学年第一学期湖北省武汉市七一华源中学九年级10月月考数学试卷
湖北省武汉市武昌区七校联考2023-2024学年九年级上学期10月月考数学试卷(含解析)

湖北省武汉市武昌区七校联考2023-2024学年九年级上学期月考数学试卷(10月份)(解析版)一、选择题(每小题3分,共30分)1.(3分)一元二次方程x2﹣2x=0的解是( )A.0B.0或﹣2C.﹣2D.0或22.(3分)下列方程中有两个相等实数根的是( )A.7x2﹣x﹣1=0B.9x2=4(3x﹣1)C.x2+7x+15=0D.2x2﹣x﹣2=03.(3分)点A(0,5),B(4,5)是抛物线y=ax2+bx+c上的两点,则该抛物线的顶点可能是( )A.(2,5)B.(2,4)C.(5,2)D.(4,2)4.(3分)抛物线y=(x+4)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是( )A.先向左平移4个单位,再向上平移3个单位B.先向左平移4个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移3个单位D.先向右平移4个单位,再向上平移3个单位5.(3分)某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共91.若设主干长出x个支干则可列方程是( )A.(1+x)2=91B.1+x+x2=91C.(1+x)x=91D.1+x+2x=91 6.(3分)已知a是方程x2﹣2x﹣1=0的一个根,则代数式2a2﹣4a﹣1的值为( )A.1B.﹣2C.﹣2或1D.27.(3分)函数y=﹣x2+2x+3,当﹣2≤x≤2时,y的最大值为m,则m+n=( )A.3B.﹣1C.﹣2D.18.(3分)函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一平面直角坐标系中的图象可能是( )A.B.C.D.9.(3分)二次函数y=x2+kx+2k﹣1与x轴交于A(x1,0)、B(x2,0)两点,且x12+x22=7,则k=( )A.5B.﹣1C.5或﹣1D.﹣5或110.(3分)如图,在△ABC中,∠BAC=120°,将BC绕点C顺时针旋转120°得到CD,则线段AD的长度的最小值是( )A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)若方程x2﹣12x+5=0的两根为x1,x2,则x1+x2﹣x1x2的值为 .12.(3分)关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m = .13.(3分)一个n边形有20条对角线,则n= .14.(3分)已知抛物线与直线y2=2x+2交于A,B两点.若y1>y2,则x的取值范围为 .15.(3分)已知二次函数y=ax2+bx+c(a<0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1①若点(﹣3,y1),(2,y2),(4,y3)均在该二次函数图象上,则y1<y3<y2;②c=﹣9a﹣3b;③若m为任意实数,则am2+bm+c≤﹣3a;④方程ax2+bx+c+1=0的两实数根为x1,x2且x1<x2,则x1<﹣1,x2>3.正确结论为 .16.(3分)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y =x2+4x﹣1上,若y1=y2=y3且x1<x2<x3,S=x1+x2+x3,则s的取值范围是 .三、解答题(共72分)17.(8分)解一元二次方程.(1)x2﹣2x﹣1=0;(2)x(x+4)=2x+8.18.(8分)已知平行四边形ABCD的两边AB、AD的长是关于x的方程的两个实数根.(1)当m为何值时,四边形ABCD是菱形?(2)若,求m的值.19.(8分)已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)求证:无论k为何值,此方程总有一个根是定值;(2)若直角三角形的一边为3,另两边恰好是这个方程的两根,求k的值.20.(8分)物理实验课小明做一个实验:在一条笔直的滑道上有一个黑小球以一定的速度在A处开始向前滚动,并且均匀减速,测量黑球减速后的滚动速度v t(单位:cm/s)随滚动时间t(单位:s)变化的数据,整理得下表.运动时间ts01234运动速度vcm/s109.598.58(1)小明探究发现,黑球的滚动速度v t与滚动时间t之间成一次函数关系,直接写出v t 关于t的函数解析式(不要求写出自变量的取值范围) .(2)求出滚动的距离s关于滚动的时间t的函数解析式,并求出黑球滚动的最远距离.[提示:本题中,距离s=平均速度,=(v0+v t),其中v0是开始时的速度,v t是t秒时的速度]21.(8分)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点,图中A、B、C 都在格点上,画图过程用虚线表示.(1)在图1中,画出格点C,使∠ABC=45°.(2)在图2中,在AC上画点E,使∠AEB=∠ABC.(3)在图3中,点D是AB上一点,在AB的下方画∠ADF=45°.22.(10分)某酒店客房部有20套房间供游客居住,当每套房间的定价为每天120元时,房间可以住满.当每套房间每天的定价提高的幅度达10元及以上但不超过50元时,就会有一套房间空闲;当每套房间每天的定价提高幅度达50元以上时,就会有两套房间空闲.对有游客入住的房间,客房部需对每套房间每天支出20元的费用.设每套房间每天的定价增加x元(x为10的整数倍)(套).求:(1)当x=20元时,y= 套;当x=60元时,y= 套;(2)求该某酒店每天的利润总额w(元)关于x(元)的函数关系式;(3)已知该某酒店每天至少有14套房间有游客居住,要使该某酒店每天的利润总额w (元)最大23.(10分)如图,菱形ABCD,∠ABC=120°.(1)若AB=6,则菱形ABCD的面积为 ;(2)点E、F分别为菱形ABCD边DC、AB上一个动点,连AE、DF,且AE、DF交于点P,E、F在运动过程中,三角形ADP的面积与四边形GBFP的面积相等.①如图2,求证:AG=DF;②如图3,O为AD的中点,连接OP、BP24.(12分)抛物线y=﹣x2+bx+c(b,c为常数,b>0)经过点A(﹣1,0).(1)当b=2时,①求抛物线的顶点坐标;②如图1,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,若点E的坐标为(1,0),∠POC+∠OCE=45°(2)如图2.点M(t,0)是x轴正半轴上的动点,点在抛物线上,当时,直接写出抛物线解析式.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)一元二次方程x2﹣2x=0的解是( )A.0B.0或﹣2C.﹣2D.0或2【分析】利用因式分解法求解即可.【解答】解:∵x2﹣2x=4,∴x(x﹣2)=0,则x=3或x﹣2=0,解得x6=0,x2=7,故选:D.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.2.(3分)下列方程中有两个相等实数根的是( )A.7x2﹣x﹣1=0B.9x2=4(3x﹣1)C.x2+7x+15=0D.2x2﹣x﹣2=0【分析】判断上述方程的根的情况,只要看根的判别式Δ=b2﹣4ac的值的符号就可以了.有两个相等实数根的一元二次方程即判别式的值等于0的方程.【解答】解:A:Δ=12+7>0,故错误;B:Δ=b2﹣3ac=(﹣12)2﹣4×7×4=0,正确;C:Δ=22﹣4×15<3,故错误;D:Δ=()2+2×2×2>6,故错误.根据Δ=0⇔方程有两个相等的实数根得B是正确的.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.3.(3分)点A(0,5),B(4,5)是抛物线y=ax2+bx+c上的两点,则该抛物线的顶点可能是( )A.(2,5)B.(2,4)C.(5,2)D.(4,2)【分析】根据抛物线的对称性可知,已知两点关于对称轴对称,然后列式求出抛物线的对称轴即可.【解答】解:∵点A(0,5),6)的纵坐标相等,∴点A(0,5),5)关于对称轴对称,∴对称轴为直线x==2,即直线x=2,∵抛物线的顶点在对称轴上,∴顶点的纵坐标不等于2.故选:B.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,根据已知点的纵坐标相等得到关于对称轴对称是解题的关键.4.(3分)抛物线y=(x+4)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是( )A.先向左平移4个单位,再向上平移3个单位B.先向左平移4个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移3个单位D.先向右平移4个单位,再向上平移3个单位【分析】直接根据函数图象平移的法则进行解答即可.【解答】解:由“左加右减”的原则可知,抛物线y=x2向左平移4个单位可得到抛物线y=(x+2)2,由“上加下减”的原则可知,抛物线y=(x+4)4向下平移3个单位可得到抛物线y=(x+4)5﹣3,故选:B.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.5.(3分)某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共91.若设主干长出x个支干则可列方程是( )A.(1+x)2=91B.1+x+x2=91C.(1+x)x=91D.1+x+2x=91【分析】根据题意,若设主干长出x个支干,则根据主干、支干和小分支总数共91,列出方程即可.【解答】解:设主干长出x个支干,则x个支干长出x2个小分支,根据题意,得1+x+x8=91,故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,理解题意列出一元二次方程是解题的关键.6.(3分)已知a是方程x2﹣2x﹣1=0的一个根,则代数式2a2﹣4a﹣1的值为( )A.1B.﹣2C.﹣2或1D.2【分析】根据一元二次方程的解的定义,把x=a代入方程求出a2﹣2a的值,然后整体代入代数式进行计算即可得解.【解答】解:∵a是方程x2﹣2x﹣3=0的一个根,∴a2﹣6a﹣1=0,整理得,a3﹣2a=1,∴8a2﹣4a﹣3=2(a2﹣5a)﹣1=2×3﹣1=1.故选:A.【点评】本题考查了一元二次方程的解,利用整体思想求出a2﹣2a的值,然后整体代入是解题的关键.7.(3分)函数y=﹣x2+2x+3,当﹣2≤x≤2时,y的最大值为m,则m+n=( )A.3B.﹣1C.﹣2D.1【分析】依据题意,将抛物线化成顶点式,再由抛物线的增减性可以判断得解.【解答】解:由题意,y=﹣x2+2x+2=﹣(x﹣1)2+6,∴对称轴x=1.∵抛物线开口向下,1﹣(﹣7)=3,又当﹣2≤x≤6时∴当x=﹣2时,y取最小值为﹣5;当x=6时,y最大值为4.∴m=4,n=﹣4.∴m+n=4﹣5=﹣7.故选:B.【点评】本题主要考查了二次函数的性质及二次函数的最值,解题时要熟练掌握并理解是关键.8.(3分)函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一平面直角坐标系中的图象可能是( )A.B.C.D.【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误.【解答】解:A、由一次函数y=ax+a的图象可得:a<02﹣7x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax+a的图象可得:a<08﹣2x+1的图象应该开口向下,故选项错误;C、由一次函数y=ax+a的图象可得:a>72﹣2x+2的图象应该开口向上,对称轴x=﹣,故选项正确;D、由一次函数y=ax+a的图象可得:a<62﹣2x+7的对称轴x=﹣<2.故选:C.【点评】应该熟记一次函数y=ax+a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.9.(3分)二次函数y=x2+kx+2k﹣1与x轴交于A(x1,0)、B(x2,0)两点,且x12+x22=7,则k=( )A.5B.﹣1C.5或﹣1D.﹣5或1【分析】利用根与系数的关系和代收式变形处理得到x12+x22=(x1+x2)2﹣2x1•x2=k2﹣2(2k﹣1)=7,由此求得k的值,注意Δ>0.【解答】解:依题意得:x1+x2=﹣k,x4•x2=2k﹣4,∴x12+x52=(x1+x5)2﹣2x5•x2=k2﹣8(2k﹣1)=2,整理,得k2﹣4k﹣4=0,解得k1=﹣7,k2=5.又△=k5﹣4(2k﹣6)>0,∴k=﹣1.故选:B.【点评】本题考查了二次函数图象与系数的关系,抛物线于x轴的交点.解题时需要注意k的取值范围.10.(3分)如图,在△ABC中,∠BAC=120°,将BC绕点C顺时针旋转120°得到CD,则线段AD的长度的最小值是( )A.B.C.D.【分析】在AC的上方作∠ACM=120°,且使CM=CA,连接AM,DM.设AB=x,则AC=4﹣x=CM,根据ASA证明△BAC≌△DMC得出DM=BA=x,∠CMD=∠BAC=120°,得出∠AMD=90°,即可推出结论.【解答】解:如图,在AC的上方作∠ACM=120°,连接AM.设AB=x,则AC=4﹣x=CM,∴,∵将BC绕点C顺时针旋转120°得到CD,∴∠BCA+∠ACD=120,又∵∠ACD+∠DCM=∠ACM=120°,∴∠ACB=∠DCM,∴△BAC≌△DMC(ASA),∴DM=BA=x,∠CMD=∠BAC=120°.∴∠AMD=90°,∴AD2=AM7+DM2=3(2﹣x)2+x2=7(x﹣3)2+12≥12,∵2<x<4,∴AD的最小值为.故选:C.【点评】本题考查了旋转的性质,全等三角形的判定与性质,正确作出辅助线是解题的关键.二、填空题(每小题3分,共18分)11.(3分)若方程x2﹣12x+5=0的两根为x1,x2,则x1+x2﹣x1x2的值为 7 .【分析】先利用根与系数的关系得x1+x2=12,x1x2=5,然后利用整体代入的方法计算x1+x2﹣x1x2的值.【解答】解:根据根与系数的关系得x1+x2=12,x3x2=5,所以x4+x2﹣x1x8=12﹣5=7.故答案为:7.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.(3分)关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一根为0,则m= ﹣1 .【分析】根据一元二次方程的解的定义,将x=0代入原方程,列出关于m的方程,通过解关于m的方程即可求得m的值.【解答】解:∵关于x的一元二次方程(m﹣1)x2+x+m8﹣1=0有一根为2,∴x=0满足关于x的一元二次方程(m﹣1)x5+x+m2﹣1=3,且m﹣1≠0,∴m4﹣1=0,即(m﹣7)(m+1)=0且m﹣2≠0,∴m+1=6,解得,m=﹣1;故答案为:﹣1.