海南省海口市2013-2014学年七年级数学下学期期末考试试题(B卷)
海口市七年级下学期期末数学试题题

C.垂线段最短D.两点之间直线最短
5.在 , , , 这四个数中,最小的数是()
A. B. C. D.
6.下列分式中,与 的值相等的是()
A. B. C. D.
7.已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为
二、填空题
13.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.
14.若 与5x3y2n是同类项,则m+n=_____.
15.若关于 的多项式 的值与 的取值无关,则 的值是________
16.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.
26.观察下列等式: , , ,则以上三个等式两边分别相加得: .
观察发现
______; ______.
拓展应用
有一个圆,第一次用一条直径将圆周分成两个半圆 如图 ,在每个分点标上质数m,记2个数的和为 ;第二次再将两个半圆周都分成 圆周 如图 ,在新产生的分点标上相邻的已标的两数之和的 ,记4个数的和为 ;第三次将四个 圆周分成 圆周 如图 ,在新产生的分点标上相邻的已标的两数之和的 ,记8个数的和为 ;第四次将八个 圆周分成 圆周,在新产生的分点标上相邻的已标的两个数的和的 ,记16个数的和为 ; 如此进行了n次.
24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n个图案有2019个黑棋子,则n=______.
三、压轴题
25.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.
海口市人教版七年级下册数学全册单元期末试卷及答案-百度文库

10.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家 米;李师傅路上耗时 分钟;修车后李师傅的速度是修车前的 倍;李师傅修车用了 分钟,其中错误的是( )
A. 个B. 个C. 个D. 个
【详解】
解:解方程组 ,得 ,
把 代入 ,得 ,解得:a=2,
A.(2,﹣5)B.(﹣2,5)C.(5,﹣2)D.(﹣5,2)
7.若关于 的不等式组 恰好只有2个整数解,且关于 的方程 的解为非负整数解,则所有满足条件的整数 的值之和是()
A.1B.3C.4D.6
8.下列图形中,∠1和∠2是同位角的是( )
A. B. C. D.
9.如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是( )
【详解】
解:根据因式分解的概念,
A选项属于整式的乘法,错误;
B选项符合因式分解的概念,正确;
C选项不符合因式分解的概念,错误;
D选项因式分解错误,应为 ,错误.
故选B.
【点睛】
本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.
5.A
解析:A
【分析】
先解方程组 求出该方程组的解,然后把这个解分别代入 与 即可求出a、b的值,进一步即可求出答案.
C.3x﹣3y﹣1=3(x﹣y)﹣1D.x2﹣8x+16=(x﹣4)2
4.下列四个等式从左到右的变形是因式分解的是( )
A. B.
C. D.
5.已知关于 的二元一次方程组 和 有相同的解,则 的值是()
2013-2014七年级下学期期末数学试卷

2013~2014学年度第二学期期末考试七年级数学试题时间 120分钟 满分 150分 第Ⅰ卷(本卷满分100分)一、选择题(共8小题,每小题3分,共24分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在答卷指定位置. 一. 选择题1. 4的平方根是( ) A. 2 B.2 C. ±2 D. ±22. 在平面直角坐标系中,点P (-3,4)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3. 不等式2x-6>0的解集在数轴上表示正确的是( )4. 下列方程中是二元一次方程的是( ) A. 3x-2y=9 B. 2x+y=6z C.x1+2=3y D. x-3=4y 2 5. 为了解武汉市2012年中考数学学科各分数段成绩分布情况,从中抽取1500名考生的中考数学成绩进行统计分析,在这个问题中,样本容量是( ) A. 1500B. 被抽取的1500名学生C. 被抽取的1500名考生的中考数学成绩D. 武汉市2012年中考数学成绩6. 若b a <,则下列不等式中成立的是( ) A. 55+>+b aB. b a 55->-C. b a 33>D.33b a >7. 如图,AB ∥CD ,AD 平分∠BAC ,若∠BAD=70°,那么∠ACD 的度数为( ) A. 45° B. 35° C. 50° D. 40°8. 两人练习跑步,起点相同,如果乙先跑16米,甲8秒可追上乙,如果乙先跑2秒钟,则甲4秒可追上乙,求甲乙二人每秒各跑多少米?若设甲每秒跑x 米,乙每秒跑y 米,则所列方程组应该是( ) A.()()=168x y 24y 4x -⎧⎪⎨+=⎪⎩ B. 8x 8y 164x 4y 4-=⎧⎨-=⎩ C. 8x 165y 4x 4y 2+=⎧⎨-=⎩ D. 8x 8y 164x 24y =+⎧⎨-=⎩二、填空题(共8小题,每小题3分,共24分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.9. 将方程2x+y=25写成用含x 的代数式表示y 的形式,则y=___________. 10. 计算:328104.0)2(---= . 11. 如果⎩⎨⎧-==13y x 是方程3x -ay =8的一个解,那么a =_________.12. 为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图,请根据统计图计算成绩不低于20次且低于30次的频数是 .13. 如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A=110°,第二次拐的角∠B 是150°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是 .14. 已知x 、y 互为相反数,且(x+y+4)(x-y )=4,则y 的值为 . 15. 若x,y 均为实数且满足223x x y -+-+=成立,则y x 的值等于 . 16. 在同一平面内,已知直线a ∥b ,点M 到直线a 的距离是4cm ,到直线b 的距离是2cm ,那么直线a 和直线b 之间的距离为 . 三、解答题(共5题,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤. 17. (本题10分)解下列方程组:(1) ⎩⎨⎧=+=-82302y x y x ; (2)⎪⎩⎪⎨⎧-=-=+2134825y x y x .18.(本题10分)解下列不等式或不等式组,并在数轴上表示解集:(1) 13>4156++x x ; (2) ⎪⎩⎪⎨⎧-+---1>321,4≥)2(3x x x x15 20 25 30 35 0 15 10 5 次数人数 第13题图第14题图G321FE DC B A19.(本题10分)请将下题的求解过程补充完整。
【精编】2013-2014学年海南省海口市七年级(下)期末数学试卷(b卷)(解析版)

2013-2014学年海南省海口市七年级(下)期末数学试卷(B卷)一、选择题(每小题3分,共42分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内. 1.(3分)方程3x﹣1=x的解是()A.x=﹣2 B.x=2 C.D.2.(3分)不等式6﹣3x<0的最小整数解是()A.3 B.2 C.1 D.03.(3分)若x=﹣1是方程2x﹣k=0的解,则k的值为()A.﹣2 B.2 C.﹣1 D.14.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C. D.5.(3分)已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是()A.4cm B.5cm C.6cm D.13cm6.(3分)课外活动中一些学生分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少2组.这些学生共有()A.48人B.56人C.60人D.72人7.(3分)如图,直线a∥b,若∠1=24°,∠2=70°,则∠A等于()A.46°B.45°C.40°D.30°8.(3分)在如图中,x的值为()A.86 B.90 C.108 D.1129.(3分)如图,△ABC≌△BDE,若AB=12,ED=5,则CD的长为()A.5 B.6 C.7 D.810.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.711.(3分)如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°12.(3分)如图,△ABC是等边三角形,D是BC上一点,若将△ADC绕点A顺时针旋转n度后到达△AEB的位置,则n的值为()A.45 B.50 C.60 D.9013.(3分)如图,在△ABC中,∠B=50°,D、E分别是AB、AC上的点,且DE ∥BC,将△ABC沿DE折叠,则∠BDA′等于()A.50°B.60°C.70°D.80°14.(3分)小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买()A.3支笔B.4支笔C.5支笔D.6支笔二、填空题(每小题3分,共12分)15.(3分)当a=时,代数式1﹣3a的值等于2.16.(3分)不等式组的解集为.17.(3分)如图,是一块三角形木板的残余部分,若量得∠A=100°,∠C=45°,则这块三角形木板另外一个角是度.18.(3分)如图,△ABC沿BC方向平移到△DEF的位置,若BF=8cm,CE=2cm,则平移的距离是cm.三、解答题(共46分)19.(8分)(1)解方程:;(2)解方程组:.20.(7分)已知y=kx+b,当x=﹣2时,y=3;当x=﹣1时,y=2.(1)求k、b的值;(2)当x取何值时,y的值小于0.本题有两道题,请从(21)、(22)题中任选一题作答.21.(7分)小颖和她的爸爸一起玩投篮球游戏.