高中物理杆与绳
高中物理48个解题模型高考物理题型全归纳

⾼中物理48个解题模型⾼考物理题型全归纳最后两个⽉,快速掌握⾼考物理150道易错题+30个常考物理模型,⼀定拿⾼分!不看太可惜!历年⾼考物理解题经典模型,⽼师都没讲得这么全!常考物理模型及易错题常考物理模型及隐含条件30条1.绳:只能拉,不能压,即受到拉⼒时F≠0,受压时F=0.2.杆:既能拉也能压,即受到拉⼒.压⼒时,有F≠0.3.绳刚要断:此时绳的拉⼒已经达到最⼤值,即F=Fmax.4.光滑:意味着⽆摩擦⼒.5.长导线:意味着长度L可看成⽆穷⼤.6.⾜够⼤的平板:意味着平板的⾯积S可看成⽆穷⼤.7.轻杆.轻绳.轻滑轮:意味着质量m=0.8.物体刚要离开地⾯.物体刚要飞离轨道等物体和接触⾯之间作⽤⼒:FN=0.9.绳恰好被拉直,此时绳中拉⼒:F=0.10.物体开始运动.⾃由释放:表⽰初速度为0.11.锤打桩⽆反弹:碰撞后,锤与桩有共同速度.12.理想变压器:⽆功率损耗的变压器.13.细杆:体积为零,仅有长度.14.质点:具有质量,但可忽略其⼤⼩.形状和内部结构⽽视为⼏何点的物体.15.点电荷:在研究带电体间的相互作⽤时,如果带电体的⼤⼩⽐它们之间的距离⼩得多,即可认为分布在带电体上的电荷是集中在⼀点上的.16.基本粒⼦如电⼦.质⼦.离⼦等是不考虑重⼒的粒⼦,⽽带电的质点.液滴.⼩球等(除说明不考虑重⼒外)则要考虑重⼒.17.“轻绳.弹簧.轻杆”模型:注意三种模型的异同点,常考查直线与圆周运动中三种模型的动⼒学问题和功能问题.18.“挂件”模型:考查物体的平衡问题.死结与活结问题,常采⽤正交分解法,图解法,三⾓形法则和极值法解题.19.“追碰”模型:考查运动规律.碰撞规律.临界问题.常通过数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等解题.20.“⽪带”模型:注意摩擦⼒的⼤⼩和⽅向.常考查⽜顿运动定律.功能关系及摩擦⽣热等问题.21.“平抛”模型:物体做平抛运动(或类平抛运动),考查运动的合成与分解.⽜顿运动定律.动能定理等知识.22.“⾏星”模型:万有引⼒提供向⼼⼒.注意相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).23.“⼈船”模型:不仅是动量守恒问题中典型的物理模型,也是最重要的⼒学综合模型之⼀.通过类⽐和等效⽅法,可以使许多动量守恒问题的分析思路和解答步骤变得简捷.24.“⼦弹打⽊块”模型:⼦弹和⽊块组成的系统动量守恒,机械能不守恒.系统损失的机械能等于阻⼒乘以相对位移.25.“限流与分压器”模型:电路设计中经常遇到.考查串.并联电路规律及闭合电路的欧姆定律.电能.电功率以及实际应⽤等.26.“电路的动态变化”模型:考查闭合电路的欧姆定律.27.“回旋加速器”模型:考查带电粒⼦在磁场中运动的典型模型.注意加速电场的平⾏极板接的是交变电压,且它的周期和粒⼦的运动周期相同.28.电磁场中的“单杆”模型:导体棒主要是以棒⽣电或电⽣棒的内容出现,从组合情况来看有棒与电阻.棒与电容.棒与电感.棒与弹簧等.导体棒所在的导轨有平⾯导轨.竖直导轨等.29.电磁场中的“双电源”模型:考查⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律等知识.30.“远距离输电变压器”模型:注意变压器的三个制约问题.⾼中物理模型有哪些⒈"质⼼"模型:质⼼(多种体育运动).集中典型运动规律.⼒能⾓度.⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动⼒学问题和功能问题.⒊"挂件"模型:平衡问题.死结与活结问题,采⽤正交分解法,图解法,三⾓形法则和极值法.⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理⽅法(参照物变换法.守恒法)等.⒌"运动关联"模型:⼀物体运动的同时性.独⽴性.等效性.多物体参与的独⽴性和时空联系.