现代遗传学
现代遗传学连锁交换定律

wxwxShSh × WxWxshsh
↓ WxwxShsh ×
wxwxshsh
交换值=(1531+1488)/(1531+5991+5885+1448)×100%=20%
第三组试验: F1
WxWxCC × wxwxcc
↓ WxwxCc ×
wxwxcc
交换值=(739+717)/(2542+739+717+2716)×100%=22%
第一、二个试验结果表明,Cc和Shsh是连锁遗传的,Wxwx 和Shsh是连锁遗传的。所以Cc和Wxwx肯定是连锁遗传的, 根据这二个试验结果,这三对基因在同一染色体上的排列顺 序有两种可能:
第三个试验结果表明,Wxwx和Cc两对基因在染色体上 相距22个遗传单位。这与23.6个遗传单位接近。所以,可 以确定第一种排列顺序符合实际。
关键是确定中间一个基因.一般以最少的双交换型与 最多的亲型相比,可以发现只有sh基因发生了位置改 变,所以sh一定在中间。
所以这三个连锁基因在染色体的位置为 wx sh c 。
(2) 确定基因之间的距离:
第三节 基因定位和连锁遗传图
一、基因定位
-确定基因在染色体上的位置。 确定基因的位置主要是确定基因间的距离和
顺序→ 基因之间的距离用交换值来表示。 准确地估算出交换值→ 确定基因在染色体上
的相对位置→ 把基因标记在染色体上。 两点测验和三点测验是基因定位可以采用的
两种方法。
1.两点测验:
例如: 已知玉米子粒有色(C)对无色(c)为显性,饱满(Sh)对凹 陷(sh)为显性,非糯性(Wx)对糯性(wx)为显性。
为了明确这三对基因是否连锁遗传,分别进行了以下三个试验:
第一组试验:
F1
第二组试验: F1
现代遗传学技术的研究进展与应用前景

现代遗传学技术的研究进展与应用前景近年来,现代遗传学技术取得了研究方面巨大的进展,这对于人类以及社会的发展具有深远的影响。
在这篇文章中,我们将探讨现代遗传学技术的研究进展与应用前景。
第一部分:背景现代遗传学技术的发展起源于20世纪初期的基因学研究。
然而,随着时间的推移和科技的发展,研究的试验方法也在不断创新,在这个过程中,现代遗传学技术迅速取得了生命科学领域的重大突破。
第二部分:研究进展现代遗传学技术是指利用高通量测序、基因编辑技术和人工合成、生物信息学等新兴技术为基础的遗传学研究方法。
具体地说,现代遗传学技术包括以下内容:1.高通量测序技术:这是一种高效且快速的基因测序方法。
它可以快速地检测到基因序列的点突变、染色体的重排、基因的表达和可变剪接等信息,从而为后续研究提供了重要的基础资料。
2.基因编辑技术:基因编辑是指利用基因工程技术对基因进行有针地修饰,从而达到对基因功能的研究和改变的目的。
CRISPR/Cas9 是当前最火热的基因编辑技术之一,不仅能够在真核细胞中快速精准地编辑基因,还可以帮助我们探索人类基因和疾病之间的关系。
3.人工合成技术:人工合成技术是指通过化学合成方法来构建人工基因。
这种技术不仅可以帮助我们深入理解基因结构和功能,还可以帮助我们创造出更为完美的基因组。
4.生物信息学技术:生物信息学是一种利用计算机技术和生物学知识来处理生物信息的科学。
在近年来的遗传学研究中,生物信息学技术被广泛应用于对遗传变异、基因家族、新基因和新功能的鉴定等研究中。
5.克隆技术:克隆技术是指通过与母体细胞无性繁殖的方式复制出与原个体基因完全一致的新个体。
克隆技术已经成功应用于家畜繁殖和物种保护,并被视为农业和生态保护领域的重要手段。