两人商定规则为:小颖投中1个得3分,爸爸投中1个得1分,结果两人一共投中了20个,一计算,发现两人的得分刚好相等,你知道他们两人各投中几个吗?22.从甲地到乙地,长途汽车原需行驶7个小时,开通高速公路后,路程缩短了30千米,车速平均每小时增加了30千米,结果只需4个小时即可到达.求甲、乙两地之间高速公路的路程.23.(6分)已知:如图,D是AB上一点,E是AC上的一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°.求:(1)∠BDC的度数;(2)∠BFD的度数.24.(9分)现有如图1所示的两种瓷砖.请从这两种瓷砖中各选2块,拼成一个新的正方形地板图案,使拼铺的图案成轴对称图形或中心对称图形(如示例图2).(要求:分别在图3、图4中各设计一种与示例图不同的拼法,这两种拼法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形.)25.(9分)在如图的正方形网格中,每个小正方形的边长都是单位1,△ABC的顶点均在格点上.(1)画出△ABC绕A点按逆时针方向旋转90°后得到的△AB1C1;若连结CC1,则△ACC1是怎样的三角形?(2)画出△A2B2C2,使△A2B2C2和△AB1C1关于点O成中心对称;(3)指出如何平移△AB1C1,使得△A2B2C2和△AB1C1能拼成一个长方形.2013-2014学年海南省海口市七年级(下)期末数学试卷(B卷)参考答案与试题解析一、选择题(每小题3分,共42分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内. 1.(3分)方程3x﹣1=x的解是()A.x=﹣2 B.x=2 C.D.【解答】解:方程移项合并得:2x=1,解得:x=.故选:D.2.(3分)不等式6﹣3x<0的最小整数解是()A.3 B.2 C.1 D.0【解答】解:不等式的解集是x>2,故不等式6﹣3x<0的最小整数解为3.故选:A.3.(3分)若x=﹣1是方程2x﹣k=0的解,则k的值为()A.﹣2 B.2 C.﹣1 D.1【解答】解:把x=﹣1代入方程得:﹣2﹣k=0,解得:k=﹣2.故选:A.4.(3分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【解答】解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;B、此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形是中心对称图形,不是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故选:B.5.(3分)已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是()A.4cm B.5cm C.6cm D.13cm【解答】解:设第三边长为x,则由三角形三边关系定理得8﹣3<x<8+3,即5<x<11.因此,本题的第三边应满足5<x<11,把各项代入不等式符合的即为答案.4,5,13都不符合不等式5<x<11,只有6符合不等式,故答案为6cm.故选C.6.(3分)课外活动中一些学生分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少2组.这些学生共有()A.48人B.56人C.60人D.72人【解答】解:设这些学生共有x人,根据题意得:=+2,解这个方程得:x=48,即这些学生共有48人.故选:A.7.(3分)如图,直线a∥b,若∠1=24°,∠2=70°,则∠A等于()A.46°B.45°C.40°D.30°【解答】解:∵∠1=24°,∴∠ADB=∠1=24°.∵直线a∥b,∠2=70°,∴∠DBC=∠2=70°.∵∠BDC是△ABD的外角,∴∠A=∠DBC﹣∠ADB=70°﹣24°=46°.故选:A.8.(3分)在如图中,x的值为()A.86 B.90 C.108 D.112【解答】解:根据四边形的内角和等于360度,可得:x+180﹣112+90+180﹣68=360,解得:x=90,故选:B.9.(3分)如图,△ABC≌△BDE,若AB=12,ED=5,则CD的长为()A.5 B.6 C.7 D.8【解答】解:∵△ABC≌△BDE,AB=12,ED=5,∴AB=BD=12,BC=DE=5,∴CD=BD﹣BC=12﹣5=7.故选:C.10.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.7【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选:C.11.(3分)如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°【解答】解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、C、D都正确,不能与其自身重合的是B.故选:B.12.(3分)如图,△ABC是等边三角形,D是BC上一点,若将△ADC绕点A顺时针旋转n度后到达△AEB的位置,则n的值为()A.45 B.50 C.60 D.90【解答】解:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△ADC绕点A顺时针旋转n度后到达△AEB的位置,∴∠BAC=n°,∴n=60°.故选:C.13.(3分)如图,在△ABC中,∠B=50°,D、E分别是AB、AC上的点,且DE ∥BC,将△ABC沿DE折叠,则∠BDA′等于()A.50°B.60°C.70°D.80°【解答】解:∵DE∥BC,∠B=50°,∴∠B=∠ADE=50°.∵△A′DE由△ADE翻折而成,∴∠ADE=∠A′DE=50°,∴∠BDA′=180°﹣∠ADE﹣∠A′DE=180°﹣50°﹣50°=80°.故选:D.14.(3分)小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买()A.3支笔B.4支笔C.5支笔D.6支笔【解答】解:设他可以买x支笔.则3×2+3x≤22解得x≤5,∴x为整数,∴最多可以买5支笔.故选:C.二、填空题(每小题3分,共12分)15.(3分)当a=﹣时,代数式1﹣3a的值等于2.【解答】解:根据题意得:1﹣3a=2,移项合并得:3a=﹣1,解得:a=﹣.故答案为:﹣16.(3分)不等式组的解集为x<﹣1.【解答】解:,由①得:x<﹣1,由②得:x<2,不等式组的解集为x<﹣1,故答案为:x<﹣1.17.(3分)如图,是一块三角形木板的残余部分,若量得∠A=100°,∠C=45°,则这块三角形木板另外一个角是35度.【解答】解:∵△ABC中,∠A=100°,∠C=45°,∴∠B=180°﹣∠A﹣∠C=180°﹣100°﹣45°=35°.故答案为35.18.(3分)如图,△ABC沿BC方向平移到△DEF的位置,若BF=8cm,CE=2cm,则平移的距离是6cm.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵EF=8cm,CE=2cm,∴平移的距离CF=EF﹣EC=6cm.故答案为:6.三、解答题(共46分)19.(8分)(1)解方程:;(2)解方程组:.【解答】解:(1)去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项合并得:﹣x=17,解得:x=﹣17;(2),①×3﹣②×4,得7x=14,即x=2,把x=2代入①,得y=1,则方程组的解为20.(7分)已知y=kx+b,当x=﹣2时,y=3;当x=﹣1时,y=2.(1)求k、b的值;(2)当x取何值时,y的值小于0.【解答】解:(1)将x=﹣2,y=3;x=﹣1,y=2代入y=kx+b得:,解得:k=﹣1,b=1;(2)由(1)得:y=﹣x+1,由y<0,得到﹣x+1<0,解得:x>1.本题有两道题,请从(21)、(22)题中任选一题作答.21.(7分)小颖和她的爸爸一起玩投篮球游戏.两人商定规则为:小颖投中1个得3分,爸爸投中1个得1分,结果两人一共投中了20个,一计算,发现两人的得分刚好相等,你知道他们两人各投中几个吗?【解答】解:设小颖投中x个,小颖爸爸投中y个.则解得答:小颖投中5个,小颖爸爸投中15个.22.从甲地到乙地,长途汽车原需行驶7个小时,开通高速公路后,路程缩短了30千米,车速平均每小时增加了30千米,结果只需4个小时即可到达.求甲、乙两地之间高速公路的路程.【解答】解:设甲、乙两地之间高速公路的路程为x千米.根据题意,得,解这个方程,得x=320.答:甲、乙两地之间高速公路的路程为320千米.23.(6分)已知:如图,D是AB上一点,E是AC上的一点,BE、CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°.求:(1)∠BDC的度数;(2)∠BFD的度数.【解答】解:(1)在△ACD中,∵∠A=62°,∠ACD=35°,∴∠BDC=∠ACD+∠A=62°+35°=97°;(2)在△BDF中,∠BFD=180°﹣∠ABE﹣∠BDF=180°﹣20°﹣97°=63°.故答案为:(1)97°,(2)63°.24.(9分)现有如图1所示的两种瓷砖.请从这两种瓷砖中各选2块,拼成一个新的正方形地板图案,使拼铺的图案成轴对称图形或中心对称图形(如示例图2).(要求:分别在图3、图4中各设计一种与示例图不同的拼法,这两种拼法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形.)【解答】解:如图所示:两个图形既是轴对称图形,又是中心对称图形,答案不唯一.25.(9分)在如图的正方形网格中,每个小正方形的边长都是单位1,△ABC的顶点均在格点上.(1)画出△ABC绕A点按逆时针方向旋转90°后得到的△AB1C1;若连结CC1,则△ACC1是怎样的三角形?(2)画出△A2B2C2,使△A2B2C2和△AB1C1关于点O成中心对称;(3)指出如何平移△AB1C1,使得△A2B2C2和△AB1C1能拼成一个长方形.【解答】解:(1)如图,∵AC=AC1,∠CAC1=90°,∴△ACC1是等腰直角三角形;(2)如图,△A2B2C2,即为所求;(3)答案不唯一.如:①先将△AB1C1向右平移5个单位,然后再向下平移6个单位.②先将△AB1C1向下平移6个单位,然后再向右平移5个单位.③将△AB1C1沿着点C1到点A2的方向,平移的距离为C1 A2的长度单位.。
海口市七年级下学期期末数学试题题

1.B
解析:B
【解析】
【分析】
直接利用互补的定义得出这个角的度数,进而利用互余的定义得出答案.