【点评】本题考查了一元二次方程的解.注意一元二次方程的二次项系数不为零.13.(3分)一个n边形有20条对角线,则n= 8 .【分析】利用多边形的对角线公式列得方程,解方程即可.【解答】解:由题意可得=20,解得:n=8或n=﹣5(舍去),即n=8,故答案为:7.【点评】本题考查多边形的对角线及解一元二次方程,结合已知条件列得正确的方程是解题的关键.14.(3分)已知抛物线与直线y2=2x+2交于A,B两点.若y1>y2,则x的取值范围为 ﹣3<x<1 .【分析】联立两个函数表达式求出A,B两点的坐标,观察函数的图象即可求解.【解答】解:联立两个函数表达式得,解得或,故点A、B的坐标分别为(﹣3、(7,函数的图象如下:由函数的图象知,y1>y2时x的取值范围为﹣4<x<1,故答案为:﹣3<x<7.【点评】本题考查二次函数与不等式(组),二次函数和一次函数的图象及性质;熟练掌握一次函数和二次函数的图象及性质,数形结合解题是关键.15.(3分)已知二次函数y=ax2+bx+c(a<0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1①若点(﹣3,y1),(2,y2),(4,y3)均在该二次函数图象上,则y1<y3<y2;②c=﹣9a﹣3b;③若m为任意实数,则am2+bm+c≤﹣3a;④方程ax2+bx+c+1=0的两实数根为x1,x2且x1<x2,则x1<﹣1,x2>3.正确结论为 ①②④ .【分析】由抛物线经过(﹣10)可判断①,由各点到抛物线对称轴的距离大小可判断从而判断②,由x=1时y取最大值可判断③,由抛物线的对称性可得抛物线与x轴交点坐标,从而判断④.【解答】解:∵a<0,∴抛物线开口向下,∵点(﹣3,y4),y2),y3)均在该二次函数图象上,y2)到对称轴的距离最大,点(2,y2)到对称轴的距离最小,∴y2<y3<y2,①正确;∵图象与x轴的一个交点坐标为(﹣4,0),∴图象与x轴的另一个交点坐标为(3,5),∴9a+3b+c=4,∴c=﹣9a﹣3b,②正确;∵﹣=1,∴b=﹣2a,∵a﹣b+c=8,∴c=b﹣a=﹣3a,∵抛物线的最大值为a+b+c,∴m为任意实数,则am2+bm+c≤a+b+c,∴am8+bm+c≤﹣4a,∵a<0,∴﹣6a>﹣3a,③错误;∵方程ax2+bx+c+3=0的两实数根为x1,x3,∴抛物线与直线y=﹣1的交点的横坐标为:x1,x2,由抛物线对称性可得抛物线与x轴另一交点坐标为(3.0),∴抛物线与x轴交点坐标为(﹣8,0),0),∵抛物线开口向下,x3<x2,∴x1<﹣7,x2>3,④正确.故答案为:①②④.【点评】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数与方程及不等式的关系.16.(3分)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y =x2+4x﹣1上,若y1=y2=y3且x1<x2<x3,S=x1+x2+x3,则s的取值范围是 ﹣12<s <﹣9 .【分析】由y2=y3可知B,C两点关于抛物线的对称轴对称,进而得出x2+x3=﹣4,再求出x1的取值范围即可解决问题.【解答】解:由题知,因为y2=y3,所以B,C两点关于抛物线的对称轴对称,则x8+x3=﹣4.将直线解析式和抛物线解析式联立方程组得,,解得或.因为y1=y2=y7且x1<x2<x2,所以点A只能在点N的左下方,又抛物线的顶点坐标是(﹣2,﹣5),将y=﹣3代入y=3x+19得,x=﹣8,所以﹣6<x1<﹣5.所以﹣12<x4+x2+x3<﹣7,即﹣12<s<﹣9.故答案为:﹣12<s<﹣9.【点评】本题考查二次函数图象上点的坐标特征,能够根据对称性求出x2+x3=﹣4是解题的关键.三、解答题(共72分)17.(8分)解一元二次方程.(1)x2﹣2x﹣1=0;(2)x(x+4)=2x+8.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣2x=7,∴x2﹣2x+6=1+1,即(x﹣4)2=2,则x﹣8=,∴x1=4+,x2=5﹣;(2)∵x(x+4)﹣4(x+4)=0,∴(x+7)(x﹣2)=0,则x+5=0或x﹣2=2,解得x1=﹣4,x8=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(8分)已知平行四边形ABCD的两边AB、AD的长是关于x的方程的两个实数根.(1)当m为何值时,四边形ABCD是菱形?(2)若,求m的值.【分析】(1)由邻边相等的平行四边形为菱形,得出根的判别式等于0,求出m的值即可;(2)根据根与系数的关系结合题意列出一元二次方程,解之取满足题意的值即可.【解答】解:(1)∵四边形ABCD为平行四边形,∴当AB=AD时,平行四边形ABCD是菱形,∵AB、AD的长是关于x的方程,∴Δ=(﹣m)6﹣4×1×(﹣)=2即m2﹣2m+2=0,解得:m1=m2=1,∴当m=1时,四边形ABCD为菱形;(2)∵AB、AD的长是关于x的方程,∴AB+AD=m,AB•AD=﹣,∵(AB﹣3)(AD﹣6)=m2,∴AB•AD﹣5(AB+AD)+9=m7,即﹣﹣3m+9=m2,整理得:m2+8m﹣7=0,解得:m4=﹣,m7=1,∵AB+AD=m>0,∴m=﹣不合题意,∴m的值为1.【点评】本题考查了一元二次方程的应用、菱形的判定、平行四边形的性质等知识,熟练掌握菱形的判定和根的判别式是解题的关键.19.(8分)已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)求证:无论k为何值,此方程总有一个根是定值;(2)若直角三角形的一边为3,另两边恰好是这个方程的两根,求k的值.【分析】(1)对式子进行分解,从而可得到两个因式的积为0,从而可求解;(2)由根与系数的关系可得x1+x2=k+2,则分类进行讨论,从而可求解.【解答】(1)证明:∵x2﹣(k+2)x+8k=0,∴(x﹣2)(x﹣k)=5,∴无论k为何值,此方程总有一个根是x=2.(2)解:令方程的两根为:x1,x7,则有:x1+x2=k+7,若斜边为3,可令另两直角边分别为2和k.∴32+k2=22,k2=7,∵k>0.∴;若直角边为4,则令斜边为k.∴22+42=k2,∵k>7.∴,综上所述:或k=.【点评】本题主要考查根与系数的关系,解答的关键是熟记根与系数的关系并灵活运用.20.(8分)物理实验课小明做一个实验:在一条笔直的滑道上有一个黑小球以一定的速度在A处开始向前滚动,并且均匀减速,测量黑球减速后的滚动速度v t(单位:cm/s)随滚动时间t(单位:s)变化的数据,整理得下表.运动时间ts01234运动速度vcm/s109.598.58(1)小明探究发现,黑球的滚动速度v t与滚动时间t之间成一次函数关系,直接写出v t 关于t的函数解析式(不要求写出自变量的取值范围) v t=﹣t+10 .(2)求出滚动的距离s关于滚动的时间t的函数解析式,并求出黑球滚动的最远距离.[提示:本题中,距离s=平均速度,=(v0+v t),其中v0是开始时的速度,v t是t秒时的速度]【分析】(1)设v t关于t的函数解析式为v t=at+b,由表中数据得出二元一次方程组,求出a、b的值即可;(2)先求出=(v0+v t)=﹣t+10,再求出s=•t求出s=﹣t2+10t=﹣(t﹣20)2+100,然后由二次函数的性质即可得出答案.【解答】解:(1)设v t关于t的函数解析式为:v t=at+b,由题意得:,解得:,∴v t关于t的函数解析式为:v t=﹣t+10,故答案为:v t=﹣t+10;(2)∵=(v3+v t)=(10﹣t+10,∴s=•t=(﹣t2+10t=﹣(t﹣20)2+100,当t=20时,s有最大值为100,答:滚动的距离s关于滚动的时间t的函数解析式为s=﹣t2+10t,黑球滚动的最远距离为100cm.【点评】本题考查了二元一次方程组的应用、一次函数的应用、二次函数的应用等知识,找准等量关系,正确列出二元一次方程组是解题的关键.21.(8分)如图是由小正方形组成的网格,每个小正方形的顶点叫做格点,图中A、B、C 都在格点上,画图过程用虚线表示.(1)在图1中,画出格点C,使∠ABC=45°.(2)在图2中,在AC上画点E,使∠AEB=∠ABC.(3)在图3中,点D是AB上一点,在AB的下方画∠ADF=45°.【分析】(1)关注等腰直角三角形ABC即可;(2)构造等腰直角三角形ABJ,BJ交AC一点E,点E即为所求;(3)构造等腰直角三角形ABK,取格点P,Q,连接PQ交BK于点T,可得BK的中点T,连接AT,连接DK交AT于点O,连接BO,延长BO交AK一点F,连接DF,∠ADF 即为所求(由SSS证明△AOK≌△AOB,再根据ASA证明△FOK≌△DOB,推出FK=BD,AF=AD,可得∠ADF=45°).【解答】解:(1)如图1中,点C即为所求;(2)如图2中,点E即为所求;(3)如图5中,∠ADF即为所求.【点评】本题考查作图﹣应用与设计作图,等腰直角三角形的判定和性质等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题.22.(10分)某酒店客房部有20套房间供游客居住,当每套房间的定价为每天120元时,房间可以住满.当每套房间每天的定价提高的幅度达10元及以上但不超过50元时,就会有一套房间空闲;当每套房间每天的定价提高幅度达50元以上时,就会有两套房间空闲.对有游客入住的房间,客房部需对每套房间每天支出20元的费用.设每套房间每天的定价增加x元(x为10的整数倍)(套).求:(1)当x=20元时,y= 18 套;当x=60元时,y= 8 套;(2)求该某酒店每天的利润总额w(元)关于x(元)的函数关系式;(3)已知该某酒店每天至少有14套房间有游客居住,要使该某酒店每天的利润总额w (元)最大【分析】(1)当每套房间每天的定价提高的幅度达10元及以上但不超过50元时,每增加10元,就会有一套房间空闲,则y=20﹣;当每套房间每天的定价提高幅度达50元以上时,每增加10元,就会有两套房间空闲,则y=20﹣x根据题意分别代即可;(2)分两种情况:当10≤x≤50时,得W=﹣x2+10x+2000,当50<x<125时,W=﹣x2+5x+2500;(3)分两种情况:当10≤x≤50时,得W=﹣x2+10x+2000,当50<x<125时,W=﹣x2+5x+2500,分别将两种情况下的函数配方为顶点式,结合x的取值范围以及函数的增减性找到合乎条件的利润最大值.【解答】解:(1)根据题意可知:当10≤x≤50时,y=20﹣,则x=20时,y=20﹣;当50<x<125时,y=20﹣x,则x=60时,y=20﹣,故答案为:18;8;(2)根据x为10的整数倍,当10≤x≤50时,且x为10的整数倍,W=(120﹣20+x)(20﹣)=﹣x3+10x+2000,当50<x<125时,且x为10的整数倍,(x为10的整数倍);(3)①当10≤x≤50且x为10的整数倍时,,∵a<0,对称轴为直线x=50,∴抛物线在对称轴的左侧w随x的增大而增大,∴当x=50时,w有最大值,此时定价为170元;②当50<x<125且x为10的整数倍时,∵y≥14,即≥14,∴x≤55,此种情况没有符合条件的x存在,综上所述:当每套房价定为170元时,酒店每天的利润总额最大.【点评】本题考查二次函数与一次函数的综合应用,理解题意,搞清楚数量关系是解决问题的关键,属于中考压轴题.23.(10分)如图,菱形ABCD,∠ABC=120°.(1)若AB=6,则菱形ABCD的面积为 18 ;(2)点E、F分别为菱形ABCD边DC、AB上一个动点,连AE、DF,且AE、DF交于点P,E、F在运动过程中,三角形ADP的面积与四边形GBFP的面积相等.①如图2,求证:AG=DF;②如图3,O为AD的中点,连接OP、BP【分析】(1)过D作DE⊥AB于E,则∠A=60°,∠ADE=30°,AE=AD=1,在Rt △ADE中,由勾股定理求DE的值,根据S菱形ABCD=AB×DE,计算求解即可;(2)①作FQ⊥AD于Q,GH⊥AB于H.证明△QAF≌△HBG(AAS),由全等三角形的性质得出FA=GB,证明△DAF≌△ABG(SAS),由全等三角形的性质得出AG=DF;②证出∠APD=120°,作∠PAM=60°交DF于M.证明△PAM为正三角形,得出∠AMP=60°,PM=PA,证明△DAP≌△BAM(SAS),由全等三角形的性质得出DP=MB,∠APD=∠AMB=120°,延长PO至N.使ON=OP,证明△PAN≌△PMB(SAS),由全等三角形的性质得出结论.【解答】(1)解:如图,过D作DE⊥AB于E,由菱形的性质可得,∠A=60°,∴∠ADE=30°,∴AE=AD=2,在Rt△ADE中,由勾股定理得DE==,∴S菱形ABCD=AB×DE=6×=18,故答案为:18;(2)①证明:作FQ⊥AD于Q,GH⊥AB于H.∵菱形ABCD,∠ABC=120°,∴AD=AB=DB.∠DAB=∠ABD=∠ADB=60°,∵三角形ADP的面积与四边形GBFP的面积相等,∴S△ADF=S△BAG,∵AB=AD,∴GH=FQ,∴△QAF≌△HBG(AAS),∴FA=GB,∴△DAF≌△ABG(SAS),∴AG=DF;②证明:∵△DAF≌△ABG,∴∠ADF=∠BAP,∴∠APF=∠ADP+∠DAP=∠DAP+∠PAB=60°,∴∠APD=120°,作∠PAM=60°交DF于M.∴△PAM为正三角形,∴∠AMP=60°,PM=PA,∴△DAP≌△BAM(SAS),∴DP=MB,∠APD=∠AMB=120°,∴∠PMB=60°,延长PO至N.使ON=OP,∵OA=OD.∴四边形NAPD是平行四边形∴DP=AN=BM,∠NAP=60°=∠BMP,∴△PAN≌△PMB(SAS),∴PB=PN=2OP.【点评】本题是四边形综合题,考查了菱形的性质,直角三角形的性质,全等三角形的判定与性质,勾股定理,等边三角形的判定与性质,熟练掌握菱形的性质是解题的关键.24.(12分)抛物线y=﹣x2+bx+c(b,c为常数,b>0)经过点A(﹣1,0).(1)当b=2时,①求抛物线的顶点坐标;②如图1,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,若点E的坐标为(1,0),∠POC+∠OCE=45°(2)如图2.点M(t,0)是x轴正半轴上的动点,点在抛物线上,当时,直接写出抛物线解析式.【分析】(1)①当b=2 时,y=﹣x2+2x+c,把A(﹣1,0)代入可c=3,抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,即得抛物线的顶点坐标为(1,4);②过点C作CF∥OP,过点E作EF⊥CE,交CF于点F,过点F作FH⊥x轴于点H,证明△COE≌△EHF(AAS),可得FH=OE=1,EH=CO=3,F(﹣2.