⒍"⽪带"模型:摩擦⼒.⽜顿运动定律.功能及摩擦⽣热等问题.⒎"斜⾯"模型:运动规律.三⼤定律.数理问题.⒏"平抛"模型:运动的合成与分解.⽜顿运动定律.动能定理(类平抛运动).⒐"⾏星"模型:向⼼⼒(各种⼒).相关物理量.功能问题.数理问题(圆⼼.半径.临界问题).⒑"全过程"模型:匀变速运动的整体性.保守⼒与耗散⼒.动量守恒定律.动能定理.全过程整体法.⒒"⼈船"模型:动量守恒定律.能量守恒定律.数理问题.⒓"⼦弹打⽊块"模型:三⼤定律.摩擦⽣热.临界问题.数理问题.⒔"爆炸"模型:动量守恒定律.能量守恒定律.⒕"单摆"模型:简谐运动.圆周运动中的⼒和能问题.对称法.图象法.⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应⽤.⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断⽅法和变压器的三个制约问题.⒘"磁流发电机"模型:平衡与偏转.⼒和能问题.⒙"回旋加速器"模型:加速模型(⼒能规律).回旋模型(圆周运动).数理问题.⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平⾯导轨.竖直导轨等,处理⾓度为⼒电⾓度.电学⾓度.⼒能⾓度.21.电磁场中的"双电源"模型:顺接与反接.⼒学中的三⼤定律.闭合电路的欧姆定律.电磁感应定律.22.交流电有效值相关模型:图像法.焦⽿定律.闭合电路的欧姆定律.能量问题.23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.24.远距离输电升压降压的变压器模型.。
高中物理动力学-轻绳轻杆模型

轻绳轻杆模型一、轻绳模型:“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种。
“活结”是绳子间的一种光滑连接,其特点是结的两端同一绳上的张力相等;而“死结”是绳子间的一种固定连接,结的两端绳子上的张力不一定相等。
1.“死结”问题的解决方法:(动态平衡问题)(1)正交分解法:建立直角坐标系,把力分解到X 轴和Y 轴上,然后水平方向合力为零,竖直方向合力为零列方程组。
(2)力的合成(图解法):如果物体受3个力作用,那么其中两个力的合力与第三个力大小相等,方向相反。
把这3个力放到三角形中,根据三角形三个边长的变化情况来判断力的变化情况。
(3)拉密定理:物体受到3个力的作用,一个恒力(方向大小不变),一个定力(方向不变大小变),一个变力(方向大小都变化),定力与变力的夹角为θ(即恒力屁股对着的夹角), 那么会有:定力与θ角的变化情况相同当θ角为钝角时,变力与θ角的变化情况相同当θ角为直角时,变力有最小值。
当θ角为锐角时,变力与θ角的变化情况相反。
无论θ角时从锐角变成钝角,还是钝角变成锐角,变力都是先减小后增加。
2.“活结”问题的解决方法:(1) 无论OB 与水平方向的角度如何,OA 、OC 的拉力都不会变,都等于C 的重力。
(2)轻绳的拉力与MN 之间的距离有关,距离越大拉力大,距离约小拉力越小。
如果距离不变(即a 点或b点只是竖直方向移动),那么拉力不变,轻绳与水平方向的夹角也不会变化。
二、轻杆模型:“活杆”与“死杆” 死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向.活杆是可以转动的杆所以杆所受弹力的方向沿杆方向。
1. “死杆”问题的解决方法:由于死杆是不可转动,所以杆所受弹力的方向不一定沿杆方向,也就是说可以是任意方向,那么只能先求出除了杆受到的弹力之外的所有力的合力,那么杆受到的弹力与这个合力大小相等,方向相反。
浅析轻绳、轻杆和轻弹簧模型的应用

T-mgcosθ =mv2/l=0 所以,拉力为
T=mgcosθ
请想一想: 这时 OA 的拉力与 OB 断开前的拉力之 比是多少?OB 断开瞬间,小球的运动加速度是 多少?