第三部分:应用前景现代遗传学技术不仅有助于我们更好地理解人类基因组,还为各领域提供了丰富的应用前景。
1.医疗领域:现代遗传学技术可以帮助我们深入探索人类基因以及与之相关的遗传疾病。
现代遗传学研究方法原理简介

现代遗传学研究方法原理简介遗传学是研究生物个体或群体遗传性状的科学,它对于揭示生物进化、种间关系、疾病发生机理以及农业育种等领域具有重要的意义。
随着科学技术的不断发展,现代遗传学研究方法逐渐涵盖了分子遗传学、细胞遗传学、发育遗传学、进化遗传学等多个分支领域。
本文将基于这些领域简要介绍现代遗传学研究方法的原理。
1. 分子遗传学分子遗传学研究生物个体或群体的遗传特征,强调的是分子水平上的遗传信息。
其中最重要的研究方法之一是基因克隆和重组DNA技术。
这项技术可以将特定的基因片段克隆到细胞中进行分析与研究。
通过基因克隆,科学家可以准确地确定遗传物质对特定性状的影响。
此外,PCR技术的发展也极大地促进了分子遗传学的研究。
PCR技术能够扩增DNA序列,使得分子遗传学研究更为方便和高效。
2. 细胞遗传学细胞遗传学主要关注遗传信息的传递和表达过程。
典型的细胞遗传学研究方法包括染色体显微观察和细胞杂交技术。
染色体显微观察通过染色体的形态、数目和排列来研究遗传信息的遗传方式和异常情况。
而细胞杂交技术则可以将两个不同的细胞融合在一起,研究杂种胞质的产生和遗传特性的传递。
这些方法在研究遗传信息如何从一代传递到下一代中扮演着关键角色。
3. 发育遗传学发育遗传学研究遗传因素对生物发育过程的影响。
在发育遗传学中,关键的研究方法是胚胎学和遗传标记。
胚胎学研究通过对胚胎发育过程的观察,分析遗传因素对胚胎发育的影响。
遗传标记则可以用来追踪个体或群体中特定的遗传特征,从而揭示其在发育过程中的表达变化。
4. 进化遗传学进化遗传学研究遗传信息如何通过进化机制改变和演化。
其中最常用的研究方法是比较基因组学和系统发育学。
比较基因组学通过比较不同物种的基因组,研究遗传信息在物种间的演化和变化。
系统发育学则通过构建物种间的演化树,研究物种的系统分类以及遗传信息的演化关系。
总结起来,现代遗传学研究方法涵盖了分子遗传学、细胞遗传学、发育遗传学和进化遗传学等多个领域。
遗传学名词解释

名词解释1.Genetics(遗传学):研究生物体遗传与变异规律的科学。
现代遗传学是研究基因的结构、功能及其变异、传递和表达规律的科学,亦称为基因学。
2.Chromatin(染色质):是在间期细胞核内由DNA、组蛋白、非组蛋白和少量RNA组成的(线性复合结构),易被碱性染料着色的一种无定形物质,是间期细胞遗传物质存在的形式。
3.Chromosome(染色体):是染色质在细胞分裂过程中经过紧密缠绕、折叠、凝缩、精巧包装而形成的,具有固定形态的遗传物质的存在形式。
4.Constitutive heterochromatin(组成性异染色质):通常所指的异染色质,是一种永久性的异染色质,在染色体上的位子较恒定,在间期细胞核中仍保持螺旋化状态,染色很深。
5.※facultative heterochromatin(兼性异染色质):在一定的细胞类型或一定的发育阶段呈现凝集状态的异染色质。
6.※lampbrush chromosome(灯刷染色体):是未成熟的卵母细胞进行第一次减数分裂停留在双线期(可持续数月)的染色体。
7.※cell cycle(细胞周期):细胞分裂结束到下一次细胞分裂结束所经历的过程,这段时间称为细胞周期。
8.※Mitosis(有丝分裂):没有明显界限的细胞分裂的连续过程,可分为前期中期后期末期。