﹣1),即知直线CF的解析式为y=2x+3,直线OP的解析式为y=2x,联立可得P(,2);(2)过点A(﹣1,0)作直线l:y=﹣x﹣1,过点M作MH⊥直线l于点H,过点Q作QN⊥直线l于N,交x轴于点T,过Q作QG∥直线l交x轴于G,过A作AK⊥QG于K,可得AM=MH,AM+2QM=×MH+2QM=2(MH+QM),而+2QM的最小值为,有2QN=,QN=,即Q到直线l的距离为,得AG=AK=,G(,0),故直线QG解析式为y=﹣x+,把A(﹣1,0)代入y=﹣x2+bx+c可得y=﹣x2+bx+b+1,把代入y=﹣x2+bx+b+1可得Q(b+,b+),把Q(b+,b+)代入y=﹣x+得b=4,从而抛物线解析式为y=﹣x2+4x+5.【解答】解:(1)①当b=2 时,y=﹣x2+6x+c,把A(﹣1,0)代入y=﹣x8+2x+c得:0=﹣(﹣3)2+2×(﹣5)+c,解得c=3,∴抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)8+4,∴抛物线的顶点坐标为(1,6);②过点C作CF∥OP,过点E作EF⊥CE,过点F作FH⊥x轴于点H∴∠POC=∠FCO,∵∠POC+∠OCE=45°,∴∠FCO+∠OCE=45°,即∠FCE=45°,∴△FCE为等腰直角三角形,∴CE=EF,∵∠CEO=90°﹣∠HEF=∠HFE,∠COE=∠FHE=90°,∴△COE≌△EHF(AAS),在y=﹣x2+2x+8中,令x=0得y=3,∴C(6,3),∵E(1,2),∴FH=OE=1,EH=CO=3,∴F(﹣6.﹣1),由C(0,4),﹣1)可得直线CF的解析式为y=2x+3,∵CF∥OP,∴直线OP的解析式为y=2x,联立,解得或,∵点P为第一象限内抛物线上的一点,∴P(,2);(2)过点A(﹣6,0)作直线l:y=﹣x﹣1,过点Q作QN⊥直线l于N,过Q作QG∥直线l交x轴于G,如图:∵直线l为y=﹣x﹣2,MH⊥直线l,∴△AMH是等腰直角三角形,∴AM=MH,∴AM+8QM=×,由垂线段最短可得,MH+QM最小值为QN的长度,∵+2QM的最小值为,∴2QN=,∴QN=,即Q到直线l的距离为,∵QG∥直线l,∴AK=QN=,∵∠KAG=∠KAH﹣∠MAH=45°,∴△KAG是等腰直角三角形,∴AG=AK=,∴OG=AG﹣OA=,∴G(,0),设直线QG解析式为y=﹣x+m,把G(,0)代入得:0=﹣,解得m=,∴直线QG解析式为y=﹣x+,把A(﹣6,0)代入y=﹣x2+bx+c得:﹣3﹣b+c=0,∴c=b+1,∴y=﹣x2+bx+b+1,把代入y=﹣x2+bx+b+1得:y Q=﹣(b+)2+b(b+)+b+1=,∴Q(b+,b+),把Q(b+,b+得:b+=﹣(b+,解得b=2,∴c=b+1=5,∴抛物线解析式为y=﹣x8+4x+5.【点评】本题考查二次函数综合应用,涉及待定系数法,等腰直角三角形性质及应用,全等三角形判定与性质等知识,解题的关键是作辅助线,构造直角三角形解决问题.。
武汉九年级10月月考数学试卷

武汉九年级10月月考数学试卷 第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每题3分,共30分)下列各题均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑. 1.下列方程中,关于x 的一元二次方程的是( ) A.21210x x-+= B.ax 2+bx +c =0 C.x 2=x +1 D.x 2+x =y . 2.将一元二次方程2316x x +=化为一般形式后,常数项为1,二次项系数和一次项系数分别为( ) A .3,6- B .3,6C .3,1D .23x ,6x -.3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D ..4.用配方法解方程 2680x x -+=时,方程可变形为()A .()231x -= B .()231x -=- C .()231x += D .()231x +=-. 5.将抛物线22y x =+向右平移1个单位,所得新抛物线的表达式为( ) A .()212y x =-+B .()212y x =++ C .21y x =+ D .23y x =+.6.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB C D '''的位置,旋转角为()090αα<<︒.若1112∠=︒,则α∠的大小是( )A .68°B .20°C .28°D .22° . 第6题图 7.如果a 、b 是方程22310x x --=的两个实数根,则2231a b +-的值为( ) A .12B .72C .92D .112. 8.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x 行或列,则列方程得( ) A .()()81081040x x --=⨯-B .()()81081040x x --=⨯+C .()()81081040x x ++=⨯-D .()()81081040x x ++=⨯+.9. 如图,已知抛物线()20y ax bx c a =++<与x 轴交于()1,0A x 、()2,0B x 两点,且132x -<<-,122x x +=-,则下列结论:① 240b ac ->;② 若点(27-,y 1)、(34,y 2)是该抛物线上的点,则12y y <;③2at a -≤bt b -(t 为任意实数);④若2c =,则23a <-, 其中正确结论的个数是( ) A .1 B .2C .3D .4第9题图第10题图10. 如图,点E 是菱形ABCD 的对角线BD 上一动点,将AE 绕点A 逆时针旋转30︒至点F ,连接CF 、DF ,若60ABC ∠=︒,2AB =,设CDF ∆的面积为S ,则关于S 说法正确的是( ) A .1SB .2S =C 12S ≤≤D .2S ≤≤. 第Ⅱ卷(非选择题,共90分)二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.11.已知关于x 的方程2230x x k ++=的一个根是1-,则k = . 第12题图 12.如图,将点)A绕原点顺时针旋转120°得到点A ',则点A '的坐标为 .13.二次函数242y kx x =-+ 的图象与x 轴有公共点,则常数k 的取值范围是 . 14.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是26605y t t =-,飞机着陆至停下来期间的最后10 s 共滑行 m . 15.两个数的和为13,则这两个数的积的最大值为 .16.如图,等边三角形ABC 内有一点P ,已知113APB ∠=︒,125APC ∠=︒,则以AP ,BP ,CP 为边构成的三角形中最大内角的度数为 .第16题图B D三、解答题(共8题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形. 17.(8分)解下列一元二次方程(1)2410x x -+=;(2)22330x x +-=. 18.(8分)如图,已知二次函数y =ax 2+2x +c 图象经过点A (1,4)和点C (0,3) (1)求该二次函数的解析式; (2)结合函数图象,填空:① 当-1<x <2时,y 的取值范围是 ;② 当y ≤ 3时,x 的取值范围是 . 第18题图 19.(8分)如图,设计一幅宽20cm ,长30cm 的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2∶1.如果要使彩条所占面积是图案面积的1975,求竖彩条宽度为多长?第19题图第20题图20.(8 分) 如图,△ABC 的顶点坐标分别为()4,5A -,()5,2B -,()3,4C - (1)画出ABC ∆关于原点O 对称的图形111A B C ∆,并直接写出1A 点的坐标;(2)将ABC ∆绕B 点顺时针旋转90︒得到222A B C ∆,画出222A B C ∆并直接写出2A 点的坐标; (3)已知222A B C ∆可以看作由111A B C ∆绕点P 逆时针旋转 90°得到的图形,直接写出点P 的坐标. 21.(8分)已知关于x 的一元二次方程()222120x m x m +++-=.(1)若该方程有两个实数根,求m 的取值范围;(2)若该方程的两个实数根为x 1,x 2,且()221221x x m -+=,求m 的值。
湖北省武汉 九年级(上)月考数学试卷(10月份)

九年级(上)月考数学试卷(10月份)一、选择题(本大题共10小题,共30.0分)1.方程x2+x=0的解为()A. 0B. −1C. 0或−1D. 1或−12.下列两个图形,一定相似的是()A. 两个等腰三角形B. 两个直角三角形C. 两个等边三角形D. 两个矩形3.下列各点中在抛物线y=x2-4x-4上的点是()A. (4,4)B. (3,−1)C. (−2,−8)D. (−12,−74)4.下列各点A(-2,1)、B(-2,-1)、C(2,-1)、D(-1,2),关于原点O对称的两点是()A. 点A与点BB. 点A与点CC. 点A与点DD. 点C与点D5.如图,△ABC中,DE∥BC,EF∥AB,则下列式子正确的是()A. ADAB=BFBCB. ADBD=AEACC. EFAB=DEBCD. EFFC=AEAC6.函数y=-12(x+1)2-1的图象是一条抛物线,关于该抛物线下列说法错误的是()A. 开口向下B. 对称轴是x=−1C. 顶点是(−1,−1)D. 可以看作把抛物线y=−12x2向下平移一个单位,再向右平移1个单位7.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4cm、5cm和6cm,另一个三角形框架的一边长为2cm.它的另外两边长不可能是()A. 52cm、3 cmB. 85cm、125cmC. 43cm、53cmD. 3 cm、4 cm8.如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……则下列说法:①10是三角点阵中前4行的点数和;②300是三角点阵中前24行的点数和;③这个三角点阵中前n行的点数和不可能是600,其中正确的个数是()A. 0个B. 1个C. 2个D. 3个9.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t-32t2,飞机着陆至停下来共滑行()A. 20米B. 40米C. 400米D. 600米10.如图,Rt△ABC中,AB=AC=3,点D是AB上一点,以CD为边作等边△CDE,使A、E位于BC异侧.当D点从A点运动到B点,E点运动的路径长为()A. 3B. 22C. 32D. 33二、填空题(本大题共6小题,共18.0分)11.把图中的五角星图案,绕着它的中心旋转,旋转角至少为______度时,旋转后的五角星能与自身重合.12.一个二次函数的图象经过(0,0),(-1,-1),(1,9)三点.则这个二次函数的解析式为______.13.有一个人患了流感,经过两轮传染后共有121人患了流感.设每轮传染中平均一个人传染了x个人,根据以上信息可列方程为______.14.如果c2是方程x2-c=0的一个根,且该方程有两个不相等的实数根,则常数c是______.15.已知四边形ABCD中,∠A=∠C=90°,AB=AD=3.若CB-CD=2,则四边形ABCD的面积为______.16.已知关于x的方程(x-m)(x-n)-p=0有两个解x1、x2,且x1>x2,m>n.若x1-x2>m-n,则常数p的取值范围是______.三、计算题(本大题共2小题,共16.0分)17.解方程:x2-2x-3=0.18.已知关于x一元二次方程x2+2mx+34m2-m-1=0(1)求证:无论m为何值,方程总有实数根;(2)若方程两根分别为x1、x2,且x12-x22=0,求m的值.四、解答题(本大题共6小题,共56.0分)19.如图,△ABC和△DEF的顶点都在格点上,请解答下列问题:(1)画出△ABC绕点O逆时针旋转90°后的图形△A1B1C1,A、B、C的对应点分别是A1、B1、C1;(2)设(1)中点A与点B运动的路径长分别为a和b,则ab=______;(3)△A1B1C1与△DEF关于某点对称,请直接写出它们对称中心的坐标.20.如图,要设计一幅宽20cm、长30cm的图案,其中有两横三竖的彩条,横、竖彩条的宽度比为3:2.如果要使彩条所占面积是图案面积的1125,应如何设计彩条的宽度?21.如图,AD⊥BC,垂足为D,BE⊥AC,垂足为E,AD与BE相交于点F,连接ED.(1)请写出图中所有与△ADC相似的三角形;(2)若∠C=60°,求DEAB的值.22.某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x元(x为整数)(1)直接写出每天游客居住的房间数量y与x的函数关系式;(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000元;②宾馆为游客居住的房间共支出费用没有超过600元,直接写出此时x 的范围.23.如图,点P是正方形ABCD外一点,连接PA、PD,作BM⊥PA,垂足为E,使BM=PA,再作CN⊥PD,垂足为F,使CN=PD,连接PM、PN.(1)如图1,当PA=PD时,直接写出线段PM、PN的位置关系和数量关系;(2)在(1)的条件下,若∠APD=40°,则∠ABM=______;(3)如图2,当PA≠PD时,(1)中的结论是否仍然成立,若成立,请给出证明;若不成立,请说明理由.24.如图1,抛物线L:y=ax2+bx+c与x轴的两个交点的横坐标分别为-2、3,与y轴的交点是A(0,t),且t<0.(1)当t=-3时,直接写出抛物线L的解析式;(2)在(1)的条件下,过A点的直线交抛物线于另一点P.若AP被x轴分成1:2两部分,求P点的坐标;(3)如图2,点B是y轴上与点A关于原点对称的点,BC∥x轴交抛物线在y轴右侧的部分于C,AD∥x轴交抛物线在y轴右侧的部分于D,M是线段AB上一点,连MC、MD.若△MBC与△MAD相似,并且符合条件的点M恰有两个,求t的值及点M的坐标.答案和解析1.【答案】C【解析】解:方程分解因式得:x(x+1)=0,可得x=0或x+1=0,解得:x1=0,x2=-1.故选:C.方程左边提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.2.【答案】C【解析】解:∵两个等边三角形的内角都是60°,∴两个等边三角形一定相似,故选:C.根据相似三角形的判定方法一一判断即可;本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.3.【答案】D【解析】解:当x=4时,y=x2-4x-4=-4;当x=3时,y=x2-4x-4=-7,当x=-2时,y=x2-4x-4=8;当x=-时,y=x2-4x-4=-;所以点(-,-)在抛物线y=x2-4x-4上.故选:D.先分别计算自变量为4、3、-2、-时的函数值,然后根据二次函数图象上点的坐标满足其解析式进行判断.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.4.【答案】B【解析】解:∵A(-2,1)、C(2,-1),∴点A和C关于原点O对称,故选:B.