【详解】
解:∵一个角的补角是130 ,
∴这个角为:50 ,
∴这个角的余角的度数是:40 .
D.方程 t= ,未知数系数化为1,得t=1
7.计算:2.5°=( )
A.15′B.25′C.150′D.250′
8.估算 在下列哪两个整数之间( )
A.1,2B.2,3C.3,4D.4,5
9.用代数式表示“a的3倍与b的差的平方”,正确的是( )
A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2
22.4是_____的算术平方根.
23.-2的相反数是__.
24.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示,这个几何体是由_________个小立方块搭成的.
三、解答题
25.解不等式组 ,并在数轴上表示解集.
26.先化简后求值:2(x2y+xy)﹣3(x2y﹣xy)﹣5xy,其中x=﹣2,y=1.
17.如图,数轴上点A与点B表示的数互为相反数,且AB=4则点A表示的数为______.
18.把53°24′用度表示为_____.
19.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需____元.
20.禽流感病毒的直径约为 ,用科学记数法表示为_____ ;
21.数字9 600 000用科学记数法表示为.
(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.
海口市七年级下册数学全册单元期末试卷及答案-百度文库

海口市七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.以下列各组数据为边长,可以构成等腰三角形的是( )A .1cm 、2cm 、3cmB .3cm 、 3cm 、 4cmC .1cm 、3cm 、1cmD .2cm 、 2cm 、 4cm 2.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( )A .4种B .5种C .6种D .7种 3.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y 4.若(x-2y)2 =(x+2y)2+M,则M= ( )A .4xyB .- 4xyC .8xyD .-8xy 5.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( ) A .0B .1C .3D .7 6.下列式子是完全平方式的是( ) A .a 2+2ab ﹣b 2B .a 2+2a +1C .a 2+ab +b 2D .a 2+2a ﹣1 7.计算12x a a a a ⋅⋅=,则x 等于( )A .10B .9C .8D .4 8.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个9.如图,在△ABC 中,BC =6,∠A =90°,∠B =70°.把△ABC 沿BC 方向平移到△DEF 的位置,若CF =2,则下列结论中错误的是( )A .BE =2B .∠F =20°C .AB ∥DED .DF =6 10.下列运算正确的是( ) A .236x x x ⋅= B .224(2)4x x -=- C .326()x x =D .55x x x ÷= 二、填空题11.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.12.已知:()521x x ++=,则x =______________.13.a m =2,b m =3,则(ab )m =______.14.若29x kx -+是完全平方式,则k =_____.15.已知2x +3y -5=0,则9x •27y 的值为______.16.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________.17.计算:2020(0.25)-×20194=_________.18.下列各数中: 3.14-,327-,π2,17-,是无理数的有______个. 19.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______.20.三角形两边长分别是3、5,第三边长为偶数,则第三边长为_______三、解答题21.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?22.已知关于x 、y 的二元一次方程组21322x y x y k +=⎧⎪⎨-=-⎪⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若()2421y x +=,求k 的值; (3)若14k ≤,设364m x y =+,且m 为正整数,求m 的值. 23.分解因式(1)321025a a a ++;(2)(1)(2)6t t ++- .24.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.…… ……(1)请直接写出(a +b )4=__________;(2)利用上面的规律计算:①24+4×23+6×22+4×2+1=__________;②36-6×35+15×34-20×33+15×32-6×3+1=________.25.如图,已知AB ∥CD , 12∠=∠,BE 与CF 平行吗?26.因式分解:(1)()()36x m n y n m ---;(2)()222936x x +-27.A 市准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的提示牌和垃圾箱,若购买2个提示牌和3个垃圾箱共需550元,且垃圾箱的单价是提示牌单价的3倍.(1)求提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案.28.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先判断三边长是否能构成三角形,再判断是否是等腰三角形.【详解】上述选项中,A、C、D不能构成三角形,错误B中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确故选:B.【点睛】本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.2.B解析:B【分析】设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.【详解】解:设1元和5元的纸币分别有x、y张,则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B.【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.3.D解析:D【解析】【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x 3y 2-3x 2y 3=3x 2y 2(2x-y ),因此6x 3y 2-3x 2y 3的公因式是3x 2y 2.故选:D.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的. 4.D解析:D【分析】根据完全平方公式的运算法则即可求解.【详解】∵(x-2y)2 =(x+2y)2+M∴M=(x-2y)2 -(x+2y)2=x 2-4xy+4y 2-x 2-4xy-4y 2=-8xy故选D.【点睛】此题主要考查完全平方公式的运算,解题的关键是熟知完全平方公式的运算法则.5.A解析:A【分析】观察可以发现3n 的末位数字为4个一循环,故相加后末位数字为定值,而2020是4的整数倍,即可求解.【详解】解:通过观察可以发现3n 的末位数字为3、9、7、1……,4个为一循环,而12343333=392781=120++++++末尾数字为0,∵20204=505÷,故234202033333+++++…的末尾数字也为0.故选A .【点睛】本题属于找规律题型,难度不大,是中考的常考知识点,细心观察,总结规律是顺利解题的关键.6.B解析:B【分析】利用完全平方公式的结构特征判断即可.【详解】解:下列式子是完全平方式的是a2+2a+1=(a+1)2,故选B.【点睛】此题考查了完全平方式:(a+b)²=a²+2ab+b²,熟练掌握完全平方公式是解本题的关键.7.A解析:A【解析】【分析】利用同底数幂的乘法即可求出答案,【详解】解:由题意可知:a2+x=a12,∴2+x=12,∴x=10,故选:A.【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.8.B解析:B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选B.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.9.D解析:D【分析】根据平移的性质可得BC=EF,然后求出BE=CF.【详解】∵△ABC沿BC方向平移得到△DEF,∴BC=EF,∴BC-EC=EF-EC,即BE=CF,∵CF=2cm,∴BE=2cm.∵BC=6,∠A=90°,∠B=70°,∴∠ACB=20°,根据平移的性质可得AB∥DE,∴∠F=20°;故选:D.【点睛】本题考查了平移的性质,主要利用了平移对应点所连的线段平行且相等.10.C解析:C【解析】解:A.x2⋅x3=x5,故A错误;B.(-2x2)2 =4 x4,故B错误;C.( x3 )2=x6,正确;D.x5÷x =x4,故D错误.故选C.二、填空题11.115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=5解析:115°.【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12×(∠ABC+∠ACB)=12×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.12.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.13.6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为am=2,bm=3,所以(ab)m=am•bm=2×3=6,故答案为:6.【点睛】此题考查积解析:6【分析】根据积的乘方运算法则,底数的积的乘方等于乘方的积,即可转化计算.【详解】解:因为a m=2,b m=3,所以(ab)m=a m•b m=2×3=6,故答案为:6.【点睛】此题考查积的乘方,关键是根据积的乘方运算法则将未知转化为已知.14.