9.※Meiosis(减数分裂):性母细胞成熟时配子形成过程中发生的一种特殊有丝分裂,使体细胞染色体数目减半。
10.Character(性状):生物体的形态特征、生理生化特征的总称。
11.unit character(单位性状):每一个可以具体区分的性状。
12.contrasion character(相对性状):同一单位性状在不同个体间所表现出来的相对差异。
13.等位基因(allele):位于同源染色体上相同座位上,控制相对性状的一对基因。
14.基因型(genotype) : 生物个体或细胞遗传物质的组成,决定生物体一系列发育性状的可能性。
遗传学名词解释

名词解释1.Genetics(遗传学):研究生物体遗传与变异规律的科学。
现代遗传学是研究基因的结构、功能及其变异、传递和表达规律的科学,亦称为基因学。
2.Chromatin(染色质):是在间期细胞核内由DNA、组蛋白、非组蛋白和少量RNA组成的(线性复合结构),易被碱性染料着色的一种无定形物质,是间期细胞遗传物质存在的形式。
3.Chromosome(染色体):是染色质在细胞分裂过程中经过紧密缠绕、折叠、凝缩、精巧包装而形成的,具有固定形态的遗传物质的存在形式。
4.Constitutive heterochromatin(组成性异染色质):通常所指的异染色质,是一种永久性的异染色质,在染色体上的位子较恒定,在间期细胞核中仍保持螺旋化状态,染色很深。
5.※facultative heterochromatin(兼性异染色质):在一定的细胞类型或一定的发育阶段呈现凝集状态的异染色质。
6.※lampbrush chromosome(灯刷染色体):是未成熟的卵母细胞进行第一次减数分裂停留在双线期(可持续数月)的染色体。
7.※cell cycle(细胞周期):细胞分裂结束到下一次细胞分裂结束所经历的过程,这段时间称为细胞周期。
8.※Mitosis(有丝分裂):没有明显界限的细胞分裂的连续过程,可分为前期中期后期末期。
9.※Meiosis(减数分裂):性母细胞成熟时配子形成过程中发生的一种特殊有丝分裂,使体细胞染色体数目减半。
10.Character(性状):生物体的形态特征、生理生化特征的总称。
11.unit character(单位性状):每一个可以具体区分的性状。
12.contrasion character(相对性状):同一单位性状在不同个体间所表现出来的相对差异。
13.等位基因(allele):位于同源染色体上相同座位上,控制相对性状的一对基因。
14.基因型(genotype) : 生物个体或细胞遗传物质的组成,决定生物体一系列发育性状的可能性。
现代遗传学原理(精)

遗 传 学 的 先 驱 孟 德 尔
遗传因子的分离和自由组合定律
三、发展阶段
1、细胞遗传学时期 (1900-1940)
摩尔根(Morgan T.H),1910
遗传的第三定律——连锁遗传规律
2、微生物和生化遗传学时期 (1941—1960)
华生(Watson JD)和克里克(Crick FHC) DNA双螺旋结构模型,1953
一、推动基础科学的发展
弄清生物进化的机理 揭开生命的本质
二、指导工农业生产
动植物新品种 生物能源 环境保护
转基因动物
三、保障人类健康
疾病防治 生物制药 基因治疗
重症综合性免疫缺乏症(SCID)
生物发酵
SARS病毒
第四节
遗传学的研究
一、遗传学研究的内容 二、遗传学研究的分支 三、遗传学研究的对象 四、遗传学研究的任务 五、遗传学研究的特点