0 2 -1
分析:在细绳烧断之前,两球受到的平衡力如图所示。 在细绳烧断瞬间间,拉力(T)消失,而弹簧弹力不变, 即
T=2 mg
根据牛顿第二定律,A、B 的加速度分别为 aA=(F-mg)/m=g--方向竖直向上。
aB=mg/m=g--方向竖直向下。
请读者想一想:如果将连接 A、B 球的细绳换成轻 杆或者轻弹簧结果如何?
T= [(ma)2+( mg)2]1/2=m (a2+g2)1/2
拉力与竖直方向的夹角θ 可表示为 θ =tg (a/g). 可以看出:θ 角随加速度 a 的增大而增大。 当 a=0 时:T= mg , θ =0---拉力竖直向上; 当 a=gtgß 时: T= mg(1+tg ß)1 /2= mg/cosθ , θ =ß---拉力沿杆方向; 注意:这个临界加速度,可以利用逆向思维方法。由θ =ß 简捷的得出。 当 a»g 时, T≈ ma,θ ≈90 ――拉力趋于水平方向。 当 a«g 时, T≈ mg,θ ≈0――拉力趋于竖直方向。 请读者想一想:如果小球由一段轻绳或者轻弹簧连接,结果如何? 例 3:如图 4 所示,质量相同的 A、B 两球用细绳相连,然后由轻弹簧竖直悬挂。求 将细绳烧断瞬间,A、B 的加速度是多少?方向如何?
高中物理运动的合成与分解之绳杆模型专题

绳(杆)端速度分解模型1.模型特点沿绳(杆)方向的速度分量大小相等. 2.思路与方法合速度→绳(杆)拉物体的实际运动速度v分速度→⎩⎪⎨⎪⎧其一:沿绳(杆)的速度v 1其二:与绳(杆)垂直的分速度v 2方法:v 1与v 2的合成遵循平行四边形定则. 3.解题的原则把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解.常见的模型如图7所示.关联体:通过绳子、轻杆或者其他之间联系的两个相互作用的物体 【核心方法点拨】(1)如果物体是通过杆或者绳子关联,由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题的原则是:把物体的实际速度分解为垂直于绳(或杆)和平行于绳(或杆)的两个分量,根据沿绳(杆)方向的分速度大小相同求解.(2)若两物体是通过接触面接触的,则将物体的实际速度沿平行与垂直接触面方向进行分解,在垂直接触面方向上速度相等题型一 通过轻绳关联1.(2021·安徽·定远县育才学校高一阶段练习)如图所示,物体A 和B 的质量均为m ,分别与跨过定滑轮的轻绳连接(不计绳与滑轮、滑轮与轴之间的摩擦)。
现用水平变力F 拉着物体A 沿水平方向向右做匀速直线运动。
则下列说法中正确的是( )A .物体B 做匀速直线运动 B .物体B 做加速直线运动C .绳子对物体B 的拉力等于mgD .绳子对物体B 的拉力小于mg2.(2021·河南·濮阳南乐一高高二开学考试)如图所示,已知m A =3m B ,C 为内壁光滑、半径为R 的半圆形轨道,D 为定滑轮,开始时A 、B 均处于静止状态,释放后,A 沿圆弧轨道下滑,若已知A 球下滑到最低点时的速度为v ,则此时B 的速度为( )A vB .12v C v D .2v3.(2022·广东高州·高一期末)如图所示绳子通过固定在天花板上的定滑轮,左端与套在固定竖直杆上的物体A 连接,右端与放在水平面上的物体B 相连,到达如图所示位置时,绳与水平面的夹角分别为夹角为37︒、53︒,两物体的速率分别为A v 、B v ,且此时20m /s 3+=A B v v ,3sin 375︒=、4cos375︒=,则A v 的大小为( )A .10m/s 3 B .4m/s 3C .2m/sD .4m/s4.(多选)(2022·山东·威海市教育教学研究中心高一期末)如图所示,不可伸长的轻绳绕过光滑定滑轮C 与物体A 连接,绳的另一端和套在固定竖直杆上的物体B 连接,开始时,BC 连线沿水平方向。
用绳子或杆连接的两个物体的速度关系: Microsoft Office Word 文档

荥阳二高---陈玉东 要想弄明白这个问题,首先要清楚一个特点,即“高中物理中所讲到的绳(伸直状态下)或杆的长度是不会变化的”。
首先,我们看下面的三幅图。
在上面的三幅图中,箭头的方向即物体的运动方向。