根据两个点关于原点对称时,它们的坐标符号相反可得答案.此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标变化规律.5.【答案】A【解析】解:∵DE∥BC,∴=,∵EF∥AB,∴=,∴=,故A选项正确;∵DE∥BC,∴=,故B选项错误;∵DE∥BC,EF∥AB,∴=,=,∴≠,故C选项错误;而=不成立,故D选项错误;故选:A.用平行线分线段成比例定理以及比例的性质进行变形即可得到答案.此题主要考查平行线分线段成比例定理的理解及运用.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.6.【答案】D【解析】解:A、a=-,抛物线开口向下,正确;B、函数对称轴为x=-1,正确;C、顶点坐标为(-1,-1),正确;D、把抛物线y=-x2向下平移一个单位,再向右平移1个单位,得到的函数表达式为:y=-(x-1)2-1,错误;故选:D.按抛物线定义、性质和几何变换的方法即可求解.主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.7.【答案】D【解析】解:题中没有指明边长为2的边与原三角形的哪条边对应,所以应分别讨论:(1)若边长为2的边与边长为4的边相对应,则另两边为和3;(2)若边长为2的边与边长为5的边相对应,则另两边为和;(3)若边长为2的边与边长为6的边相对应,则另两边为和.故选项A,B,C正确,故选:D.根据三组对应边的比相等的两个三角形相似,注意分情况进行分析.考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.8.【答案】D【解析】解:当n=4时,三角点阵中的点数之和是:1+2+3+4=10,故①正确,当1+2+…+n=300时,即,得n=24,故②正确,当1+2+…+n=600时,即=600,n=(舍去),故③正确,故选:D.根据题意和题目中点的个数的变化,可以判断各个小题是否正确,从而可以解答本题.本题考查图形的变化类,解答本题的关键是明确题意,发现题目中点的个数的变化规律,利用数形结合的思想解答.9.【答案】D【解析】解:∵y=60t-t2=-(t-20)2+600,∴当t=20时,y取得最大值600,即飞机着陆后滑行600米才能停下来,故选:D.将函数解析式配方成顶点式求出s的最大值即可得.本题主要考查二次函数的应用,理解题意得出飞机滑行的距离即为s的最大值是解题的关键.10.【答案】A【解析】解:如图,作等边三角形△BCH,连接EH.∵△CDE,△BCH都是等边三角形,∴∠DCE=∠BCH,∴∠DCB=∠ECH,∵CD=CE,CB=CH,∴△DCB≌△ECH(SAS),∴BD=EH,∴点E的运动轨迹=线段AB的长=3,故选:A.如图,作等边三角形△BCH,连接EH.由△DCB≌△ECH(SAS),推出BD=EH,可得点E的运动轨迹=线段AB的长=3;本题考查等边三角形的性质,全等三角形的判定和性质,轨迹等知识,解题的关键是正确寻找点E的运动轨迹,属于中考常考题型.11.【答案】72【解析】解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,旋转角至少为72°.故答案为:72.五角星图案,可以被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.12.【答案】y=4x2+5x【解析】解:设这个二次函数的解析式为y=ax2+bx+c,∵二次函数的图象经过(0,0),(-1,-1),(1,9)三点,∴代入得:解得:a=4,b=5,c=0,即二次函数的解析式是y=4x2+5x,故答案为:y=4x2+5x.设这个二次函数的解析式为y=ax2+bx+c,把三点的坐标代入得出方程组,求出方程组的解即可.本题考查了用待定系数法求二次函数的解析式和二次函数图象上点的坐标特征,能得出关于a、b、c的方程组是解此题的关键,注意二次函数的三种表现形式.13.【答案】(x+1)2=121【解析】解:设每轮传染中平均一个人传染了x个人,根据题意得:(x+1)2=121.故答案为:(x+1)2=121.设每轮传染中平均一个人传染了x个人,由经过两轮传染后共有121人患了流感,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】4【解析】解:把x=代入x2-c=0得-c=0,解得c=0或c=4,而该方程有两个不相等的实数根,所以c>0,所以c=4.故答案为4.把x=代入x2-c=0得-c=0,解关于c的方程得c=0或c=4,然后根据该方程有两个不相等的实数根确定c的值.本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.15.【答案】8【解析】解:∵∠A=90°,AB=AD=3,∴BD==,设CB=x,则CD=x-2,∵∠C=90°,∴CD2+BC2=BD2,∴,解得,x=1+2或x=1-2(舍去),∴x-2=,∴四边形ABCD的面积为:==8,故答案为:8.根据题意,利用勾股定理可以求得BD的长,然后根据CB-CD=2,再由勾股定理可以求得BC和CD的长,再分别求得△ABD和△BCD的面积,即可得到四边形ABCD的面积.本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,利用勾股定理的知识解答.16.【答案】p>0【解析】解:原方程整理得,x2-(m+n)x+mn-p=0,∴x1+x2=m+n,x1x2=mn-p,∵x1-x2====>m-n,∴(m-n)2+4p>(m-n)2,∴4p>0,∴p>0,∴p的取值范围是p>0,故答案为:p>0.根据根与系数的关系得到x1+x2=m+n,x1x2=mn-p,根据已知条件列不等式即可得到结论.本题考查了根与系数的关系,熟练掌握根与系数的关系是解题的关键.17.【答案】解:原方程可以变形为(x-3)(x+1)=0x-3=0,x+1=0∴x1=3,x2=-1.【解析】通过观察方程形式,本题可用因式分解法进行解答.熟练运用因式分解法解一元二次方程.注意:常数项应分解成两个数的积,且这两个的和应等于一次项系数.18.【答案】解:(1)∵△=(2m)2-4×1×(34m2-m-1)=4m2-3m2+4m+4=m2+4m+4=(m+2)2≥0,∴方程总有实数根;(2)由题意知,x1+x2=-2m,x1x2=34m2-m-1,∵x12-x22=0,∴(x1+x2)(x1-x2)=0,∴x1+x2=0或x1-x2=0,当x1+x2=0,则x1+x2=-2m=0,解得m=0,原方程变形为x2-1=0,此方程有实数根,符合题意;当x1-x2=0,则△=(m+2)2=0,解得m=-2;综上,m=-2或m=0.【解析】(1)由判别式△=(2m)2-4×1×(m2-m-1)=(m+2)2≥0可得答案;(2)根据根与系数的关系知x1+x2=-2m,由x12-x22=0知(x1+x2)(x1-x2)=0,据此可得x1+x2=0或x1-x2=0,再分别求解可得.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.也考查了根的判别式.19.【答案】52【解析】解:(1)如图所示,△A1B1C1即为所求.(2)∵OA==2,OB=4,∴===,故答案为:;(3)如图所示,点P即为所求,其坐标为(0,).(1)分别作出点A,B,C绕点O逆时针旋转90°后所得对应点,再顺次连接即可得;(2)根据弧长公式计算可得;(3)连接B1E,C1F,交点即为对称中心.本题主要考查作图-旋转变换,解题的关键是掌握旋转变换的定义和性质及弧长公式.20.【答案】解:设竖条的宽度是2xcm,横条的宽度是3xcm,则(20-6x)(30-6x)=(1-1125)×20×30解得x1=1,x2=223(舍去).2×1=2(cm),3×1=3(cm).答:横条宽3cm,竖条宽2cm.【解析】设竖条的宽度是2x,横条的宽度是3x,根据要设计一幅宽20cm、长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为3:2,如果要使彩条所占面积是图案面积的,可列方程求解.本题考查了一元二次方程的应用,设出横竖条的宽,以面积做为等量关系列方程求解是关键.21.【答案】解:(1)∵∠EAF=∠DAC,∠AEF=∠ADC=90°,∴△AEF∽△ADC,∵∠C=∠C,∠BEC=∠ADC=90°,∴△BEC∽△ADC,∵∠DBF=∠DAC,∠BDF=∠ADC=90°,∴△BDF∽△ADC,∴与△ADC相似的三角形有△BDF,△BEC,△AEF;(2)∵△BEC∽△ADC,∴CDCE=CACB,又∠ECD=∠BCA,∴△ECD∽△BCA,∴DEAB=CDCA=cos C=12.【解析】(1)利用两角对应相等的两个三角形相似得到与△ADC相似的三角形;(2)根据△BEC∽△ADC,得到=,得到△ECD∽△BCA,根据相似三角形的性质,60°的余弦值计算.本题考查的是相似三角形的判定和性质,特殊角的三角函数值,掌握相似三角形的判定定理和性质定理是解题的关键.22.【答案】解:(1)根据题意,得:y=50-x,(0≤x≤50,且x为整数);(2)W=(120+10x-20)(50-x)=-10x2+400x+5000=-10(x-20)2+9000,∵a=-10<0∴当x=20时,W取得最大值,W最大值=9000元,答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元.(3)由题意得,(120+10x−20)(50−x)≥500020(50−x)≤600,解得:20≤x≤40,此时x的范围为:20≤x≤40.【解析】(1)根据每天游客居住的房间数量等于50-减少的房间数即可解决问题;(2)构建二次函数,利用二次函数的性质解决问题;(3)根据题意列不等式组,继而可得答案.本题考查二次函数的应用、一元一次不等式等知识,解题的关键是构建二次函数解决实际问题中的最值问题,属于中考常考题型.23.【答案】70°【解析】解:(1)结论:PM=PN,PM⊥PN.理由:如图1中,连接AM,DN.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∴∠BAD=90°,∵PE⊥BM,∴∠AEB=90°,∴∠PAD+∠EAB=90°,∠EAB+∠ABE=90°,∴∠PAD=∠ABE,∵PA=PD,∵PA=BM,∠PAD=∠ABM,AD=BA,∴△PAD≌△MBA(SAS),∴AM=PD,∠AMB=∠APD,∴MA=MB=PA=PD,同法可证:ND=NC=PA=PD,∠DNC=∠APD,∴∠AME=∠DNF,∵∠AME+∠MAE=90°,∠DNF+∠NDF=90°,∴∠MAE=∠NDF,∴∠PAM=∠PDN,∴△PAM≌△PDN(SAS),∴PM=PN,∠APM=∠DPN=∠AMP=∠DNP,∵∠AME+∠MAE=90°,∠MAE=∠AMP+∠APM=∠APM+∠NPD,∴∠APD+∠APM+∠NPD=90°,∴∠MPN=90°,∴MP⊥PN.(2)∵PA=PD,∠P=40°,∴∠PAD=∠PDA=70°,由(1)可知:∠ABM=∠PAD=70°,故答案为:70°.(3)连接MA,延长MA交PF于点Q.由(1)可知:∠PAD=∠ABM,∵PA=BM,AD=BA,∴△PAD≌△MBA(SAS),∴AM=PD,∠ADP=∠MAB,∵四边形ABCD是正方形,∴∠BAD=∠ADC=90°,AB=AD=CD,∵∠MAB+∠QAD=90°,∴∠QAD+∠ADP=90°,∴∠AQD=90°,∵PF⊥CN,∴∠AQD=∠DFC=90°,∴∠ADQ+∠CDF=90°,∠CDF+∠DCF=90°,∴∠ADQ=∠DCF,∴△AQD≌△DFC(AAS),∴AQ=DF,DQ=CF,∵PD=CN,∴PQ=FN,MQ=PF,∵∠MQP=∠PFN=90°,∴△MQP≌△PFN(SAS),∴PM=PN,∠MPQ=∠N,∵∠N+∠FPN=90°,∴∠MPQ+∠FPN=90°,∴∠MPN=90°,∴PM⊥PN.(1)结论:PM=PN,PM⊥PN.由△PAD≌△MBA(SAS),推出AM=PD,∠AMB=∠APD,推出MA=MB=PA=PD,同法可证:ND=NC=PA=PD,∠DNC=∠APD,推出∠AME=∠DNF,再证明△PAM≌△PDN(SAS),推出PM=PN,∠APM=∠DPN=∠AMP=∠DNP,由∠AME+∠MAE=90°,∠MAE=∠AMP+∠APM=∠APM+∠NPD,推出∠APD+∠APM+∠NPD=90°,可得∠MPN=90°;(2)利用(1)中结论求出∠PAD即可解决问题;(3)连接MA,延长MA交PF于点Q.想办法证明MQ⊥PF,△MQP≌△PFN(SAS)即可解决问题;本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.24.【答案】解:(1)∵抛物线L:y=ax2+bx+c与x轴的两个交点的横坐标分别为-2、3,与y轴的交点是A(0,-3),∴设抛物线L的解析式为:y=a(x+2)(x-3),∴-3=-6a,a=12,∴抛物线L的解析式为:y=12x2-12x-3;(2)设AP与x轴交于点R,作PH⊥x轴于点H,则△AOR∽△PHR,∴PHOA=PRRA,∵AP被x轴分成1:2两部分,∴PH3=12或PH3=2,∴PH=32或PH=6,当PH=32时,12x2-12x-3=32,解得:x=1±372;当PH=6时,12x2-12x-3=6,解得:x=1±732;∴P点的坐标为(1+372,32)或(1−372,32)或(1+732,6)或(1−732,6);(3)设抛物线L:y=a(x+2)(x-3),A(0,t),B(0,-t),BM=m,∴t=-6a,a=-t6,∴抛物线L:y=−16(x+2)(x-3),∵AD∥x轴,对称轴为x=0.5,∴D(1,t),∵BC∥x轴交抛物线在y轴右侧的部分于C,∴-t=−16(x+2)(x-3),解得x=4或x=-3(舍去),∴C(4,-t),当△CBM∽△DAM时,BCAD=BMAM,∴41=m−2t−m,解得:m=−85t,当△CBM∽△MAD时,BCAM=BMAD,∴4−2t−m=m1,即m2+2tm+4=0①,当方程①有两个相等的实数根时,△=4t2-16=0,t=-2或t=2(舍去),此时m=2或m=(−85)×(−2)=3.2,∴M1(0,-1.2),M2(0,0),当方程①有两个不相等的实数根时,把m=−85t,代入方程①得,6425t2−165t2+4=0,解得:t=-2.5或t=2.5(舍去),此时方程为:m2-5m+4=0,m=1或m=4,m=−85t=4,∴M1(0,-1.5),M2(0,1.5).【解析】(1)由题意,可设抛物线L:y=a(x+2)(x-3),把A(0,-3)代入,即可得出抛物线L的解析式;(2)设AP与x轴交于点R,作PH⊥x轴于点H,则△AOR∽△PHR,所以,可得PH=或PH=6,分别代入抛物线解析式,即可得出点P的坐标;(3)设BM=m,先用待定系数法求得抛物线L的解析式为y=(x+2)(x-3),由AD∥x轴,BC∥x轴交抛物线在y轴右侧的部分于C,可得D(1,t),C(4,-t),分△CBM∽△DAM和△CBM∽△MAD两种情况,由对应边成比例得出关于t 与m的方程,利用符合条件的点M恰有2个,结合方程的解的情况可得t的值及点M的坐标.本题主要考查用待定系数法求抛物线的解析式,相似三角形的判定与性质,一元二次方程根的情况讨论,分类讨论思想.解题的关键是掌握待定系数法求函数解析式以及相似三角形的判定与性质等知识点.。