19世纪下半叶至20世纪初
三、发展阶段
20世纪初以后
一、启蒙阶段
希波克拉底(Hippocrates) 亚里斯多德(Aristotle),公元前 拉马克(Lamarck JB)——用进废退,1809 达尔文(Darwin C)——物种起源,1859
二、建立阶段
孟德尔(Mendel GJ)——两大定律,1866 贝特生(Bateson W) ——遗传学,1906 约翰生(Johansen WL)——基因,1909
一、基本要求
课前预习,课堂提问 课后复习,完成作业 认真对待实验课 作业和实验记入成绩 自学与讨论相结合 加强师生、同学间交流。
二、主要参考书目
现代遗传学教程配套幻灯片(共329张)

现代遗传学教程配套幻灯片(共329张)§1 绪论1-01MODERNGENETICS1-02What’s GENETICS?1-03遗传学基因1-04遗传物质来至父母1-05孟德尔1-06selective breeding1-07果实1-08鸡1-09猪牛1-10水稻1-11T-DNA1-12花1-13花蕊1-14苔1-15棉花1-16玉米§2 遗传的三大基本定律2-01现代遗传学教程2-02孟德尔2-03豌豆杂交实验2-04plants2-05豌豆杂交实验结果2-06香豌豆杂交实验(一)2-07紫茉莉花色的遗传2-08等位基因间的相互作用2-09植物自交不亲和性图解2-10基因互作-鸡冠形状的遗传2-11互补效应-香豌豆花色的遗传2-12狗毛色的显性上位遗传2-13家鼠毛色隐性上位遗传2-14基因相互作用的机理2-15遗传的染色体学说2-16遗传的染色体学说2-17互引相与互斥相2-18果蝇的完全连锁与不完全连锁2-19对果蝇完全连锁与不完全连锁的解释(一)2-20对果蝇完全连锁与不完全连锁的解释(二)–完全连锁2-21对果蝇完全连锁与不完全连锁的解释(二)–不完全连锁2-22在减数分裂前期非姊妹染色单体间的可见交叉点2-23交换是产生基因重组的基础-交换模式图§3 染色体与遗传3-1雌雄果蝇及其性染色体3-2雌雄果蝇及其性染色体3-3果蝇Sxl性决定开关3-4果蝇Sxl性决定开关3-5人的XY型性别决定3-6人类探索睾丸决定因子的进展示意图3-7人类睾丸决定因子位于Y染色体短臂的证明3-8雌、雄螠虫示意图3-9蜜蜂的性别决定3-10扬子鳄的卵在不同的温度下可发育为不同的性别3-11果蝇白眼性状的遗传3-12用纯系白眼果蝇证明伴性遗传3-13白眼雄蝇与纯系红眼雌蝇杂交及红眼雄蝇与纯系白眼雌蝇杂交的结果3-14果蝇白眼性状的遗传3-15用纯系白眼果蝇证明伴性遗传3-16白眼雄蝇与纯系红眼雌蝇杂交及红眼雄蝇与纯系白眼雌蝇杂交的结果3-17减数分裂中染色体的不正常分离示意图3-18对白眼雌蝇与红眼雄蝇交配3-19人类性染色体的差异区域和同源区域3-20伴X连锁遗传3-21一个抗维生素D佝偻病的家族图谱3-22伴Y连锁遗传—毛耳性状只在男性表现3-23利用芦花斑纹的遗传用于蛋用鸡的雌雄性选3-24鸡羽毛的限性遗传育3-25人类秃发的遗传-从性遗传3-26在果蝇中通过Sxl基因对剂量补偿的调控3-27哺乳动物中X染色体的失活示意图3-28正常男性(XY)和女性(XX)的细胞核3-29巴氏小体的失活是随机的3-30由于X的失活使玳瑁雌猫呈现花斑皮毛3-31AB杂合体女性G-6-PD电泳图3-32X染色体失活机制3-33XIST基因在失活的X染色体上表达3-34染色体结构变异的类型3-35中间缺失和末端缺失3-36末端缺失将产生不稳定的染色体3-37在减数分裂中,缺失杂合