由于连接AB 的绳子或杆的长度不会变化,所以在沿着绳子的方向上A 、B 两物体在任意时间内所运动的距离都相等,所以,V A =V B 。
在图4中,A 物体的速度方向与绳子在一条线上,但是,B 物体沿水平面运动时,它的速度方向与绳子就不在一条线上。
如果B 物体从1位置运动到2位置时,B 沿水平面运动的距离与绳子向左上方收缩的长度并不相等。
从图5中可以看得更清楚。
在图5中,AC̅̅̅̅的长度是物体在1位置时滑轮右侧的绳子长度,BC̅̅̅̅是物体在2位置时滑轮右侧的绳子长度。
若取CD ̅̅̅̅=BC ̅̅̅̅,则AB̅̅̅̅的长度是物体B 沿水平面向左运动的距离,DA̅̅̅̅的长度为绳子向 左上方收缩的长度,也等于A 物体向左运动的距离。
如果我们研究的时间段无限短,则θ角将无限小,此时,∠CDB =∠CBD≈900,故∆ABD 可以视为直角三角形,∠A DB =900,且AD ̅̅̅̅=AB̅̅̅̅cos α, 在相同的时间内物体A 向左运动的距离在数值上等于AD̅̅̅̅。
由于VA=AD̅̅̅̅̅̅t , V B =AB̅̅̅̅t所以,V A =V B cos α。
简而言之:与B 物体相连的绳子既有沿绳向左上方收缩的效果,也有向左绕滑轮转运的效果。
所以,可以把B 物体的实际速度作为合速度进行分解,分别分解到沿着绳子和垂直于绳子两个方向上。
而且,沿着绳子方向的两个分速度是相等的。
例如,图7中A、B两个物体的速度均不沿绳子方向,我们就将两个物体的实际速度都按上面的方法进行分解。
分别是:沿着绳子方向和垂直于绳子方向(如图8),根据沿绳子方向的分速度相等,即可得到如下关系:V A cosα=V B cosβ。
图9中用细杆连接的AB两球靠墙放置。
(完整版)高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习

高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习 一.轻绳模型1。
轻绳模型的特点:“绳"在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力.它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
2.轻绳模型的规律:①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
3。
绳子的合力一定的情况下,影响绳上拉力大小的因素是绳子的方向而不是绳子的长度。
4.力对绳子做的功,全部转化为绳对物体的做的功。
5.绳连动问题:①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,一般以物体的速度作为实际速度,绳的速度是物体速度的分速度,当绳与物体的速度夹角为θ 时,= cos v v θ绳物例1:如图所示,将一根不能伸长、柔软的轻绳两端分别系于A 、B 两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为1θ,绳子张力为F 1;将绳子B 端移至C 点,待整个系统达到平衡时,两段绳子间的夹角为2θ,绳子张力为F 2;将绳子B 端移至D 点,待整个系统达到平衡时,两段绳子间的夹角为3θ,绳子张力为F 3,不计摩擦,则( )A .1θ=2θ=3θB .1θ=2θ<3θC .F 1 〉F 2 〉F 3D .F 1 =F 2 〈F 31—1.如图所示,轻绳上端固定在天花板上的O 点,下端悬挂一个重为10 N 的物体A ,B 是固定的表面光滑的小圆柱体.当A 静止时,轻绳与天花板的夹角为30°,B 受到绳的压力是 ( )A.5 NB 。
10 NC 。
5错误! ND.10错误! N1—2。
高中物理必修一二知识点总结和必考题型梳理

物理必修一知识点框架高中物理必修二题型梳理题型一运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类。
一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解。
思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。