2015-2016学年湖北省武汉市江岸区七一华源中学九年级(上)月考数学试卷(10月份)

2015-2016学年湖北省武汉市江岸区七一华源中学九年级(上)月考数学试卷(10月份)一、选择题(共10小题,每小题3分,共30分)1.(3分)方程(x+1)2=4的解是()A.x1=2,x2=﹣2 B.x1=3,x2=﹣3 C.x1=1,x2=﹣3 D.x1=1,x2=﹣22.(3分)对于抛物线y=﹣2(x+5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)3.(3分)已知一个直角三角形的两条直角边长恰好是方程x2﹣14x+48=0的两根,则此三角形的斜边长为()A.6 B.8 C.10 D.144.(3分)王刚同学在解关于x的方程x2﹣3x+c=0时,误将﹣3x看作+3x,结果解得x1=1,x2=﹣4,则原方程的解为()A.x1=﹣1,x2=﹣4 B.x1=1,x2=4 C.x1=﹣1,x2=4 D.x1=2,x2=35.(3分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+26.(3分)某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x,则有()A.500(1+x2)=720 B.500(1+x)2=720C.500(1+2x)=720 D.720(1+x)2=5007.(3分)三条笔直的公路两两相交,若要建一座仓库,使它到三条公路的距离相等,则可供选择的点有()A.1个B.2个C.3个D.4个8.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列四个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0.错误的个数有()A.1个B.2个C.3个D.4个9.(3分)如图,矩形ABDC中,∠BAD的平分线交BC于E.若AB=4,AD=7,则S=()△DECA.6 B.7 C.8 D.1110.(3分)如图,以AC为斜边在异侧作Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,∠BCD=45°,BD=4,则AC的长度为()A.8 B.4C.6 D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)在一次男子马拉松长跑比赛中,抽得12名选手的成绩如下(单位:分):136 140 129 180 124 154146 145 158 175 165 148则该12名选手成绩的中位数是.12.(3分)观察下列图形和所给表格中的数据后回答问题:梯形个数12345…图形周长58111417…当梯形个数为n时,这时图形的周长为.13.(3分)有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了人.14.(3分)已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于.15.(3分)请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.16.(3分)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C 的横坐标最小值为﹣3,则点D的横坐标最大值为.三、解答题(共8题,共72分)17.(8分)解方程:x2+4x=218.(8分)已知一元二次方程x2﹣3x+m=0.(1)若方程有两个不相等的实数根,求m的取值范围.(2)若方程有两个相等的实数根,求此时方程的根.19.(8分)某中学为了美化校园,决定在一个长是宽1.5倍的矩形空地中间修建两个全等的矩形花坛(如图所示),在空白的地带修建宽都为2米的花径,花径的面积占整个空地面积的,求这块空地的长为多少米?20.(8分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF,求证:DE=BF.21.(8分)已知二次函数y=﹣(a+b)x2﹣2cx+a﹣b中,a、b、c是△ABC的三边.(1)当抛物线与x轴只有一个交点时,判断△ABC是什么形状;(2)当x=﹣时,该函数有最大值,判断△ABC是什么形状.22.(10分)如图,Rt△ABC中,∠C=90°,BC=a,AC=b(a<b),AB=5,a,b 是方程x2﹣(m﹣1)x+(m+4)=0的两根(1)求a,b;(2)P,Q两点分别从A,C出发,分别以每秒2个单位,1个单位的速度沿边AC,BC向终点C,B运动,(有一个点达到终点则停止运动),求经过多长时间后PQ=2?23.(10分)已知正方形ABCD中,AB=6,E为线段BC上一动点,NF⊥AE,交线段AB于F,交线段CD于N.(1)求证:AE=NF.(2)连接BD交线段AE于点M,当NF经过点M时,探究∠EAN是否为定值?若是,求其值;若不是,说明理由.(3)在(2)的条件下,连接NE,若∠BAE=30°,则S=.△AEN24.(12分)如图,已知抛物线C1:y=ax2+4ax+4a﹣5的顶点为D,与x轴相交于A、B两点(点A在点B的左边),且AB=6.(1)求抛物线C1的解析式及顶点D的坐标;(2)将直线y=﹣x沿y轴向下平移m个单位(m>0),若平移后的直线与抛物线C1相交于点M、N(点M在点N的左边),且MN=,求m的值;(3)点P是x轴正半轴上一点,将抛物线C1绕点P旋转180°后得到抛物线C2,抛物线C2的顶点为C,与x轴相交于E、F两点(点E在F的左边),当以点D、C、F为顶点的三角形是直角三角形时,求点P的坐标.2015-2016学年湖北省武汉市江岸区七一华源中学九年级(上)月考数学试卷(10月份)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)方程(x+1)2=4的解是()A.x1=2,x2=﹣2 B.x1=3,x2=﹣3 C.x1=1,x2=﹣3 D.x1=1,x2=﹣2【分析】利用直接开平方的方法解一元二次方程得出答案.【解答】解:(x+1)2=4则x+1=±2,解得:x1=﹣1+2=1,x2=﹣1﹣2=﹣3.故选:C.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.2.(3分)对于抛物线y=﹣2(x+5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3)D.开口向上,顶点坐标(﹣5,3)【分析】根据二次函数的图象与系数的关系及其顶点坐标进行解答即可.【解答】解:∵抛物线y=﹣2(x+5)2+3中k=﹣2<0,∴此抛物线开口向下,顶点坐标为:(﹣5,3),故选:C.【点评】本题考查的是二次函数的性质,熟知二次函数的图象与系数的关系及顶点坐标公式是解答此题的关键.3.(3分)已知一个直角三角形的两条直角边长恰好是方程x2﹣14x+48=0的两根,则此三角形的斜边长为()A.6 B.8 C.10 D.14【分析】先解方程x2﹣14x+48=0,得出两根,再利用勾股定理来求解即可.【解答】解:∵x2﹣14x+48=0,∴(x﹣6)(x﹣8)=0,∴x=6或8;∴两直角边为6和8,∴此三角形的斜边长==10,故选:C.【点评】本题考查一元二次方程的解法,用到的知识点是因式分解法和勾股定理,关键是根据方程的特点选择合适的解法.4.(3分)王刚同学在解关于x的方程x2﹣3x+c=0时,误将﹣3x看作+3x,结果解得x1=1,x2=﹣4,则原方程的解为()A.x1=﹣1,x2=﹣4 B.x1=1,x2=4 C.x1=﹣1,x2=4 D.x1=2,x2=3【分析】利用根与系数的关系求得c的值;然后利用因式分解法解原方程即可.【解答】解:依题意得关于x的方程x2+3x+c=0的两根是:x1=1,x2=﹣4.则c=1×(﹣4)=﹣4,则原方程为x2﹣3x﹣4=0,整理,得(x+1)(x﹣4)=0,解得x1=﹣1,x2=4.故选:C.【点评】本题考查了根与系数的关系.此题解得c的值是解题的关键.5.(3分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=3(x﹣1)2﹣2 B.y=3(x+1)2﹣2 C.y=3(x+1)2+2 D.y=3(x﹣1)2+2【分析】根据图象向下平移减,向右平移减,可得答案.【解答】解:抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2,故选:A.【点评】本题考查了二次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.6.(3分)某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x,则有()A.500(1+x2)=720 B.500(1+x)2=720C.500(1+2x)=720 D.720(1+x)2=500【分析】由于某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x,那么二、三月份分别生产500(1+x)吨、500(1+x)2,由此即可列出方程.【解答】解:依题意得500(1+x)2=720.故选:B.【点评】此题主要考查了一元二次方程的应用,是增长率的问题,解题的关键利用了增长率的公式a(1+x)2=b.7.(3分)三条笔直的公路两两相交,若要建一座仓库,使它到三条公路的距离相等,则可供选择的点有()A.1个B.2个C.3个D.4个【分析】利用角平线性质知角平分线上的点到角两边距离相等,通过三角形内心为其内切圆的圆心来解得.【解答】解:根据三条路线构成的三角形知,三角形的内心为三角形内角角平分线的交点.∵由三角形内心为该三角形内切圆的圆心,∴所以符合货物中转站到各路的距离相等.这样的点可找到一个.两外角平分线的交点,到三条公路的距离也相等,可找到三个.故选:D.【点评】本题考查角平分线性质,以及三角形内心为其内切圆的圆心解得.8.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列四个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0.错误的个数有()A.1个B.2个C.3个D.4个【分析】根据对称轴方程,抛物线开口方向、与y轴交点坐标位置确定a、b、c 的负号,根据图象知x=﹣1与x=1时所对应的y的负号进行判断.【解答】解:如图所示,∵抛物线开口方向向下,∴a<0.又对称轴﹣1<x=﹣<0,∴b<0,且b>2a,则2a﹣b<0.故①正确;∵抛物线与y轴交于负半轴,∴c<0,∴abc<0.故②正确;如图所示,当x=1时,y<0,即a+b+c<0.故③正确;④如图所示,当x=﹣1时,y<0,即a﹣b+c<0.故④错误.综上所述,错误的个数是1.故选:A.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.9.(3分)如图,矩形ABDC中,∠BAD的平分线交BC于E.若AB=4,AD=7,则S=()△DECA.6 B.7 C.8 D.11【分析】由矩形的性质得出∠BAD=∠B=∠C═90°,BC=AD=7,CD=AB=4,证明△ABE是等腰直角三角形,得出BE=AB=4,因此CE=BC﹣BE=3,S△DEC=CE•CD,即可得出结果.【解答】解:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C═90°,BC=AD=7,CD=AB=4,∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形,∴BE=AB=4,∴CE=BC﹣BE=3,∴S=CE•CD=×3×4=6;△DEC故选:A.【点评】本题考查了矩形的性质、等腰直角三角形的性质、三角形面积的计算;熟练掌握矩形的性质,证明三角形是等腰直角三角形得出CE是解决问题的关键.10.(3分)如图,以AC为斜边在异侧作Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,∠BCD=45°,BD=4,则AC的长度为()A.8 B.4C.6 D.【分析】取AC的中点O,连接OD、OB,根据题意得到A、B、C、D四点共圆,根据圆周角定理和等腰直角三角形的性质解答即可.【解答】解:取AC的中点O,连接OD、OB,由Rt△ABC和Rt△ADC可知,A、B、C、D四点共圆,AC为圆的直径,∵∠BCD=45°,∴∠BOD=90°,又BD=4,∴OD=OB=2,∴AC=4,故选:B.【点评】本题考查的是圆周角定理、等腰直角三角形的性质,掌握90°的圆周角所对的弦是直径是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)在一次男子马拉松长跑比赛中,抽得12名选手的成绩如下(单位:分):136 140 129 180 124 154146 145 158 175 165 148则该12名选手成绩的中位数是147.【分析】题目中数据共有12个,故中位数是按从小到大排列后,第6,第7两个数的平均数作为中位数.【解答】解:把数据按从小到大排列后,这组数据的第6,第7个数分别是146,148,它们的平均数=(146+148)=147.所以中位数为147.故填147.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.12.(3分)观察下列图形和所给表格中的数据后回答问题:梯形个数12345…图形周长58111417…当梯形个数为n时,这时图形的周长为3n+2.【分析】梯形个数为1时,周长为5,梯形个数为2时,周长为5+3,梯形个数为3时,周长为5+2×3…据此可得梯形个数为n时,图形的周长.【解答】解:n=1时,图形的周长为5;n=2时,图形的周长为5+3;n=3时,图形的周长为5+2×3;…当梯形个数为n时,这时图形的周长为5+(n﹣1)×3=3n+2.故答案为:3n+2.【点评】本题考查了根据相应图形找规律;得到变化的量与n的关系及不变的量是解决本题的关键.13.(3分)有一人患了流感,经过两轮传染后共有169人患了流感,每轮传染中平均一个人传染了12人.【分析】设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有169人患了流感,列方程求解.【解答】解:设平均一人传染了x人,x+1+(x+1)x=169x=12或x=﹣14(舍去).平均一人传染12人.故答案为:12.【点评】本题考查理解题意的能力,关键是看到两轮传染,从而可列方程求解.14.(3分)已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于﹣2.