体形成缺失环结构3-38由于缺失造成玉米株色的假显性遗传3-39人类中由于第5染色体短臂缺失而造成猫叫3-40重复的类型综合症3-41雌果蝇X染色体16区段的重复导致棒眼性3-42利用重复筛选隐性突变体状的产生3-43倒位环的形成3-44花斑位置效应和稳定位置效应3-45倒位使交换值减少3-46倒位杂合体减数分裂时3-47臂内倒位杂合体在倒位环内发生双交换后产3-48平衡致死系统生结构正常的重组染色体3-49易位杂合体在减数分裂时染色体的配对方式3-50相互易位杂合子的联会及所产生配子的染色体组合3-51果蝇褐眼、黑檀体的假连锁现象3-52罗伯逊变化3-53利用易位培育出家蚕性别自动鉴别品系3-54染色体数目变异的基本类型(一)–整倍体3-55染色体数目变异的基本类型(二)–非整倍体3-56具有农业或园艺意义的多倍体植物3-57同源多倍体减数分裂时4条同源染色体可能3-58八倍体小黑麦的培育过程示意图的配对形式及分离3-59三极纺锤体图解3-60 21三体Down氏综合症3-61 21三体基因和表型图§4 遗传图的制作和基因定位4-01两个基因之间双交换的结果等于没交换4-02玉米三点测交实验结果分析4-03染色单体干涉示意图4-04果蝇的遗传学图(遗传连锁图)4-05脉孢菌生活周期及其减数分裂过程4-06从一个脉孢霉子囊壳来的子囊照片4-07利用脉孢霉直接证明分离规律4-08第一次分裂分离四分子的形成4-09第二次分裂分离四分子的形成4-10脉孢霉交配型位点的着丝粒图距4-11Tetrad4-12将子囊分为三种类型4-13当二对基因位于不同的染色体上时4-14当二个基因位于同一染色体上时4-15果蝇孪生斑及其产生的机制4-16基于有丝分裂交换的作图4-17构巢曲霉菌有丝分裂分析4-18若X染色体没有发生重组交换4-19外祖父法4-20细胞杂交技术可产生不同的人-鼠杂种细胞系4-21FISH的基本过程示意图4-22Transformation of E. coli4-23细菌转化过程示意图4-24利用转化确定基因间的连锁关系4-25利用转化确定基因间的连锁关系4-26双交换形成一个完整的重组子4-27在两个细菌之间遗传物质的有性重组4-28Davis的U形管实验4-29环状F因子示意图4-30大肠杆菌F+(右)和F-(左)接合的电镜观察4-31F因子在两细胞间的转移使F-变成F+ 4-32F因子整合产生高频重组菌株4-33Hfr?F-杂交中供体菌基因的转移4-34F’因子的形成4-35部分二倍体4-36利用性导所形成的部分二倍体进行互补测验4-37部分二倍体互补测验的解释4-38中断杂交实验4-39HfrH菌株各非选择性标记基因进入F-细菌的时间不同,达到的最高频率也不同4-40不同的Hfr菌株转移的起点和方向均不同4-41细菌重组的特点,示部分二倍体中外基因子和内子之间单交换或双交换的结果4-42重组作图4-43大肠杆菌的环状遗传图4-44噬菌体生活周期4-45转导现象的发现4-46transduction4-47普遍性转导示意图4-48噬菌体的整合与切离4-49噬菌体的整合4-50高频转导4-51噬菌体遗传重组原理示意图4-52噬菌体多连体DNA的产生及包装4-53末端冗余DNA分子及其用3’核酸外切酶的鉴定4-54带有不同末端冗余的环状排列基因次序的DNA分子及其鉴定4-55T4噬菌体遗传图§5 分子水平上的基因功能5-01肺炎球菌的转化试验5-02Avery的体外转化实验5-03 