(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。
题型二抛体运动问题题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上。
思维模板:题型三圆周运动问题题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动。
水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动。
对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况。
思维模板:(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力。
(2)竖直面内的圆周运动可以分为三个模型:绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力。
杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零。
题型四天体运动类问题题型概述:天体运动类问题是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高。
思维模板:对天体运动类问题,应紧抓两个公式:对于做圆周运动的星体(包括双星、三星系统),可根据公式①分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,再根据轨道的变化分析其他各物理量的变化,具体分析如下。
高中物理绳杆关联速度问题

高中物理绳杆关联速度问题
高中物理中的绳杆关联速度问题,主要是指通过绳子或杆连接的两个物体在运动过程中,其速度之间的关系问题。
在这个问题中,需要理解并掌握关联速度的概念和规律。
1. 速度规律:在绳、杆等连接的两个物体运动过程中,它们的速度通常是不一样的。
但是,两个物体沿绳或杆方向的速度大小是相等的,我们称之为关联速度。
2. 解决关联速度问题的一般步骤:
确定合运动,即物体的实际运动。
确定合运动的两个实际作用效果,一是沿绳(或杆)方向的平动效果,这个效果改变速度的大小;二是沿垂直于绳(或杆)方向的转动效果,这个效果改变速度的方向。
即将实际速度分解为垂直于绳(或杆)和平行于绳(或杆)方向的两个分量。
按平行四边形定则进行分解,作出运动矢量图。
根据沿绳(或杆)方向的速度相等列方程求解。
3. 常见的模型:
车拉船模型:当车匀速前进,速度为v,当绳与水平方向成α角时,船速v′是多少?
在解决这类问题时,需要仔细分析物体的运动状态和相互作用,理解关联速度的概念和规律,按照一定的步骤进行求解。
这有助于提高物理问题的解决能力和物理思维的培养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图为一小型起重机,A、B为光滑轻质滑轮,C为电动机。
物体P和A.
B. C之间用不可伸长的轻质细绳连接,滑轮A的轴固定在水平伸缩杆上并可以水平移动,滑轮B固定在竖直伸缩杆上并可以竖直移动。
当物体P静止时( )
A. 滑轮A的轴所受压力可能沿水平方向
B. 滑轮A的轴所受压力一定大于物体P的重力
C. 当只将滑轮A向外移动时,A的轴所受压力变大
D. 当只将滑轮B向上移动时,A的轴所受压力变大解析:
A. 对P:P受到重力和细绳的张力,由平衡条件得知,细绳的张力等
于重力,保持不变;
A的轴受到的压力是两侧的绳子等于A的力的和,由于绳子两侧的拉力是相等的,所以绳子对A的压力的方向一定沿两处绳子的角平分线上,不可能沿水平方向。
故A错误;
B. 细绳的张力等于重力,保持不变,根据合力与分力之间的关系可知,滑轮A的轴所受压力不一定大于物体P的重力,可能相等,也可能小于P的重力。
故B错误;
C. 当只将滑轮A向外移动时,两处绳子之间的夹角减小,由合力与分力之间的关系可知,合力增大,A的轴所受压力变大。
故C正确;
D. 当只将滑轮B向上移动时,两处绳子之间的夹角增大,由合力与分力之间的关系可知,合力减小,A的轴所受压力变小。
故D错误。
故选:C。