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式解析:6±【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键15.243【解析】【分析】先将9x•27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y −5=0,∴2x+3y=5, ∴9x 27y=32x解析:243【解析】【分析】先将9x •27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x ⋅27y =32x ⋅33y =32x+3y =35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则. 16.6【分析】设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边解析:6【分析】设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边形的边数是n,重复计算的内角的度数是x,则(n﹣2)•180°=840°﹣x,n=6…120°,∴这个多边形的边数是6,故答案为:6.【点睛】本题考查了多边形的内角和公式,正确理解多边形角的大小的特点,以及多边形的内角和定理是解决本题的关键.17.【分析】先将写成的形式,再利用积的乘方逆运算将指数相同的因数相乘即可得到答案. 【详解】×,,,=,故答案为:.【点睛】此题考查高次幂的乘法运算,同底数幂相乘的逆运算,积的乘方的逆解析:1 4【分析】先将2020(0.25)-写成201911()44⨯的形式,再利用积的乘方逆运算将指数相同的因数相乘即可得到答案.【详解】 2020(0.25)-×20194,2019201911()444=⨯⨯, 201911(4)44=⨯⨯, =14, 故答案为:14. 【点睛】此题考查高次幂的乘法运算,同底数幂相乘的逆运算,积的乘方的逆运算,正确掌握公式是解此题的关键.18.【分析】根据无理数的定义判断即可.【详解】解:在,,,,五个数中,无理数有,,两个.故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键.解析:2【分析】根据无理数的定义判断即可.【详解】解:在 3.14-,π,17-五个数中,无理数有π,两个. 故答案为:2.【点睛】本题考查了无理数的判断,无理数指无限不循环小数,熟记无理数的定义是解题关键. 19.【分析】先把二元一次方程组求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:,把①②式相加得到:,即: ,要二元一次方程组有整数解,即为整数,又∵为正整数,故解析:2【分析】先把二元一次方程组210320mx y x y +=⎧⎨-=⎩求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:210320mx y x y +=⎧⎨-=⎩①②, 把①②式相加得到:310+=mx x , 即:103x m =+ , 要二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解, 即103x m =+为整数, 又∵m 为正整数,故m=2, 此时10223x ==+,3y = , 故,x y 均为整数,故答案为:2;【点睛】本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键; 20.4或6【解析】【分析】根据三角形三边关系,可令第三边为x ,则5-3<x <5+3,即2<x <8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x ,则5-3<x<5+3,即2<解析:4或6【解析】【分析】根据三角形三边关系,可令第三边为x ,则5-3<x <5+3,即2<x <8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x ,则5-3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6,故答案为:4或6.【点睛】本题考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.三、解答题21.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==, 解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.22.(1)218524k x ky -⎧=⎪⎪⎨-⎪=⎪⎩;(2)52k =或12k =-;(3)1或2. 【分析】(1)根据题意直接利用加减消元法进行计算求解即可;(2)由题意根据01(0)a a =≠和11n =以及2(1)1n -=(n 为整数)得到三个关于k 的方程,求出k 即可;(3)根据题意用含m 的代数式表示出k ,根据14k ≤,确定m 的取值范围,由m 为正整数,求得m 的值即可.【详解】 解:(1)21322x y x y k ⎧+=⎪⎪⎨⎪-=-⎪⎩①②, ①+②得:3412x k =+-,解得:218k x -=, ①-②得:3212y k =-+,解得:524k y -=, ∴二元一次方程组的解为:218524k x k y -⎧=⎪⎪⎨-⎪=⎪⎩. (2)∵01(0)a a =≠,2(42)1y x +=,∴20y =,即52204k -⨯=,解得:52k =; ∵11n =,2(42)1y x +=,∴421x +=,即214218k -⨯+=,解得:12k =-; ∵2(1)1n -=(n 为正整数),2(42)1y x +=, ∴4212x y +=-,为偶数,即214218k -⨯+=-,解得:52k =-; 当52k =-时,3532115222y k =-+=++=,为奇数,不合题意,故舍去. 综上52k =或12k =-. (3)∵215213643647842k k m x y k --=+=⨯+⨯=+,即172m k =+, ∴2114m k -=, ∵14k ≤,∴211144m k -=≤,解得94m ≤, ∵m 为正整数,∴m=1或2.【点睛】 本题考查解二元一次方程组以及解一元一次不等式,根据题意列出不等式是解题的关键.23.(1)()25a a +;(2)()()41t t +-. 【分析】(1)首先利用提公因式法,提出a ,再利用公式法,即可分解因式;(2)首先将两个多项式的乘积展开,合并同类项后,再利用十字相乘法即可分解因式.【详解】解:(1)()()23221025=10255a a a a a a a a ++++=+; (2)()()22(1)(2)6=3263441t t t t t t t t ++-++-=+-=+-. 【点睛】本题考查因式分解,难度不大,是中考的常考点,熟练掌握分解因式的方法是顺利解题的关键.24.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64【分析】(1)根据杨辉三角的数表规律解答即可;(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;故答案为:++++432234a 4a b 6a b 4ab b ;(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;故答案为:81;②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;故答案为:64.【点睛】本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.25.见解析.【分析】先根据平行线的性质得出ABC BCD ∠=∠,再根据角的和差得出EBC BCF ∠=∠,然后根据平行线的判定即可得.【详解】 //BE CF ,理由如下:∵//AB CD∴ABC BCD ∠=∠(两直线平行,内错角相等)∵12∠=∠∴12ABC BCD ∠-∠=∠-∠即EBC BCF ∠=∠∴//BE CF .(内错角相等,两直线平行)【点睛】本题考查了角的和差、平行线的判定与性质,掌握平行线的判定与性质是解题关键.26.(1)3()(2)m n x y -+;(2)22(3)(3)x x +-.【分析】(1)原式变形后,提取公因式即可;(2)原式先利用平方差公式进行因式分解,再利用完全平方公式分解即可.【详解】(1)原式3()6()x m n y m n =-+-3()3()2m n x m n y =-⋅+-⋅3()(2)m n x y =-+(2)原式()2229(6)x x =+-()()229696x x x x =+++-22(3)(3)x x =+-【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 27.(1)50元,150元;(2)提示牌50个,垃圾箱50个;提示牌51个,垃圾箱49个;提示牌52个,垃圾箱48个;【分析】1)根据“购买2个提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论; (2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【详解】解:(1)设提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意得,233550x x +⨯=, 50x ∴=,3150x ∴=,即:提示牌和垃圾箱的单价各是50元和150元;(2)设购买提示牌y 个(y 为正整数),则垃圾箱为(100)y -个,根据题意得,1004850150(100)10000y y y ,5052y , y 为正整数,y ∴为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.28.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。
七年级下册海口数学期末试卷复习练习(Word版 含答案)