O. Avery5-04Hershey-Chase噬菌体感染实验5-05烟草花叶病病毒的重建实验5-06Watson(左)和Crick(右)与DNA双螺旋结构模型5-07Southern和orthern杂交过程示意图5-08Meselson-Stahl关于DNA半保留复制证明的实验5-09通过放射自显影观察DNA的复制5-10DNA双向复制的证据5-11高等生物的DNA复制是从多个复制起点开始双向进行的5-12DNA的双向半不连续复制5-13大肠杆菌DNA复制模型,DNA复制需要许多蛋白的参与5-14PCR原理示意图5-15鸡卵清蛋白基因的结构5-16割裂基因的剪接5-17真核生物基因的结构图解5-18原核生物启动子结构的普遍模式5-19真核基因控制区示意图5-20不依赖?因子的转录终止子结构5-21绝缘子(insulator)5-22噬菌体?X174的重叠基因5-23氨基酸的基本骨架5-24血红蛋白分子是由4条多肽链通过弱键联结而组成的四级结构5-25RNA合成5-26原核生物RNA聚合酶的组成5-27由RNA聚合酶所催化的基因转录(1)5-28由RNA聚合酶所催化的基因转录(2) 5-29真核mRNA的5’端5-30原核细胞和真核细胞的转译差别5-31E. coli核糖体RNA基因是紧密连锁的5-32tRNA结构5-335-34前体蛋白通过内蛋白子的自我剪接成为成熟蛋白5-35中心法则5-36中心法则图解,示从DNA到RNA到蛋白质的全过程5-37修改后的中心法则5-38尿黑酸代谢途径5-39从脉孢霉中分离突变子囊孢子的实验过程5-40精氨酸的生物合成途径5-415-425-43曲霉菌两个腺嘌呤突变位点间的体细胞交换5-44互补测验5-45两个rII突变型杂交产生rII+的筛选程序图5-46T4噬菌体rⅡ区A、B两个顺反子突变型的互补实验结果5-47基因表达调控点示意图5-48大肠杆菌β-半乳糖苷酶的合成5-49乳糖操纵子的作用机制5-50分解代谢产物阻遏系统5-51色氨酸操纵子5-52色氨酸操纵子mRNA前导区核苷酸序列5-53Trp操纵子前导序列中的4个核苷酸互补配对区5-54色氨酸合成的弱化子调控5-55组蛋白与非组蛋白对基因转录的调控模型5-56用限制性内切酶鉴定CCGG序列是否甲基化5-57基因调控区示意图5-58真核细胞抑制蛋白调控基因表达的三种作用机制5-59小鼠淀粉酶在不同组织中mRNA的选择性剪接5-60肌钙蛋白T基因的选择性剪接§7 数量性状与多基因遗传7-01数量性状和质量性状的遗传方式比较7-02小麦麦粒颜色的遗传7-03不同对基因作用的F2群体表型分布7-04环境因素对F2表型分布的影响7-05由多基因控制的7-06Johannsen的菜豆选择实验7-07表型方差、遗传方差和环境方差三者的关系及其计算7-08杨属二个染色体上与茎生长相关的QTL7-09同胞兄妹婚配所生子代(S)的家系图7-10表兄妹婚配所生子代(S)的家系7-11回交的遗传学效应示意图§8 核外遗传8-1核外遗传8-2母性影响8-3椎实螺外壳旋转方向的遗传8-4测交中椎实螺外壳旋转方向的遗传8-5椎实螺的卵裂方式8-6在紫茉莉植株同一个体上8-7正常酵母与小菌落酵母杂交8-8草履虫的接合生殖8-9K/K+卡巴粒8-10放毒型和敏感型草履虫的接合8-11玉米雄性不育的细胞质遗传8-12玉米细胞质雄性不育和Rf基因8-13三系二区杂交制种法§9 基因突变和表观遗传变异9-1基因突变和表观遗传变异9-2不同类型基因突变产生不同构型和活性的蛋白9-3DNA复制中由于碱基的错误跳格自发产生碱基的插入和缺失9-4在DNA复制中由于碱基的错误跳格自发产生碱基的插入和缺失9-5由于DNA复制中跳格所引起的E. coli