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x1+x2=2,x1•x2=﹣1,然后变形+得,再把x1+x2=2,x1•x2=﹣1整体代入计算即可.【解答】解:∵x1,x2是方程x2﹣2x﹣1=0的两个根,∴x1+x2=2,x1•x2=﹣1,∴+==﹣2.故答案为﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.15.(3分)请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式y=(x﹣2)2﹣1.【分析】已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标.【解答】解:因为开口向上,所以a>0∵对称轴为直线x=2,∴﹣=2∵y轴的交点坐标为(0,3),∴c=3.答案不唯一,如y=x2﹣4x+3,即y=(x﹣2)2﹣1.【点评】此题是开放题,考查了学生的综合应用能力,解题时要注意别漏条件.已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.16.(3分)如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C 的横坐标最小值为﹣3,则点D的横坐标最大值为8.【分析】当C点横坐标最小时,抛物线顶点必为A(1,4),根据此时抛物线的对称轴,可判断出CD间的距离;当D点横坐标最大时,抛物线顶点为B(4,4),再根据此时抛物线的对称轴及CD的长,可判断出D点横坐标最大值.【解答】解:当点C横坐标为﹣3时,抛物线顶点为A(1,4),对称轴为x=1,此时D点横坐标为5,则CD=8;当抛物线顶点为B(4,4)时,抛物线对称轴为x=4,且CD=8,故C(0,0),D (8,0);由于此时D点横坐标最大,故点D的横坐标最大值为8;故答案为:8.【点评】本题主要考查了二次函数的性质,用待定系数法求二次函数的解析式,用直接开平方法解一元二次方程等知识点,理解题意并根据已知求二次函数的解析式是解此题的关键,此题是一个比较典型的题目.三、解答题(共8题,共72分)17.(8分)解方程:x2+4x=2【分析】先将原方程化为一般式,然后再用公式法进行求解.【解答】解:将原方程化为一般式,得:x2+4x﹣2=0,因为b2﹣4ac=24,所以x==﹣2±;即x1=﹣2+,x2=﹣2﹣.【点评】用公式法解一元二次方程的一般步骤是:①把方程化为一般形式,确定a、b、c的值;②求出b2﹣4ac的值;③若b2﹣4ac≥0,则把a、b、c及b2﹣4ac的值代入一元二次方程的求根公式x=,求出x1、x2;若b2﹣4ac<0,则方程没有实数根.18.(8分)已知一元二次方程x2﹣3x+m=0.(1)若方程有两个不相等的实数根,求m的取值范围.(2)若方程有两个相等的实数根,求此时方程的根.【分析】(1)利用方程有两个不相等的实数根,则△>0,建立关于m的不等式,求出m的取值范围;(2)首先根据方程有两个相等的实数根求出m的值,进而解方程求出方程的根.【解答】解:(1)∵一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=9﹣4m>0,∴m<;(2)∵一元二次方程x2﹣3x+m=0有两个相等的实数根,∴△=b2﹣4ac=9﹣4m=0,∴m=;∴x2﹣3x+=0,∴x1=x2=.【点评】本题主要考查了根的判别式的知识,解答本题要掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.19.(8分)某中学为了美化校园,决定在一个长是宽1.5倍的矩形空地中间修建两个全等的矩形花坛(如图所示),在空白的地带修建宽都为2米的花径,花径的面积占整个空地面积的,求这块空地的长为多少米?【分析】根据题意表示出花坛的面积,进而列出一元二次方程求解即可.【解答】解:设这块空地的宽为x米,则长为1.5x,根据题意得,(1.5x﹣6)(x﹣4)=1.5x2×(1﹣),解得:x1=20,x2=(不合题意,舍去),则1.5x=30(m)答:这块空地的长为30米.【点评】本题考查了一元二次方程的应用,利用花径的面积占整个空地面积的得出等式是解题关键.20.(8分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF,求证:DE=BF.【分析】根据平行四边形性质得出∠A=∠C,AB=CD,根据全等三角形的判定得出△EAD≌△FCB,即可得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△EAD和△FCB中∴△EAD≌△FCB(SAS),∴DE=BF.【点评】本题考查了平行四边形的性质和全等三角形的判定,能求出△EAD≌△FCB是解此题的关键.21.(8分)已知二次函数y=﹣(a+b)x2﹣2cx+a﹣b中,a、b、c是△ABC的三边.(1)当抛物线与x轴只有一个交点时,判断△ABC是什么形状;(2)当x=﹣时,该函数有最大值,判断△ABC是什么形状.【分析】(1)由题意得出△=0,得出c2+a2=b2,由勾股定理的逆定理得出△ABC 是直角三角形即可;(2)由x=﹣时函数有最大值为,可知顶点的横坐标为﹣,纵坐标为,根据顶点坐标公式列方程求解即可.【解答】解:(1)当抛物线与x轴只有一个交点时,△ABC是直角三角形;理由如下:当抛物线与x轴只有一个交点时,△=0,即(﹣2c)2﹣4×[﹣(a+b](a﹣b)=0,整理得c2+a2=b2,∴△ABC是直角三角形;(2)△ABC是等边三角形;理由如下:根据题意得:﹣=﹣,即c=时,有=,整理,得2b2﹣a2﹣2c2+ab=0,将c=代入,得a2=b2,∵a>0,b>0,∴a=b=c,即△ABC是等边三角形.【点评】本题考查了抛物线与x轴的交点特征、判别式的运用、二次函数的最值、勾股定理的逆定理、等边三角形的判定等知识;熟练掌握二次函数的综合运用是解决问题的关键,本题综合性强,难度适中.22.(10分)如图,Rt△ABC中,∠C=90°,BC=a,AC=b(a<b),AB=5,a,b 是方程x2﹣(m﹣1)x+(m+4)=0的两根(1)求a,b;(2)P,Q两点分别从A,C出发,分别以每秒2个单位,1个单位的速度沿边AC,BC向终点C,B运动,(有一个点达到终点则停止运动),求经过多长时间后PQ=2?【分析】(1)利用根与系数的关系,结合勾股定理可先求出m的值,再求得a、b即可;(2)设经过x秒后PQ=2,求得CP、CQ,利用勾股定理建立方程求得答案即可.【解答】解:(1)∵a、b是方程的x2﹣(m﹣1)x+(m+4)=0两个根,∴a+b=m﹣1,ab=m+4.又∵a2+b2=c2,∴(m﹣1)2﹣2(m+4)=52∴m=8,m=﹣4(舍去),∴原方程为x2﹣7x+12=0,解得:a=3,b=4.(2)设经过x秒后PQ=2,则CP=4﹣2x,CQ=x,由题意得(4﹣2x)2+x2=22解得:x1=,x2=2(P点到达C点,不合题意,舍去),答:设经过秒后PQ=2.【点评】此题考查一元二次方程的实际运用,一元二次方程根与系数的关系,勾股定理的运用,利用根与系数的关系求得直角三角形的边是解决问题的前提.23.(10分)已知正方形ABCD中,AB=6,E为线段BC上一动点,NF⊥AE,交线段AB于F,交线段CD于N.(1)求证:AE=NF.(2)连接BD交线段AE于点M,当NF经过点M时,探究∠EAN是否为定值?若是,求其值;若不是,说明理由.=36﹣12.(3)在(2)的条件下,连接NE,若∠BAE=30°,则S△AEN【分析】(1)如图1,作平行线构造全等三角形,由全等三角形的对应边相等证得结论;(2)如图2,作作MG⊥MD交DA的延长线于点G,证全等即可;(3)如图3,求出线段BE、DN的长度后,再求三角形的面积.【解答】(1)证明:过点N作MN∥AD,∵四边形ABCD为正方形,∴∠DAM=∠D=90°,AD=AB=BC=CD,∴∠AMN═90°,∴四边形AMND是矩形,∴MN=AD=AB,∵NF⊥AE,∴∠MNF+∠2=90°,∵∠BAE+∠1=90°,∠1=∠2,∴∠MNF=∠BAE,在△MNF与△BAE中,,∴△MNF≌△BAE(SAS),∴NF=AE;(2)解:45°.如图2,作MG⊥MD交DA的延长线于点G,∵∠GDB=45°,MG⊥MD,∴∠MGA=∠MDG=45°,MG=MD,∵∠AMN=90°,∴∠AMG=∠DMG﹣∠AMD=90°﹣∠AMD,∠NMD=∠AMN﹣∠AMD=90°﹣∠AMD,∴∠AMG=∠NMD,在△AGM与△DNM中,,∴△AGM≌△DNM(SAS),∴AM=NM,∵∠AMN=90°,∴△AMN为等腰直角三角形,∴∠MAN=45°,即∠EAN=45°;(3)解:∵∠BAE=30°,AB=6,∴BE=AB•tan30°=6×=2.如图3,将△ADN绕点A顺时针旋转75°,得到△ABK.则S△ABK =S△ADN,AN=AK,DN=BK.∵在△ADE与△ANE中,,∴△ADE≌△ANE(SAS),∴NE=KE.又∵在直角△ECN中,由勾股定理得到:NE2=CN2+CE2,∴(BE+DN)2=CN2+CE2,即(2+DN)2=(6﹣DN)2+(6﹣2)2,解得DN=12﹣6.∴S△AEN=S□ABCD﹣S△ABE﹣S△ECN﹣S△ADN,=6×6﹣×6×2﹣×(6﹣2)×(6﹣DN)﹣×6×DN,=18﹣DN,=18﹣(12﹣6),=36﹣12.故答案是:36﹣12.【点评】本题考查了四边形综合题,此题涉及到了正方形的性质,全等三角形的判定与性质,三角形的面积公式以及等腰直角三角形的判定与性质,解题的难点是作出辅助线,构建全等三角形,利用全等三角形的判定与性质求得相关角的度数、相关线段的长度.24.(12分)如图,已知抛物线C1:y=ax2+4ax+4a﹣5的顶点为D,与x轴相交于A、B两点(点A在点B的左边),且AB=6.(1)求抛物线C1的解析式及顶点D的坐标;(2)将直线y=﹣x沿y轴向下平移m个单位(m>0),若平移后的直线与抛物线C1相交于点M、N(点M在点N的左边),且MN=,求m的值;(3)点P是x轴正半轴上一点,将抛物线C1绕点P旋转180°后得到抛物线C2,抛物线C2的顶点为C,与x轴相交于E、F两点(点E在F的左边),当以点D、C、F为顶点的三角形是直角三角形时,求点P的坐标.【分析】(1)根据函数值相等的两点关于对称轴对称,可得A、B点坐标,根据待定系数法,可得函数解析式;(2)根据消元解方程组,可得5x2+23x+9m﹣25=0,根据根与系数的关系,可得(x1﹣x2)2=(x1+x2)2﹣4x1x2,根据勾股定理,可得关于m的方程,根据解方程,可得答案;(3)根据勾股定理,可得MN2=(n+2)2+(5+5)2,ME2=(n+5)2+52,NE2=(n+3﹣n)2+52=34,根据勾股定理的逆定理,可得关于n的方程,根据解方程,可得n的值,可得C点坐标.【解答】解:(1)抛物线y=a(x+2)2﹣5,得对称轴为x=﹣2.由抛物线y=a(x+2)2﹣5与x轴相交于A、B两点,且AB=6,得﹣2+3=1,即B(1,0),﹣2﹣3=﹣5,即A(﹣5,0),将A点坐标代入函数解析式,得9a﹣5=0,解得m=,抛物线的解析式y=(x+2)2﹣5,顶点D(﹣2,﹣5);(2)如图1,设MN的解析式为y=﹣x﹣m,M(x1,y1),N(x2,y2).联立MN与抛物线,得,化简,得5x2+23x+9m﹣25=0.x1+x2=﹣,x1x2=.(x1﹣x2)2=(x1+x2)2﹣4x1x2=(﹣)2﹣4×.(y1﹣y2)2=(kx1﹣kx2)2=k2(x1+x2)2=(﹣)2[(﹣)2﹣4×]由MN=,得(﹣)2﹣4×+(﹣)2[(﹣)2﹣4×]=10,化简,得180m=804,解得m=;(3)由旋转的性质,得C(n,5),F(n+3,0),P(n﹣3,0).F、A关于P点对称,得点坐标(,0).DC2=(n+2)2+(5+5)2,DF2=(n+5)2+52,CF2=(n+3﹣n)2+52=34;①当CD2+DF2=CF2时,(n+2)2+(5+5)2+(n+5)2+52=34,化简,得n2+7n+60=0,△=72﹣4×1×60=﹣191<0,方程无解;②如图2,当CD2+CF2=DF2时,(n+2)2+(5+5)2+34=(n+5)2+52,化简,得6n=88,解得n=,==,此时C点坐标为(,0);③如图3,当CF2+DF2=CD2时,(n+5)2+52+34=(n+2)2+(5+5)2,化简,得6n=20,解得n=,==,此时C点坐标为(,0).综上所述:若以点M、N、E为顶点的三角形是直角三角形时,点C的坐标(,0),(,0).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出A、B点坐标是解题关键,又利用了待定系数法求函数解析式;利用代入消元法得出5x2+23x+9m﹣45=0是解题关键,又利用了勾股定理得出关于m的方程;利用了旋转的性质,利用勾股定理得出关于n的方程是解题关键,要分类讨论,以防遗漏。
湖北省武汉市九年级上学期数学10月月考试卷

湖北省武汉市九年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列函数是二次函数的是()A . y=﹣B . y=x2+xz+1C . x2+2y﹣1=0D . xy=x2﹣y2. (2分)方程 =9的根是()A . x=3B . x=-3C . =3, =-3D . = =33. (2分) (2019九上·乐山月考) 已知关于的方程有两个实数根,则的取值范围是()A .B .C . 且D . 且4. (2分) (2019九上·西林期中) 下列函数中,当x>0时,y随x的增大而减小的是()A .B .C .D .5. (2分) (2015九上·宜昌期中) 一元二次方程x2﹣3x=0的根是()A . x=3B . x1=0,x2=﹣3C . x1=0,x2=D . x1=0,x2=36. (2分) (2019九上·虹口期末) 如果抛物线开口向下,那么的取值范围为()A .B .C .D .7. (2分) (2017九上·渭滨期末) 如图所示,在一块长为22m,宽为17m的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),若剩余部分种上草坪,使草坪的面积为300m2 ,则所修道路的宽度为()m.A . 4B . 3C . 2D . 18. (2分)已知两圆半径r1、r2分别是方程x2﹣7x+10=0的两根,两圆的圆心距为7,则两圆的位置关系是()A . 相交B . 内切C . 外切D . 外离二、填空题 (共8题;共8分)9. (1分)已知(a﹣2)x2+(a﹣1)x﹣3=0是关于x的一元二次方程,则a满足的条件是________ .10. (1分)(2019·乐陵模拟) 把方程用配方法化为的形式,则m=________,n=________.11. (1分)如图,⊙O的半径为2.C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是________.12. (1分)(2017·大连) 关于x的方程x2+2x+c=0有两个不相等的实数根,则c的取值范围为________.13. (1分) (2020九上·白城月考) 如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A 与x轴平行的直线交抛物线y= x2于B,C两点,则BC的长为________ 。