七年级下册海口数学期末试卷复习练习(Word 版 含答案) 一、选择题 1.9的值是()A .﹣3B .3C .±3D .﹣92.下列图形中,能将其中一个图形平移得到另一个图形的是 ( )A .B .C .D . 3.点()5,4A --在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题:①9的平方根是3±;②5是5的算术平方根;③经过一点有且只有一条直线与这条直线平行;④两条直线被第三条直线所截,同旁内角互补.其中真命题有( )A .0个B .1个C .2个D .3个5.如图,C 为AOB ∠的边OA 上一点,过点C 作//CD OB 交AOB ∠的平分线OE 于点F ,作CH OB ⊥交BO 的延长线于点H ,若EFD α∠=,现有以下结论:①COF α∠=;②1802AOH α∠=︒-;③CH CD ⊥;④290OCH α∠=-︒.结论正确的个数是( )A .1个B .2个C .3个D .4个6.如果32.37≈1.333,323.7≈2.872,那么32370约等于( )A .28.72B .0.2872C .13.3D .0.1333 7.如图,直线a ∥b ,直角三角板ABC 的直角顶点C 在直线b 上,若∠1=54°,则∠2的度数为( )A .36°B .44°C .46°D .54°8.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x -++叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得点A 1,A 2,A 3,…,n A ,…,若点1A 的坐标为(3)1,,则点A 2021的坐标为( ) A .(0,2)- B .(0)4, C .(3)1, D .(3,1)-二、填空题9.算术平方根等于本身的实数是__________.10.在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_______. 11.如图,BD 、CE 为△ABC 的两条角平分线,则图中∠1、∠2、∠A 之间的关系为___________.12.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.13.将一张长方形纸条折成如图的形状,已知1110∠=︒,则2∠=___________°.14.如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点A ,B 两点,则点A ,B 表示的数分别为__________.15.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________16.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“OA 1→A 1A 2→A 2A 3→A 3A 4→A 4A 5…”的路线运动,设第n 秒运动到点P n (n 为正整数),则点P 2020的坐标是______.三、解答题17.计算:(1)利用平方根意义求x 值:()2136x -=(2)()235832-----18.求下列各式中x 的值:(1)225x =;(2)2810x -=;(3)22536x =.19.如图,点F 在线段AB 上,点E 、G 在线段CD 上,AB ∥CD .(1)若BC 平分∠ABD ,∠D =100°,求∠ABC 的度数;解:∵AB ∥CD (已知),∴∠ABD +∠D =180°( ).∵∠D =100°(已知),∴∠ABD =80°.又∵BC 平分∠ABD ,(已知),∴∠ABC =12∠ABD = °( ).(2)若∠1=∠2,求证:AE ∥FG (不用写依据).20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:A →B (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A →C ( , ),B →D ( , ),C → (+1, );(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.21.已知某正数的两个不同的平方根是3a ﹣14和a +2;b +11的立方根为﹣3;c 是6的整数部分;(1)求a +b +c 的值;(2)求3a ﹣b +c 的平方根.二十二、解答题22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m 2的正方形场地改建成300m 2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二十三、解答题23.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;24.综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动.(1)如图1,EF ∥MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出∠PAF 、∠PBN 和∠APB 之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线m ∥n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动.①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设∠ADP =∠α,∠BCP =∠β.则∠CPD ,∠α,∠β之间有何数量关系?请说明理由;②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD ,∠α,∠β之间的数量关系.25.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.26.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °;②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .【参考答案】一、选择题1.B解析:B【分析】99的算术平方根,而9的算术平方根是3,进而得出答案.【详解】解:因为32=9,9,故选:B .【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的前提.2.A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A 、图形的形状和大小没有变化,符合平移的性质,属于平移得到; B 、图形由轴对称得到,不属于平移得到,不属于平移解析:A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A 、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B 、图形由轴对称得到,不属于平移得到,不属于平移得到;C 、图形由旋转变换得到,不符合平移的性质,不属于平移得到;D 、图形的大小发生变化,不属于平移得到;故选:A .【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向.掌握平移的性质是解题的关键.3.C【分析】根据平面直角坐标系象限的符合特点可直接进行排除选项.【详解】解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点()5,4A --在第三象限; 故选C .【点睛】本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键.4.B【分析】根据算术平方根的概念、平方根的概念、平行公理、平行线的性质判断即可.【详解】解:3=,3的平方根是5的算术平方根,正确,是真命题,符合题意;③经过直线外一点,有且只有一条直线与这条直线平行,故原命题错误,是假命题,不符合题意;④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,是假命题,不符合题意.真命题只有②,故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.D【分析】根据平行线的性质可得EOB EFD α∠=∠=,结合角平分线的定义可判断①;再由平角的定义可判断②;由平行线的性质可判断③;由余角及补角的定义可判断④.【详解】解://CD OB ,EFD α∠=,EOB EFD α∴∠=∠=, OE 平分AOB ∠,COF EOB α∴∠=∠=,故①正确;2AOB α∠=,180AOB AOH ∠+∠=︒,∴∠=︒-,故②正确;AOHα1802CD OB,CH OB//⊥,∴⊥,故③正确;CH CDAOB HOC∠+∠=︒,∴∠+∠=︒,180HCO HOC90OCHα∴∠=-︒,故④正确.290正确为①②③④,故选:D.【点睛】本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键.6.C【分析】根据立方根的变化特点和给出的数据进行解答即可.【详解】解:∵32.37≈1.333,∴3332370= 2.3710=1.33310=13.3313.3⨯⨯≈,故选:C.【点睛】本题考查了立方根,如果一个数扩大1000倍,它的立方根就扩大10倍,如果一个数缩小1000倍,它的立方根缩小10倍.7.A【分析】根据直角三角形可求出∠3的度数,再根据平行线的性质∠2=∠3即可得出答案.【详解】解:如图所示:∵直角三角形ABC,∠C=90°,∠1=54°,∴∠3=90°-∠1=36°,∵a∥b,∴∠2=∠3=36°.故选:A.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质,求出∠3的度数是解题的关键. 8.C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.【详解】解:∵点的坐标为,∴点的伴随点的坐标为,即解析:C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A 2021的坐标即可.【详解】解:∵点1A 的坐标为(3)1,, ∴点1A 的伴随点2A 的坐标为(11,31)-++,即(0,4) ,同理得:345(3,1),(0,2),(3,1),A A A --∴每4个点为一个循环组依次循环,∵202145051÷=,∴A 2021的坐标与1A 的坐标相同,即A 2021的坐标为(3)1,, 故选:C .【点睛】本题主要考查平面直角坐标系中探索点的变化规律问题,解题关键是读懂题目,理解“伴随点”的定义,并能够得出每4个点为一个循环组依次循环.二、填空题9.0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知解析:0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身. 10.【分析】如图,设点P 关于直线y=x -1的对称点是点Q ,过点P 作PA ∥x 轴交直线y=x -1于点A ,连接AQ ,先由直线y=x -1与两坐标轴的交点坐标确定△OBC 是等腰直角三角形,然后根据平行线的性质解析:()4,3-【分析】如图,设点P 关于直线y=x -1的对称点是点Q ,过点P 作PA ∥x 轴交直线y=x -1于点A ,连接AQ ,先由直线y=x -1与两坐标轴的交点坐标确定△OBC 是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ ,∠PAQ =90°,由于点P 坐标已知,故可求出点A 的坐标,进而可求出点Q 坐标.【详解】解:如图,设点P 关于直线y=x -1的对称点是点Q ,过点P 作PA ∥x 轴交直线y=x -1于点A ,连接AQ ,设直线y=x -1交x 轴于点B ,交y 轴于点C ,则点B (1,0)、点C (0,﹣1), ∴OB=OC =1,∴∠OBC =45°,∴∠PAB=45°,∵P 、Q 关于直线y=x -1对称,∴AP=AQ ,∠PAB =∠QAB =45°,∴∠PAQ =90°,∴AQ ⊥x 轴,∵P (﹣2,3),且当y =3时,3=x ﹣1,解得x =4,∴A (4,3),∴AD =3,PA =6=AQ ,∴DQ =3,∴点Q 的坐标是(4,﹣3).故答案为:(4,﹣3).【点睛】本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性质等知识,熟练掌握一次函数图象上点的坐标特点和轴对称的性质是解题关键. 11.