lacI基因中的4碱基CTGG热点突变9-6 DNA链上脱嘌呤9-7胞嘧啶和5-甲基胞嘧啶脱氨基后分别变成尿嘧啶和胸腺嘧啶9-8转座子或插入序列引起基因突变的机制9-9不等交换产生重复和缺失突变9-10同一条DNA链上的两个T经UV照射后形成二聚体T=T9-11紫外线照射形成二聚体从而引起突变9-12核质互作雄性不育中的核基因与细胞质基因的相互关系9-13三种碱基修饰剂的作用9-14插入剂分子插入9-15插入剂引起移码突变9-16聚核苷酸介导的用单链模板所进行的定点突变9-17用重叠延伸进行基因的定点突变9-18Ames测验检测诱变剂的诱变强度信息9-19DNA的光修复9-20切除修复模式图9-21ABC核酸内切酶的作用过程9-22DNA的重组修复9-23通过青霉素富集筛选营养缺陷型9-24用Muller-5技术检出果蝇X连锁隐性致死突变或隐性可见突变9-25平衡致死系统9-26利用等位基因特异寡核苷酸杂交检测DNA中单碱基差异9-27§10 遗传重组和转座遗传因子10-1遗传重组和转座遗传因子10-2脉胞霉的基因转变10-3粪生粪壳菌的基因转变10-4在基因转变产生异常10-5同源重组的Holliday模型10-6不配对碱基对的两种修复校正方式10-7基因转变的起源10-8噬菌体? DNA的整合和切离10-9噬菌体整合过程的分子机制10-10噬菌体attP上Int和IHF的结合点10-11Ac-Ds转座元件结构示意图10-12玉米转座因子对胚乳颜色的影响10-13分子杂交的电镜照片10-14IS具有的末端重复序列经变性和复性后形成茎环结构10-15由转座酶所介导的转座因子整合过程示意图10-16复合转座子的结构10-17Tn10的转座10-18转座的三种机制10-19复制型转座示意图10-20非复制转座示意图10-21果蝇P因子的结构及在不同细胞系中的剪接10-22果蝇杂种不育仅发生在10-23果蝇杂种不育取决于基因组中P因子和不同细胞型中阻遏蛋白的相互作用10-24果蝇FB因子的结构10-25果蝇中三种不同转座因子的结构比较10-26交换序列位于同一染色体上不同位点的染色体内异位交换10-27通过转座子介导的姐妹染色单体间的染色体内异位交换10-28转座子切离所造成的序列变异10-29双转座子插入所引起的外显子改组示意图10-30位于相同转座子之间的基因可作为复合转座子转座§11 发育的遗传控制11-1从胡萝卜根韧皮部单个细胞经组织培养成完整植株11-2 Gurdon的非洲爪蟾核移植实验11-3多莉羊的体细胞克隆诞生过程11-4发育中的细胞命运图解11-5已分化的造血干细胞通过细胞分裂、细胞定向及细胞分化产生不同类型血细胞的过程11-6镶嵌发育和调节发育图解11-7线虫的生活周期11-8线虫细胞谱系示意图11-9早期胚胎卵裂示意图§12 群体的基因结构和进化遗传学12-1群体的基因结构和进化遗传学12-2 The derivation of the Hardy-Weinberg proportions as generated from the random union of