湖北省武汉市七一华源中学2023-2024学年九年级上学期月考数学试题

湖北省武汉市七一华源中学2023-2024学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.将一元二次方程2215x x -=化成一般式后,若二次项系数为2,则一次项系数、常数项分别为()A .1,5-B .5-,1-C .1-,5-D .5,1-2.下列数学经典图形中,是中心对称图形的是()A .B .C .D .3.己知二次函数2(2)3y x =---,下列说法正确的是()A .对称轴为直线2x =-B .顶点坐标为(2,3)C .函数的最大值是3-D .函数的最小值是3-4.解一元二次方程2240x x +-=,配方后正确的是()A .2(1)3x +=B .2(1)4x +=C .2(1)5x +=D .2(2)8x +=5.如图,将扇形PAA '围成一个圆锥,若扇形半径为18,100APA '∠=︒,则圆锥的底面半径为()A.4B.6.如图,把ABC以点AA.CAE BED∠=∠D.CE 7.如图,某小区规划在一个长使其中两条与AB平行,另一条与为112m2,设小路的宽为xmA.2x2-25x+16=0B.x 8.如图,在半径为2,圆心角为接CD,则阴影部分的面积是(A.112π-B.129.如图,点B 是圆内一个定点,且点B 到圆上最近一点的距离为2,到圆上最远一点距离为8,则经过点B 的弦MN 的长度取值范围是()A .48MN ≤≤B .610MN ≤≤C .46MN ≤≤D .810MN ≤≤10.若一个点的坐标满足(),2k k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠-)总有两个不同的倍值点,则s 的取值范围是()A .1s <-B .0s <C .01s <<D .10s -<<15.如图,抛物线2(0)y ax bx c a =++≠与x 列四个结论:①0abc <;②0a b c ++>;③230b a +<;④不等式02x <<.16.如图,Rt ABC △中,ACB ∠,,DCB E F △分别为边,AC AB 最小值为.三、解答题17.若关于x 的一元二次方程根.18.如图,ABC 中,ACB ∠=点B 的对应点B '落在边(1)判断BCB 'V 的形状,并证明;(2)A B ''交AC 于点D ,若2BC =,求19.已知抛物线:2(y ax bx c a =++≠x…1-0123(1)求证:CD 与O 相切;(2)若2,6BE AE ==,求21.请用无刻度的直尺完成以下作图,作图过程用虚线表示,作图结果用实线表示.(1)如图1,小正方形的边长为1,小正方形的顶点叫做格点,已知A ,B ,O 经过A ,B ,C 三点.①画出圆心O ;②在圆上作点D ,使得 CD AB =,请作出所有的D 点;(2)如图2,AB 是O 的直径,CD AB ∥,先作平行四边形CABF ,再在使得CH AC=22.测试某种型号的无人机着陆后的滑行情况,收集相关数据如下表:滑行时间()s t 0滑行速度()m/s v 60滑行距离(m)y 058.5(1)求抛物线解析式;(2)如图1,过A 点的直线33:44l y x =+交抛物线于另一点过点P 作直线PQ x ⊥轴交抛物线于点Q ,若APQ △点的坐标;(3)如图2,将AOC 绕平面内一点M 逆时针旋转90︒后得到,A O C A '''△与A '对应,C 与C '对应,若点A '和点C '均落在抛物线上,求点M 的坐标.。
湖北省武汉市九年级上学期数学10月月考试卷及答案
九年级上学期数学10月月考试卷一、单项选择题1.方程的二次项系数是2,那么一次项系数,常数项分别为〔〕A. 6,-9B. -6,9C. -6,-9D. 6,92. 是关于的方程的一个解,那么的值是〔〕A. 2B. -2C. 1D. -13.用配方法解方程,配方后正确的选项是〔〕A. B. C. D.假设干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共31.假设设主干长出个支干,那么所列方程正确的选项是〔〕A. B. C. D.5.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,假设设该校今明两年在实验器材投资上的年平均增长率是x,那么所列方程正确的选项是〔〕A. B. C. D.6.点,在函数的图象上,那么以下说法正确的选项是〔〕A. B. C. D.7.如图是一个长,宽的矩形图案,其中有两条宽度相等,互相垂直的彩条,彩条面积是图案面积的三分之一,设彩条的宽度为,那么所列方程正确的选项是〔〕A. B.C. D.8.二次函数的图象如以下列图,对称轴为直线,以下结论不正确的选项是〔〕A. B. 当时,顶点的坐标为C. 当时,D. 当时,y随x的增大而增大发动在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,到达最大高度3.5m,然后准确落入篮框内.篮圈中心距离地面高度为3.05m,在如以下列图的平面直角坐标系中,以下说法正确的选项是〔〕A. 此抛物线的解析式是y=﹣x2+3.5B. 篮圈中心的坐标是〔〕C. 此抛物线的顶点坐标是〔3.5,0〕D. 篮球出手时离地面的高度是2m10.在平面直角坐标系中,,函数的图象与轴有个交点,函数的图象与轴有个交点,那么与的数量关系是〔〕A. B. 或 C. 或 D. 或二、填空题11.一元二次方程的解是________.12.篮球联赛实行单循环赛制,即每两个球队之间进行一场比赛,一共打45场比赛.设有个球队参赛,根据题意,所列方程为________.13.某商品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每降价1元,每星期可多卖出20件.那么每周售出商品的利润〔单位:元〕与每件降价〔单位:元〕之间的函数关系式为________.〔化成一般形式〕14.如图,在中,、是对角线上两点,,,,那么的大小为________.15.从地面竖直向上抛出一小球,小球的高度〔米〕与小球的运动时间〔秒〕之间的关系式是,那么小球抛出5秒共运动的路径是________米.16.点是边上的点,点是边的中点,平分的面积,假设,,,那么________.三、解答题17.解方程:〔1〕〔2〕〔3〕〔是常数且〕18.抛物线经过点A(-2,-8).〔1〕求a的值,〔2〕假设点P(m,-6)在此抛物线上,求点P的坐标.19.函数.〔1〕指出函数图象的开口方向是________,对称轴是________,顶点坐标为________;〔2〕当x________时,y随x的增大而减小;〔3〕怎样移动抛物线就可以得到抛物线.20.关于的一元二次方程,〔1〕求证:不管为任何实数,方程有两个不相等的实数根;〔2〕设方程的两根分别为,,且满足,求的值.21.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.某商店销售一种商品,童威经市场调查发现:该商品的周销售量〔件〕是售价〔元/件〕的一次函数,其售价、周销售量、周销售利润〔元〕的三组对应值如下表:售价〔元/件〕50周销售量〔件〕100周销售利润〔元〕 1000 1600 1600注:周销售利润=周销售量×〔售价-进价〕〔1〕①求关于的函数解析式〔不要求写出自变量的取值范围〕________②该商品进价是________元/件;当售价是________元/件时,周销售利润最大,最大利润是________元〔2〕由于某种原因,该商品进价提高了元/件,物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足〔1〕中的函数关系.假设周销售最大利润是1400元,求的值23.在正方形中,,点,,分别在边,,上,且垂直.〔1〕如图1,求证:;〔2〕如图2,平移线段至线段,交于点,图中阴影局部的面积与正方形的面积之比为,求的周长;〔3〕如图3,假设,将线段绕点顺时针旋转至线段,连接,那么线段的最小值为________.24.抛物线的顶点坐标为,经过点.〔1〕求抛物线的解析式;〔2〕如图1,直线交抛物线于,两点,假设,求的值;〔3〕如图2,将抛物线向下平移个单位长度得到抛物线,抛物线的顶点为,交轴的负半轴于点,点在抛物线上.①求点的坐标〔用含的式子表示〕;②假设,求,的值.答案解析局部一、单项选择题1.【解析】【解答】解:∵,∴2x2-6x-9=0,∴一次项系数是-6,常数项是-9,故答案为:C.【分析】先移项将方程转化为一元二次方程的一般形式,就可得到一次项系数及常数项。
2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)
2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.一元二次方程4x2+x−3=0中一次项系数、常数项分别是( )A. 2,−3B. 0,−3C. 1,−3D. 1,02.解方程(x+1)2=3(1+x)的最佳方法是( )A. 直接开平方法B. 配方法C. 公式法D. 因式分解法3.抛物线y=−3x2+2x−1与y轴的交点为( )A. (0,1)B. (0,−1)C. (−1,0)D. (1,0)4.若关于x的一元二次方程(k−1)x2+x+1=0有实数根,则k的取值范围是( )A. k≥54B. k>54C. k>54且k≠1 D. k≤54且k≠15.若关于x的方程x2−kx−3=0的一个根是x=3,则k的值是( )A. −2B. 2C. −12D. 126.关于x的方程|x2−2x−3|=a有且仅有两个实数根,则实数a的取值范围是( )A. a=0B. a=0或a=4C. a>4D. a=0或a>47.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x个,根据题意,下面列出的方程正确的是( )A. 12x(x+1)=110 B. 12x(x−1)=110 C. x(x+1)=110 D. x(x−1)=1108.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A. 无实数根B. 有两个相等实数根C. 有两个同号不等实数根D. 有两个异号实数根9.二次函数y=ax2+bx+c,若ab<0,a−b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )A. y1=−y2B. y1>y2C. y1<y2D. y1、y2的大小无法确定10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc<0;②b>a+c;③2a−b=0;④b2−4ac<0.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。
湖北省武汉市七一华源中学2024-2025学年九年级上学期10月月考数学试卷
湖北省武汉市七一华源中学2024-2025学年九年级上学期10月月考数学试卷一、单选题1.若方程25410x x --=的二次项系数为5,则一次项系数、常数项分别为()A .1-,4B .1-,4-C .4-,1-D .4,1-2.下列汉字中,既是轴对称图形,又是中心对称图形的是()A .七B .一C .必D .胜3.把方程2610x x -+=转化成()2x m n -=的形式,则m 、n 的值是()A .3,8B .3,10C .3-,10D .3-,84.如图,点,,A B C 在O 上,30C ∠=︒,则AOB ∠的度数是()A .30︒B .40︒C .50︒D .60︒5.下列关于抛物线()2526y x =-+-的结论,正确的是()A .开口方向向上B .对称轴为直线2x =C .当2x =-时,函数有最小值为6-D .当2x >-时,y 随x 的增大而减小6.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果平均每月增长率为x ,则根据题意列方程为()A .()2001²288x +=B .()2002001²288x ++=C .()2001³288x +=D .()()20020012001²288x x ++++=7.如图,将ABC 绕点A 逆时针旋转70︒得到ADE ,延长BC 交D 于点G ,则EGB ∠的度数为()A .120︒B .110︒C .115︒D .125︒8.已知抛物线221y ax ax =-+(a 为常数,且0a >)的图象上三点.()()()1232,1,3,A y B y C y -,,,则123y y y ,,的大小关系是()A .123y y y <<B .132y y y <<C .213y y y <<D .231y y y <<9.如图,AB 是O 的直径,CD 为O 的弦,AB 与CD 交于点E ,且60CEB ∠=︒,且3,1,OE AE ==则CD 的长为()A .5B .6CD 10.已知m 为方程2530x x -+=的解,m 也为方程320x px q ++=(p ,q 为常数)的解,则p 的值为()A .-4B .215-C .225-D .235-二、填空题11.点P(-1,2)在平面直角坐标系内关于原点对称的点坐标为.12.已知一元二次方程2410x x -+=的两根分别为m ,n ,则m n mn ++的值是.13.在一次同学聚会时,大家一见面就相互握手.有人统计了一下,大家一共握了45次手,参加这次聚会的同学共有人.14.将抛物线2=23y x x --向上平移m 个单位后与坐标轴仅有两个交点,则m =15.如图,在ABC V 中,AB AC =,120BAC ∠=︒,E ,F 分别在边AB ,AC 上,且AE AF =,点D 在边BC 上,8BD =,5CD =,则DE DF +的最小值为.16.已知抛物线2y ax bx c =++(0a ≠,a 、b 、c 是常数)开口向上,过()()20,0A B m -,,两点(其中01m <<).下列四个结论:①0abc <;②0a b c ++>;③若1ca <-,则当34x >-时,y 随x 的增大而增大;④关于x 的不等式2amx bmx cx +>-的解集为x m >或0x <.其中正确的是(填写序号).三、解答题17.解方程x 2﹣4x +1=0.18.某种植物的主干长出若干数目的支干,每个支干又长出同样数量的小分支,主干、支干和小分支的总数是73,每个支干长出多少小分支?19.已知函数243y x x =-+-.(1)该函数图象的顶点坐标是;与y 轴交点坐标是;(2)当0y >时,则自变量x 的取值范围是;(3)当04x <<时,则函数y 的取值范围是.20.如图,A ,C 在以AB 为直径的⊙O 上,D 为弧AC 的中点,连接BD 与AC 交于点E ,若36AE CE ==.