∠1+∠2-∠A=90°【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.【详解】∵BD、C解析:∠1+∠2-32∠A=90°【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.【详解】∵BD、CE为△ABC的两条角平分线,∴∠ABD=12∠ABC,∠ACE=12∠ACB,∵∠1=∠ACE+∠A,∠2=∠ABD+∠A ∴∠1+∠2=∠ACE+∠A+∠ABD+∠A=1 2∠ABC+12∠ACB+12∠A+32∠A=12(∠ABC+∠ACB+∠A)+32∠A=90°+32∠A故答案为∠1+∠2-32∠A=90°.【点睛】考查了三角形的内角和等于180°、外角与内角关系及角平分线的性质,是基础题.三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和.12.70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答解析:70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.13.55【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵ABCD,∴∠1=∠BAD=110°,由折叠可得,∠2=∠BAD=×110°=55°,故答案为:解析:55【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数.【详解】解:如图所示,∵AB//CD,∴∠1=∠BAD=110°,由折叠可得,∠2=12∠BAD=12×110°=55°,故答案为:55°.【点睛】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.,【分析】根据算术平方根的定义以及数轴的定义解答即可.【详解】解:∵正方形的面积为5,∴圆的半径为,∴点A 表示的数为,点B表示的数为.故答案为:,.【点睛】本题考查了实数与数轴,熟解析:1-,1-【分析】根据算术平方根的定义以及数轴的定义解答即可.【详解】解:∵正方形的面积为5,∴∴点A 表示的数为1-1-+.故答案为:1-1-【点睛】本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键.15.或【分析】已知,可知AB=8,已知的面积为,即可求出OC 长,得到C 点坐标.【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(0,4)或(0,-4)故答案为:(0,4)解析:(0,4)或(0,4) -【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标.【详解】∵()()7,0,1,0A B -∴AB=8∵ABC ∆的面积为16 ∴12AB OC ⨯⨯=16 ∴OC=4∴点C 的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解. 16.【分析】先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案.【详解】解:由题意得:点的坐标是,点的坐标是,点的坐标是,点的坐标是,归纳类推得:点的坐标是,其中为正整数,因为解析:(1010,0)【分析】先分别求出点2468,,,P P P P 的坐标,再归纳类推出一般规律,由此即可得出答案.【详解】解:由题意得:点2P 的坐标是2(1,0)P ,点4P 的坐标是4(2,0)P ,点6P 的坐标是6(3,0)P ,点8P 的坐标是8(4,0)P ,归纳类推得:点2n P 的坐标是2(,0)n P n ,其中n 为正整数,因为202021010=⨯,所以点2020P 的坐标是2020(1010,0)P ,故答案为:(1010,0).【点睛】本题考查了点坐标规律探索,正确归纳类推出一般规律是解题关键.三、解答题17.(1)或 (2)【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.【详解】解:(1) ,是的平方根,或(2)【点睛解析:(1)7x =或 5.x =- (2)5【分析】(1)由平方根的定义可得答案,(2)先化简二次根式,求解立方根与绝对值,再合并即可得到答案.【详解】解:(1) ()2136x -=, 1x ∴-是36的平方根,16,16,x x ∴-=-=-7x ∴=或 5.x =-(225(2)2=--522=+-5=【点睛】本题考查的是平方根的定义,实数的运算,求解算术平方根,立方根,绝对值的化简,掌握以上知识是解题的关键.18.(1);(2);(3)【分析】直接根据平方根的定义逐个解答即可.【详解】解:(1)∵,∴;(2)∵,∴,∴;(3)∵,∴,∴.【点睛】此题主要考查了平方根的定义,熟练掌握平解析:(1)x=5±;(2)x=9±;(3)x=6 5±【分析】直接根据平方根的定义逐个解答即可.【详解】解:(1)∵225x=,∴5x=±;(2)∵2810x-=,∴281x=,∴9x=±;(3)∵22536x=,∴23625x=,∴65x=±.【点睛】此题主要考查了平方根的定义,熟练掌握平方根的定义是解题关键.19.(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析【分析】(1)根据平行线的性质求出∠ABD=80°,再根据角平分线的定义求解即可;(2)根据平行线的性质得到∠1=∠FGC,等解析:(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析【分析】(1)根据平行线的性质求出∠ABD=80°,再根据角平分线的定义求解即可;(2)根据平行线的性质得到∠1=∠FGC,等量代换得到∠2=∠FGC,即可判定AE∥FG.【详解】(1)∵AB∥CD(已知),∴∠ABD+∠D=180°(两直线平行,同旁内角互补),∵∠D=100°(已知),∴∠ABD=80°,又∵BC平分∠ABD(已知),∴∠ABC=12∠ABD=40°(角平分线的定义).故答案为:两直线平行,同旁内角互补;40;角平分线的定义;(2)证明:∵AB∥CD,∴∠1=∠FGC,又∵∠1=∠2,∴∠2=∠FGC,∴AE∥FG.【点睛】此题考查了平行线的判定与性质,熟记“两直线平行,同旁内角互补”、“两直线平行,内错角相等”、“同位角相等,两直线平行”是解题的关键.20.(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2);故答案为3,4;3,﹣2;D,﹣2;(2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.21.(1)-33;(2)【分析】(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值;(2)分别将a,b,c的值代入3a-b+c,可±解析:(1)-33;(2)7【分析】(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据23<<可得c的值;(2)分别将a,b,c的值代入3a-b+c,可解答.【详解】解:(1)∵某正数的两个平方根分别是3a-14和a+2,∴(3a-14)+(a+2)=0,∴a=3,又∵b+11的立方根为-3,∴b+11=(-3)3=-27,∴b=-38,<<,又∵469∴23<,又∵c的整数部分,∴c=2;∴a+b+c=3+(-38)+2=-33;(2)当a=3,b=-38,c=2时,3a-b+c=3×3-(-38)+2=49,∴3a-b+c的平方根是±7.【点睛】本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.二十二、解答题22.(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1)400=20(m ),4×20=80(m ),答:原来正方形场地的周长为80m ;(2)设这个长方形场地宽为3am ,则长为5am .由题意有:3a ×5a =300,解得:a =±20,∵3a 表示长度,∴a >0,∴a =20,∴这个长方形场地的周长为 2(3a +5a )=16a =1620(m ),∵80=16×5=16×25>1620,∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二十三、解答题23.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.24.(1)∠PAF +∠PBN +∠APB =360°;(2)①,见解析;②或【分析】(1)作PC ∥EF ,如图1,由PC ∥EF ,EF ∥MN 得到PC ∥MN ,根据平行线的性质得∠PAF +∠APC =180°,∠解析:(1)∠PAF +∠PBN +∠APB =360°;(2)①CPD αβ∠=∠+∠,见解析;②CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PC ∥EF ,如图1,由PC ∥EF ,EF ∥MN 得到PC ∥MN ,根据平行线的性质得∠PAF +∠APC =180°,∠PBN +∠CPB =180°,即有∠PAF +∠PBN +∠APB =360°; (2)①过P 作PE ∥AD 交ON 于E ,根据平行线的性质,可得到EPD α∠=∠,CPE β∠=∠,于是CPD αβ∠=∠+∠;②分两种情况:当P 在OB 之间时;当P 在OA 的延长线上时,仿照①的方法即可解答.【详解】解:(1)∠PAF +∠PBN +∠APB =360°,理由如下:作PC ∥EF ,如图1,∵PC ∥EF ,EF ∥MN ,∴PC ∥MN ,∴∠PAF +∠APC =180°,∠PBN +∠CPB =180°,∴∠PAF +∠APC +∠PBN +∠CPB =360°,∴∠PAF +∠PBN +∠APB =360°;(2)①CPD αβ∠=∠+∠,理由如下:如答图,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD αβ∠=∠+∠②当P 在OB 之间时,CPD αβ∠=∠-∠,理由如下:如备用图1,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD αβ∠=∠-∠;当P 在OA 的延长线上时,CPD βα∠=∠-∠,理由如下:如备用图2,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD βα∠=∠-∠;综上所述,∠CPD ,∠α,∠β之间的数量关系是CPD βα∠=∠-∠或CPD αβ∠=∠-∠.【点睛】本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.难点是分类讨论作平行辅助线.25.