四个命题:(1)集合N 中最小的数是零;(2)0是自然数;(3){1,2,3}是不大于3的自然数组成的集合;(4)若a ∈N ,b ∈N ,则a +b 的最小值为2.其中正确的命题有________个.答案 2解析 因为集合N 中最小的数是零,故(1)(2)正确,(3)(4)错误.故正确的命题有2个.集合中元素的特性【例2】 已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .分析 考查元素与集合的关系,体会分类讨论思想的应用.解 ∵-3∈A ,则-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去. 当a =-32时,a -2=-72,2a 2+5a =-3, ∴a =-32. 规律方法 对于解决集合中元素含有参数的问题一定要全面思考,特别关注元素在集合中的互异性.分类讨论的思想是中学数学中的一种重要的数学思想,我们一定要在以后的学习中熟练掌握.变式迁移2 已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,求实数m 的值.解 ∵2∈A ,∴m =2或m 2-3m +2=2.若m =2,则m 2-3m +2=0,不符合集合中元素的互异性,舍去.若m 2-3m +2=2,求得m =0或3.m =0不合题意,舍去.经验证m =3符合题意,∴m 的值为3.元素与集合的关系【例3】 若所有形如3a +2b (a ∈Z ,b ∈Z )的数组成集合A ,判断6-22是不是集合A 中的元素.分析 解答本题首先要理解∈与∉的含义,然后要弄清所给集合是由一些怎样的数构成的,6-22能否化成此形式,进而去判断6-22是不是集合A 中的元素.解 因为在3a +2b (a ∈Z ,b ∈Z )中,令a =2,b =-2,即可得到6-22,所以6-22是集合A 中的元素.规律方法 判断一个元素是不是某个集合的元素,就是判断这个元素是否具有这个集合的元素的共同特征.像此类题,主要看能否将所给对象的表达式转化为集合中元素所具有的形式.变式迁移3 集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,判断12-3是不是集合A 中的元素. 解 ∵12-3=2+3=2+3×1,而2,1∈Z , ∴2+3∈A , 即12-3∈A .1.充分利用集合中元素的三大特性是解决集合问题的基础.2.两集合中的元素相同则两集合就相同,与它们元素的排列顺序无关.3.解集合问题特别是涉及求字母的值或范围,把所得结果代入原题检验是不可缺少的步骤.特别是互异性,最易被忽视,必须在学习中引起足够重视.课时作业一、填空题1.由下列对象组成的集体属于集合的是________(填序号).①不超过π的正整数;②高一数学课本中所有的难题;③中国的大城市;④平方后等于自身的数;⑤某校高一(2)班中考试成绩在500分以上的学生.答案 ①④⑤2.下列四个说法中正确的个数是________.①集合N 中最小数为1;②若a ∈N ,则-a ∉N ;③若a ∈N ,b ∈N ,则a +b 的最小值为2;④所有小的正数组成一个集合.答案 03.用“∈”或“∉”填空.(1)-3______N ;(2)3.14______Q ;(3)13______Z ; (4)-12______R ;(5)1______N *;(6)0________N . 答案 (1) ∉ (2)∈ (3) ∉ (4)∈ (5)∈(6)∈4.集合A ={1,2,3,5},当x ∈A 时,若x -1∉A ,x +1∉A ,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为________.答案 1解析当x=1时,x-1=0∉A,x+1=2∈A;当x=2时,x-1=1∈A,x+1=3∈A;当x=3时,x-1=2∈A,x+1=4∉A;当x=5时,x-1=4∉A,x+1=6∉A;综上可知,A中只有一个孤立元素5.5.已知x、y、z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则M中元素的个数为________.答案 3解析分类讨论:x、y、z中三个为正,两个为正,一个为正,全为负,此时代数式的值分别为4,0,0,-4,根据集合中元素的互异性知,M中的元素为4,0,-4.6.方程x2-2x+1=0的解集中含有________个元素.答案 17.已知集合S的三个元素a、b、c是△ABC的三边长,那么△ABC(填“能”或“不能”)________为等腰三角形.答案不能解析由元素的互异性知a,b,c均不相等.二、解答题8.已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,求x.解当3 x2+3x-4=2时,即x2+x-2=0,则x=-2或x=1.经检验,x=-2,x=1均不合题意.当x2+x-4=2时,即x2+x-6=0,则x=-3或2.经检验,x=-3或x=2均合题意.∴x=-3或x=2.9.设P、Q为两个非空实数集合,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是多少?解∵当a=0时,b依次取1,2,6,得a+b的值分别为1,2,6;当a=2时,b依次取1,2,6,得a+b的值分别为3,4,8;当a=5时,b依次取1,2,6,得a+b的值分别为6,7,11.由集合元素的互异性知P+Q中元素为1,2,3,4,6,7,8,11共8个.10.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明(1)若a∈A,则11-a∈A.又∵2∈A,∴11-2=-1∈A.∵-1∈A,∴11-(-1)=12∈A.∵12∈A,∴11-12=2∈A.∴A中另外两个元素为-1,1 2.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.∴a≠11-a,∴A不可能为单元素集.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省古蔺县中学高中数学必修一:1.1.1集合的含义与表示教案
一. 教学目标:
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
(5)培养学生抽象概括的能力.
二. 教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
三. 学法与教学用具
1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.
2. 教学用具:投影仪.
四. 教学思路
(一)创设情景,揭示课题
1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗? 引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.
2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.
(二)研探新知
1.教师利用多媒体设备向学生投影出下面9个实例:
(1)1—20以内的所有质数;
(2)我国古代的四大发明;
(3)所有的正方形;
(4)到一个角的两边距离相等的所有的点;
(5)方程2
560x x -+=的所有实数根;
(6)不等式30x ->的所有解;
(7)国兴中学2011年9月入学的高一学生的全体.
2.教师组织学生分组讨论:这9个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.
一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.
(三)质疑答辩,排难解惑,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流.
让学生充分发表自己的建解.
3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.
4.教师提出问题,让学生思考
(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一
(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.
如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.
如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.
(2)教师举例说明元素与集合的关系,并用数学符号分别表示.
(3)让学生完成教材第6页练习第1题.
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.
6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

(四)巩固深化,反馈矫正
教师投影学习:
(1)用自然语言描述集合{1,3,5,7,9};
(2)用例举法表示集合{|18}A x N x =∈≤<
(3)试选择适当的方法表示下列集合:教材第6页练习第2题.
(五)归纳整理,整体认识
在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习过哪些知识内容? 2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
(六)承上启下,留下悬念
1.课后书面作业:第13页习题1.1A 组第4题.
2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?。

相关文档
最新文档