(1)求证:OF AC ⊥;(2)求⊙O 的半径.21.如图,在由单位正方形组成的:88⨯网格中,每个小正方形的顶点叫格点,A 、B 、C 是格点,仅用无刻度的直尺在所给网格中完成作图:(1)在图1中,将AB 绕点A 顺时针旋转90°得B ,连接B ,并在线段B 上找一点M ,使得45CMA ∠=︒;(2)在图2中,P 为B 上一点,作线段B 关于点C 成中心对称的线段EF (A 与E 对应),并在EF 上找一点G ,使得EG AP =.22.如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图,取水平线OE 为x 轴,铅垂线OD 为y 轴,建立如图2平面直角坐标系.运动员从点()0.20D 滑出,运动轨迹近似抛物线,该运动员飞行的水平距离(与DO 相距的距离)为12m 时,恰好达到最大高度32m ,运动员着陆在线段CE 上,在着陆坡CE 上设置点K (与DO 相距32m )作为标准点,着陆点在K 点或在K 点右侧视为成绩达标.(1)求抛物线的解析式;(2)判断该运动员的成绩是否达标,并说明理由;(3)直接写出该运动员飞行过程中离着陆坡CE 的竖直距离的最大值米.23.已知.ABC V 为等边三角形,点D 为平面内一点.(1)如图1,点D 在边BC 上,在图1中将BAD 绕点A 逆时针旋转60︒,画出旋转后的图形;(2)如图2,点D 为等边ABC V 边BC 所在直线下方一点,连接AD BD CD ,,,若25DB DC ==,,60BDC ∠=︒,求线段DA 的长;(3)如图3,若25DB DC ==,,直接写出四边形ABDC 面积的最大值.24.在平面直角坐标系中,已知抛物线2y ax bx c =++与x 轴交于点()()3,01,0A B -,两点,与y 轴交于点()0,3C -.(1)求抛物线的解析式;(2)如图1,过点()1,2E --的直线FG 与抛物线交于F ,G 两点,点D 为抛物线的顶点,连接DF DG ,,DE 将DFG 分成两部分的面积之差为1,求直线FG 的解析式;(3)如图2,P 为抛物线上异于顶点的任意一点,过点P 且与抛物线仅有一个交点的直线l 与抛物线的对称轴交于点N ,在抛物线的对称轴上有一点M ,使得PM MN =,求点M 的坐标.。
湖北省武汉市七一中学2018-2019学年度10月考九年级数学试题
七一华源中学2018~2019学年度上学期九年级数学十月检测试题一、选择题(共10小题,每小题3分,共30分)1.下列交通标志中,是中心对称图形的是()2.方程4x2-1=0的根是()A.21=x B.212121-==xx,C.x=2 D.x1=2,x2=-23.方程x2-4x+5=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根4.如图所示,△ABC中,∠BAC=30°,将△ABC绕点A顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为()A.30°B.50°C.20°D.40°5.二次函数y=ax2+bx+2的图象经过点(-1,0),则代数式a-b的值为()A.0 B.-2 C.-1 D.26.函数y=-x2-4x-3图象的顶点坐标是()A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1)7.一元二次方程0432=--yy配方后可化为()A.1)21(2=+y B.1)21(2=-y C.43)21(2=+y D.43)21(2=-y8.某汽车生产商新推出一款新型电动低能耗汽车,由于该型号汽车经济适用性强,销量快速增长,1月份该型号汽车的销量为2000辆,3月份该型号汽车的销量达4500辆.设该型号汽车销量的月平均增长率为x ,则根据题意可列方程为( )A .2000(1+x )2=4500B .2000(1+2x )=4500C .2000(1-x )2=4500D .2000x 2=45009.如图一段抛物线:y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O 和A 1;将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3,……,如此进行下去,直至得到C 10.若点P (28,m )在第10段抛物线C 10上,则m 的值为( )A .1B .-1C .2D .-2 10.已知直线PQ 过y 轴的正半轴上一个定点M ,交抛物线241x y =于P 、Q .若对过点M 的任意直线PQ ,都有2211MQ MP+为定值,则点M 的坐标是( ) A .(0,1)B .(0,2)C .(0,3)D .(0,4)二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点P (-5,3)关于原点对称点P ′的坐标是___________12.已知a 、b 是一元二次方程x 2-6x +5=0的两个实数根,则ab 的值是___________13.如图,在矩形ABCD 中,AD =3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE =EF ,则AB 的长为___________14.二次函数y =ax 2+bx 的图象如图,若一元二次方程ax 2+bx +m =0有实数根,则m 的取值范围是___________15.若(a 2+b 2)(a 2+b 2-1)=12,则a 2+b 2的值为___________16.抛物线y =2x 2-ax +m -a 与x 轴相交于不同两点A (x 1,0)、B (x 2,0).若存在整数a 及m ,使得1<x 1<3和1<x 2<3同时成立,则m =___________三、解答题(共8题,共72分)17.(本题8分)解方程:x 2+4x -1=018.(本题8分)如图,在平面直角坐标系中,A (1,1)、B (4,2)、C (2,3)(1) 请画出将△ABC 向下平移3个单位得到的△A 1B 1C 1(2) 请画出以点O 为旋转中心,将△ABC 逆时针旋转90°得到的△A 1B 2C 2(3) 请直接写出A 1A 2的距离19.(本题8分)已知抛物线y 1=x 2与直线3212+-=x y 相交于A 、B 两点 (1) 求A 、B 两点的坐标(2) 点O 为坐标原点,△AOB 的面积等于___________(3) 当y 1<y 2时,x 的取值范围是________________20.(本题8分)关于x 的一元二次方程x 2-(k +3)x +2k +2=0(1) 若方程有一个根是3,求k的值(2) 若方程有一根小于1,求k的取值范围21.(本题8分)为了迎接“军运会”,江岸区永清街道决定对一块矩形空地进行改造.如图,已知该矩形空地长为90m、宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等(1) 求各通道的宽度(2) 现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,则该工程队原计划每天完成___________平方米的绿化任务(直接写出答案)22.(本题10分)彬彬童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件(1) 求y与x之间的函数关系式(不求自变量的取值范围)(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3) ①当每件童装售价定为________元时,该店一星期可获得3910元的利润(请直接写出答案)②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装________件(请直接写出答案23.(本题10分)如图1,在△ABC中,AC=7,∠ACB=45°.将△ABC绕点B按顺时针方向旋转,得到△DBE(其中A与D对应)(1) 如图2,当点C在线段ED的延长线上时,△CDB的面积为2①求证:CB平分∠ACE;②求BC的长(2) 如图3,在(1)的条件下,点F为线段AB的中点,点P是线段DE上的动点,在旋转过程中,线段FP长度的最大值与最小值之和等于__________(请直接写出答案)24.(本题12分)如图,在平面直角坐标系xOy中,抛物线y=-x2+bx+c与直线l:y=kx+m (k<0)交于A(-1,-1)、B两点,与y轴交于C(0,2)(1) 求抛物线的函数表达式(2) 若y轴平分∠ACB,求k的值(3) 若在x轴上有且仅有一点P,使∠APB=90°,求k的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2019学年度上学期武汉七一华源中学九年级数学十月检测试题
一.选择题(共10小题,每小题3分,共30分) 1.下列交通标志中,是中心对称图形的是( ) 2.方程4x 2-1=0的根是( ) =
12
B . 1x =
12,2x =-12
=2
D . 1x =2,2x =-2
3.方程x 2-4x +5=0根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根
C .有一个实数根
D .没有实数根.
4.如图所示,△中,∠=30°,将△绕点A 顺时针方向旋转50°,对应得到△′C ′,则∠B ′的度数为( )
A .30°
B .50°
C .20°
D .40°
第4题图
第9题图
5.二次函数y =2++2的图象经过点(-1,0),则代数式a -b 的值为( )
A .0
B .-2
C .-1
D .2
6.函数y =-x 2-4x -3图象的顶点坐标是( )
A .(2,-1)
B .(-2,1)
C .(-2,-1)
D .(2,1)
7.一元二次方程y 2-y -3
4
=0配方后可化为( )
A . 21
()2
y +=1
B . 21
()2
y -=1
C . 21()2y +=34
D . 21()2y -=3
4
8.某汽车生产商新推出一款新型电动低能耗汽车,由于该型号汽车经济适用性强,销量快速增长.1月份该型号汽车的销量为2019辆,3月份该型号汽车的销量达4500辆.设该型号汽车销量的月平均増长率为x ,则根据题意可列方程为( )
A .2019(1+x )2=4500
B .2019(1+2x )=4500
C .2019(1-x )2=4500
D .2019x 2=4500
9.如图一段抛物线:y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O 和A 1,将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3,…,如此进行下去,直至得到C 10,若点P (28,m )在第10段抛物线C 10上,则m 的值为( )
A .1
B .-1
C .2
D .-2
10.已知直线过y 轴的正半轴上一个定点M ,交抛物线y =
14x 2于P 、Q .若对过点M 的任意直线,都有2
1
MP +
2
1
MQ 为定值,则点M 的坐标是( )
A .(0,1)
B .(0,2)
C .(0,3)
D .(0,4)
二.填空题(共6小题,每小题3分,共18分)
11.在平面直角坐标系中,点P (-5,3)关于原点对称点P 的坐标是 . 12.已知a 、b 是一元二次方程x 2-6x +5=0的两个实数根,则的值是 .
13.如图,在矩形中,=3,将矩形绕点A 逆时针旋转,得到矩形,点B 的对应点E 落在上,且=,则的长为 .
第13题图
第14题图
14.二次函数y =2+的图象如图,若一元二次方程2++m =0有实数根,则m 的取值范围是 . 15.若(a 2+b 2)(a 2+b 2-1)=12,则a 2+b 2的值为 .
16.抛物线y =2x 2-+m -a 与x 轴相交于不同两点A (x 1,0)、B (x 2,0),若存在整数a 及整数m ,使得1<x 1<3和1<x 2<3同时成立,则m = . 三.解答题(共8小题,共72分) 17.(本题8分)解方程:x 2+4x -1=0.
18.(本题8分)如图,在平面直角坐标系中,A (1,1),B (4,2),C (2,3). (1)请画出将△向下平移3个单位得到的△A 1B 1C 1;
(2)请画出以点O 为旋转中心,将△逆时针旋转90°得到的△A 2B 2C 2; (3)请直接写出A 1A 2的距离.
19.(本题8分)已知抛物线y 1=x 2与直线y 2=-1
2
x +3相交于A 、B 两点. (1)求A 、B 两点的坐标;
(2)点O 为坐标原点,△的面积等于 ; (3)当y 1<y 2时,x 的取值范围是 . 20.(本题8分)关于x 的一元二次方程x 2-(k +3)x +2k +2=0. (1)若方程有一个根是3,求k 的值; (2)若方程有一根小于1,求k 的取值范围.
21.(本题8分)为了迎接“军运会”,江岸区永清街道决定对一块矩形空地进行改造.如图,已知该矩形空地长为90m ,宽为60m ,按照规划将预留总面积为4536m 2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等. (1)求各通道的宽度;
(2)现有一工程队承接了对这4536m 2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m 2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,则该工程队原计划每天完成 平方米的绿化任务(直接写出答案).
22.(本题10分)彬彬童装店销售某款童装,每件售价为60元,每星期可卖100件,该店决定降价销售,经市场调査反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件进价x 元,每星期的销售量为y 件.
(1)求y 与x 之间的函数关系式(不求自变量的取值范围);
(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?
(3)①当每件童装售价定为 元时,该店一星期可获得3910元的利润(请直接写出答案); ②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装 件(请直接写出答案). 23.(本题10分)如图1,在△中,=7,∠=45°,将△绕点B 按顺时针方向旋转,得到△(其中A 与D 对应). (1)如图2,当点C 在线段的延长线上时,△的面积为2. ①求证:平分∠;②求的长;
(2)在(1)的条件下继续旋转,如图3,点F 为线段的中点,点P 是线段上的动点,在旋转的过程中,线段长度的最大值与最小值之和等于 (请直接写出答案).
24.(本题12分)如图,在平面直角坐标系中,抛物线y=-x2++c与直线l:y=+m(k<0)交于A(-1,-1)、
B两点,与y轴交于C(0,2).
(1)求抛物线的函数表达式;
(2)若y轴平分∠,求k的值;
(3)若在x轴上有且只有一点P,使∠=90°,求k的值.。