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A +∠APB =50°,∴∠APB =40°;如图③,当2∠APB +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠APB =20°;如图④,当2∠A +∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A +∠APB =50°,所以∠A =40°,所以∠APB =10°;综上,∠APB 的度数是10°或20°或40°或110°时,ABP △是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解. 26.(1)①70;②∠F=∠BED ,证明见解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,∴CD ∥FG ,∴∠ABF=∠BFG ,∠CDF=∠DFG ,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF )=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;②∠F=12∠BED ,理由是:分别过E 、F 作EN//AB ,FM//AB ,∵EN//AB ,∴∠BEN=∠ABE ,∠DEN=∠CDE ,∴∠BED=∠ABE+∠CDE ,∵DF 、BF 分别是∠CDE 的角平分线与∠ABE 的角平分线,∴∠ABE=2∠ABF ,∠CDE=2∠CDF ,即∠BED=2(∠ABF+∠CDF );同理,由FM//AB ,可得∠F=∠ABF+∠CDF ,∴∠F=12∠BED ;(3)2∠F+∠BED=360°.如图,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,∵AB ∥CD ,EG ∥AB ,∴CD ∥EG ,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE ),即∠BED=360°-(∠ABE+∠CDE ),∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∠BED=360°-2(∠ABF+∠CDF ),由①得:∠BFD=∠ABF+∠CDF ,∴∠BED=360°-2∠BFD ,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α,∴2452αα≥+︒, 解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒, ∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.。
海口市七年级第二学期数学科期末检测题.docx

海口市七年级第二学期数学科期末检测题时间:100分钟 满分:100分 得分:一、选择题(每小题3分,共42分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.题 号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答 案1.若2m -1=3,则m 等于A .-1B .1C .-2D .22.若a >b ,则下列不等式一定成立的是A . -1+a <-1+bB . 2a <2bC . 2-a >2-bD . b -a <03. 代数式x -2与1-2x 的值相等,则x 等于A . 0B . 1C . 2D . 34. 已知⎩⎨⎧=-=.12y x ,是方程kx +2y =5的一个解,则k 的值为A . 23-B .23C . 32-D .32 5.下列图案中,既是轴对称图形,又是中心对称图形的是6. 一个多边形每一个外角都等于36°,则这个多边形的边数为A .12B .10C .8D .67.已知等腰三角形的两条边的长分别为6cm 和3cm ,则该等腰三角形的周长是A . 9cmB . 12cmC . 15cmD . 12cm 或15cm8. 如图1,直线AB ∥CD ,若∠B =24°,∠D =33°,则∠BED 等于A.24°B.33°C.57°D.67°9. 如图2,△ADE≌△BDE,若△ADC的周长为12,AC的长为5,则CB的长为A.8B.7C.6D.510. 如图3,AD为△ABC的中线,E为AD的中点,若△ABE的面积为15,则△ABC的面积为A.45 B.50 C.60 D.7511. 如图4,四边形ABCD是正方形,点E在BC上,△ABE绕正方形的中心经顺时针旋转后与△DAF重合,则旋转角度是A.120°B.90°C.60°D.45°12. 把边长相等的正五边形和正六边形按照如图5的方式叠合在一起,AB是正六边形的对角线,则∠α等于A.72°B.84°C.88°D.90°13. 某工程队计划在10天内修路8km,前两天一共修完了2km,由于计划发生变化,准备提前两天完成修路任务,以后几天内平均每天至少要修路A.1 km B.0.9 km C.0.8 km D.0.6 km14. 某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,如果设上半年每月平均用电x度,则所列方程正确的是A.6x+6(x-2000)=150000B. 6x+6(x+2000)=150000C. 6x+6(x-2000)=15D. 6x+6(x+2000)=15二、填空题(每小题3分,共12分)15. 由x -2y -6=0, 得到用x 表示y 的式子为y = .16.图6是由10个相同的小长方形拼成的长方形图案,则每块小长方形的面积为 cm 2. 17. 如图7,△ABC 沿BC 方向平移到△DEF 的位置,若EF =5cm ,CE =2cm ,则AD 的长为 cm .18. 如图8,等边△ABC 中,点D 、E 分别在边AB 、BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ′处,DB ′、EB ′分别交边AC 于点F 、G .若∠ADF =80°,则∠EGC = °. 三、解答题(共46分)19.(第(1)小题4分,第(2)小题5分,共9分) (1)解方程:142532-=---x x ;(2)求不等式组⎪⎩⎪⎨⎧>+->-.2524,232x x x 的所有整数解.20. (6分) 已知y =kx +b ,当x =2时,y =-4;当x =-1时,y =5.(1)求k、b的值;(2)当x取何值时,y的值小于1?21.(7分)本题有两道题,请从(1)、(2)题中任选一题....作答.(1)在水果店里,小李买了5kg苹果、3kg梨,老板少要1元,收了90元;老王买了12kg苹果、6kg梨,老板按九折收钱,收了189元.该店苹果和梨的单价各是多少元?(2)某商店经销甲、乙两种商品.现有如下信息:【信息1】甲、乙两种商品的进货单价之和是3元;【信息2】甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元;【信息3】按零售单价购买甲商品3件和乙商品2件,共付了12元.请根据以上信息,求甲、乙两种商品的零售单价.我选择第小题作答.22.(7分)在如图9的正方形网格中,每个小正方形的边长都是单位1,△ABC的顶点均在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1;(2)画出△A2B2C2,使△A2B2C2与△ABC关于点O成中心对称;(3)△A1B1C1与△A2B2C2是否对称?若对称,请在图中画出对称轴或对称中心.23.(8分)如图10,在△ABC中,∠B=42º,∠C=78º,AD平分∠BAC.(1)求∠ADC的度数;(2)在图中画出BC边上的高AE,并求∠DAE的度数.24.(9分) 在△ABC和△DEF中,∠A=40°,∠E+∠F=70°. 将△DEF放置在△ABC上,使得∠D的两条边DE、DF分别经过点B、C.(1)当将△DEF如图11.1放置在△ABC上时,∠ABD+∠ACD= °;(2)当将△DEF如图11.2放置在△ABC上时.①请求出∠ABD+∠ACD的大小;②能否将△DEF摆放到某个位置,使得BD、CD同时平分∠ABC和∠ACB?直接写出结论:(填“能”或“不能”).2014—2015学年度第二学期海口市七年级数学科期末检测题参考答案一、DDBAD BCCBC BBAA 二、15.y =21x -3 16. 400 17. 3 18.80 三、19.(1)4(2x -3)-5(x -2)=-20…(1分) 8x -12-5x +10=-20…(2分) 3x =-18…(3分)x =-6. …(4分)(2)解不等式①,得x <2. 解不等式②,得x >-3. …(2分) 该不等式组的解集是:-3<x <2.所有整数解为:-2,-1,0,1. …(5分)20.(1)由题意,得⎩⎨⎧=+--=+.5,42b k b k …(1分)解这个方程组,得k =-3,b =2; …(3分)(2)由(1)得,y =-3x +2.y 的值小于1,即 -3x +2<1, …(4分) ∴31>x ,∴ 当31>x 时,y 的值小于1. …(6分)21.(1)设该店苹果的单价为x 元,梨的单价为y 元. …(1分)根据题意,得⎩⎨⎧=⨯+=-+.1899.0)612,90135y x y x ( …(4分)解这个方程组,得⎩⎨⎧==.7,14y x …(6分)答:该店苹果的单价为14元,梨的单价为7元. …(7分) (2)设甲、乙两种商品的进货单价分别为x 元、y 元.…(1分) 根据题意可得:⎩⎨⎧=-++=+.12)12(2)1(3,3y x y x…(4分) 解这个方程组,得⎩⎨⎧==.2,1y x…(6分)甲零售单价:1+1=2(元),乙零售单价:2×2-1=3(元).答:甲、乙零售单价分别为2元和3元. …(7分)22. 如图2,(1)△A 1B 1C 1即为所求的三角形; …(2分) (2)△A 2B 2C 2即为所求的三角形; …(4分) (3)△A 1B 1C 1与△A 2B 2C 2成轴对称,对称轴为直线EF . …(7分)23.(1)∵ ∠B =42°, ∠C =78°, ∴ ∠BAC =180°-∠B -∠C =60°. ∵ AD 平分∠BAC , ∴ ∠BAD =21∠BAC =30°. ∴ ∠ADC =∠B +∠BAD=42°+30°=72°. …(5分)(2)如图2所示,AE 为BC 边上的高. …(6分)∴ ∠AEB =90°.∴ ∠DAE =180°-∠AED -∠ADE =180°-90°-72°=18°. …(8分)(注:用其它方法求解参照以上标准给分.)24.(1)210; …(2分) (2)在△ABC 中,∠A =40°,∴ ∠ABC +∠ACB =140°. …(4分) 在△DEF 中,∠E +∠F =70°, ∴ ∠D =110°,∴ ∠BCD +∠CBD =180°-∠D =70°, …(6分) ∴ ∠ABD +∠ACD =(∠ABC +∠ACB )-(∠BCD +∠CBD )=70°. …(7分) (3)能. …(9分)(注:用其它方法求解参照以上标准给分.)初中数学试卷鼎尚图文**整理制作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
海南省海口市2013-2014学年七年级数学下学期期末考试试题(B
卷)
时间:100分钟 满分:100分 得分:
一、选择题(每小题3分,共42分)
在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.
1.方程3x -1=x 的解是
A .x
=-2
B
.x =2
C .
2
1
-
=x D .2
1=
x 2.不等式6-3x <0的最小整数解是
A. 3
B. 2
C. 1
D. 0
3.若x =-1是方程2x -k =0的解,则k 的值为
A .-2
B .2
C .-1
D .1 4.在下列图形中,既是轴对称图形又是中心对称图形的是
5.已知三角形的两边长分别为3cm 和8cm ,则这个三角形第三边的长可能是
A .5cm
B .6cm
C .11cm
D .13cm
6. 课外活动中一些学生分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少2组.则这些学生共有 A. 24人
B. 48人
C. 54人
D. 72人
7. 如图1,直线a ∥b ,若∠1=24°,∠2=70°,则∠A 等于
A .46°
B .45°
C .40°
D .30°
A .
C .
B .
D .
2
8.在图2中,x 的值为
A .86
B .90
C .108
D .112
9.如图3,△ABC ≌△BDE ,若AB =12,ED =5,则CD 的长为
A .5
B .6
C .7
D .8 10.一个多边形的内角和是720°,则这个多边形的边数是
A .3
B .4
C .5
D .6 11. 如图4,该图形围绕点O 按下列角度旋转后,不能..与其自身重合的是 A .72° B .108°
C .144°
D .216°
12.如图5,△ABC 是等边三角形,D 是BC 上一点,若将△ADC 绕点A 顺时针旋转n 度后到
达△AEB 的位置,则n 的值为
A .45
B .50
C .60
D .90
13.如图6,在△ABC 中,∠B =50°,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,将△ABC 沿
DE 折叠,则A BD '∠等于
A. 50°
B. 60°
C. 70°
D. 80° 14. 小华准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔
记本之后,其余的钱用来买笔,那么他最多..可以买 A .3支笔
B .4支笔
C .5支笔
D .6支笔
二、填空题(每小题3分,共12分)
15. 当a = 时,代数式1-3a 的值等于2.
1
2 b
B a C
A
D
图1
图3
A
E
112°
x °
90°
图2 68°
3
16. 不等式组⎩⎨⎧>--<+.
13,
112x x 的解集为 .
17.如图7,是一块三角形木板的残余部分,若量得∠A =45°,∠B =100°,则这块三角形
木板另外一个角是 度.
18.如图8,△ABC 沿BC 方向平移到△DEF 的位置,若BF =8cm ,CE =2cm ,则平移的距离
是 cm. 三、解答题(共46分)
19.(本题满分8分,每小题4分)
(1)解方程:131
223=+--x x ;
(2)解方程组: ⎩⎨⎧=+=+.
1134,
1043y x y x
20. (7分)已知y=kx+b,当x=-2时,y=3;当x=-1时,y=2.
(1)求k、b的值;
(2)当x取何值时,y的值小于0.
21.(7分)本题有两道题,请从(1)、(2)题中任选一题
....作答.
(1)小明与他的爸爸一起做“投篮球”游戏.两人商定规则为:小明投中1个得3分,小明爸爸投中1个得1分. 结果两人一共投中了20个,经计算,发现两人的得分
恰好相等. 你能知道他们两人各投中几个吗?
(2)从甲地到乙地,长途汽车原需行驶7个小时,开通高速公路后,路程缩短了30千米,车速平均每小时增加了30千米,结果只需4个小时即可到达. 求甲、乙两
地之间高速公路的路程.
4
5
22.(6分)如图9,在△ABC 中,点D 是AB 上一点,E 是AC 上一点,BE 、CD 相交于
点F ,∠A =62°,∠ACD =35°,∠ABE =20°. 求∠BDC 和∠BFD 的度数.
23.(9分)现有如图10.1所示的两种瓷砖. 请从这两种瓷砖中各选2块,拼成一个新的正
方形地板图案,使拼铺的图案成轴对称图形或中心对称图形(如示例图10.2). (要求:分别在图10.3、图10.4中各设计一种与示例图不同的拼法,这两种拼法各不相同,且其中至少有一个既是轴对称图形,又是中心对称图形.)
A
E
D
F
图
9
图10.1
示例: 图10.2 图10.3 图10.4
24.(9分)在如图11的正方形网格中,每个小正方形的边长都是单位1,△ABC的顶点均
在格点上.
(1)画出△ABC绕A点按逆时针方向旋转90°后得到的△AB1C1;若连结CC1,则△ACC1是怎样的三角形?
(2)画出△A2B2C2,使△A2B2C2和△AB1C1关于点O成中心对称;
(3)指出如何平移△AB1C1,使得△A2B2C2和△AB1C1能拼成一个长方形.
2013—2014学年度第二学期
6
7
海口市七年级数学科期末检测题(B 卷)
参考答案及评分标准
三、19.(1)3(x -3)-2(2x +1)=6 …(1分) (2)①×3,②×4,得
3x -9-4x -2=6 …(2分) ⎩⎨
⎧=+=+④
y x ③
y x .441216,30129 …(2分)
-x =17 …(3分) ④-③,得 7x =14,x =2.…(3分)
x =-17 …(4分) 把x =2代入①,得y =1.
∴ ⎩⎨⎧==.
1,
2y x …(4分)
解这个方程组,得⎩⎨⎧==.
15,
5y x …………(6分)
答:小明投中5个,小明爸爸投中15个. …………(7分)
(2)设甲、乙两地之间高速公路的路程为x 千米. …………(1分)
根据题意,得4
30730x
x =++
…………(4分) 解这个方程,得 x =320. …………(6分) 答:甲、乙两地之间高速公路的路程为320千米. …………(7分)
22. ∵ ∠A =62°, ∠A =35°,
∴ ∠BDC =∠A +∠ACD =62°+35°=97°. …………(3分)
A
E
D C
F
图1
8
∵ ∠BFD +∠BDC +∠ABE =180°, ∴ ∠BFD =180°-∠BDC -∠ABE
=180°-97°-20°
=63°. …………(6分)
23. 注:本题所画的两个图案中,有一个图案只是轴对称(或只是中心对称)的给4分,
另一个图案既是轴对称图形又是中心对称图形的给5分. 答案不唯一,以下设计图案仅供参考.
24.(1)如图2,△ACC 1是等腰直角三角形. (2)如图2. (3)答案不唯一. 如:
① 先将△AB 1C 1向右平移5个单位,然后再向下平移6个单位. ② 先将△AB 1C 1向下平移6个单位,然后再向右平移5个单位. ③ 将△AB 1C 1沿着点C 1到点A 2的方向,平移的距离为C 1 A 2的长度单位.
(注:第23题第(1)小题4分,第(2)小题3分,第(3)小题2分)
(注:用其它方法求解参照以上标准给分.)
轴对称图形:
中心对称图形:
既是轴对称图形又是中心对称图形:
图2。