games12-3X连锁基因频率在开始时两性差别很大12-4在不同地区的灰白色和黑色椒花蛾12-5S值一定时在对隐性纯合子的选择中随基因频率q值的不同基因频率的改变?q也不同12-6群体大小与随机遗传漂变12-7奠基者效应和瓶颈效应图解12-8遗传漂变使群体的基因频率发生歧化12-9迁移导致基因频率的改变示意图12-10由于不等交换产生人类?2基因的缺失12-11哺乳动物珠蛋白基因家族12-12外显子改组假说12-13乙醇脱氢酶的三维结构12-14丝氨酸蛋白酶基因家族中类蛋白酶部分的编码区域12-15Ds元件从前mRNA中的被剪接加工的过程12-16胰岛素基因的序列比较12-17一个成熟的胰岛素分子由一个A链和一个B链通过二硫键连接12-18一个假设基因的进化速率12-19四种蛋白的进化速率12-20蛋白功能与进化速率的关系12-21细胞色素c氨基酸序列比较12-22基于细胞色素c氨基酸差异所绘制的20种生物种系发生图12-23基于碳酸酐酶I所建立的灵长类种系发生树12-24获得性状遗传的例子。
简述孟德尔德现代遗传学的主要内容

简述孟德尔德现代遗传学的主要内容孟德尔的现代遗传学主要内容孟德尔是现代遗传学的奠基人,他的研究成果对于后来的遗传学研究起到了重要的指导作用。
他的主要研究对象是豌豆,通过对豌豆的杂交和观察,他发现了一些重要的遗传规律。
孟德尔发现了基因的存在。
他通过对豌豆的杂交实验发现,某些性状在第一代杂交子代中消失,但在第二代中重新出现。
他将这些性状称为“显性性状”和“隐性性状”,并得出了“显性性状必须来自于两个亲本中至少一个亲本”的结论。
这一发现表明,性状的表现受到基因的控制。
孟德尔还发现了基因的分离规律。
他通过对豌豆的二倍体和四倍体进行杂交实验,观察到某些性状在第二代杂交子代中以不同的比例出现。
他提出了“等位基因”的概念,即同一位置上的基因可能存在不同的形式。
他还发现,基因在生殖过程中可以分离,并随机组合,这种分离和组合的规律被称为“孟德尔第二定律”或“分离定律”。
孟德尔还研究了多个性状的遗传规律。
他通过对多个性状同时进行杂交实验,发现不同的性状在杂交子代中独立地表现。
他得出了“不同性状的基因在生殖过程中是独立分离和随机组合的”结论,这被称为“孟德尔第三定律”或“独立定律”。
孟德尔的研究成果对于后来的遗传学研究产生了深远的影响。
他的发现揭示了基因的存在和遗传规律,为后来的遗传学家提供了重要的思路和实验方法。
他的研究成果也为遗传学的发展奠定了基础,使遗传学逐渐成为现代生物学的重要分支。
然而,孟德尔的研究成果在当时并未引起足够的重视。
直到1900年,孟德尔的遗传学规律才被重新发现和重视。
当时,科学家们通过实验证实了孟德尔的遗传规律,并将其与染色体理论相结合,形成了现代遗传学的基本框架。
总结起来,孟德尔的现代遗传学的主要内容包括基因的存在、基因的分离规律和多个性状的遗传规律。
他的研究成果为后来的遗传学研究提供了重要的启示和基础,对于现代生物学的发展产生了深远的影响。
虽然孟德尔的研究成果在当时并未引起足够的重视,但在后来得到了重新发现和重视,成为现代遗传学的重要里程碑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分离现象
孟德尔为什么选豌豆为试验材料呢?因为豌豆具有以下优点,利用豌豆作 为实验材料,就必须对豌豆进行人工授粉,为了后续课程的学习,需要学习者 有所了解,其图示过程如下。
豌豆的7个单位性状及其相对性 状
豌豆的7个单位性状及其相对性状
孟德尔的豌豆杂交实验7对性状的结果
豌豆表型 圆形×皱缩 子叶 黄叶×绿色 子叶 F1 圆形 黄色 5474圆 6022黄 F2 1850皱 2001绿 F2比例 2.96:1 3.01:1
1865年当时属奥地利的布隆(Brunn)基 督教修道院的修士格里高· 孟德尔(Gregor Johann Mendel),根据他8年植物杂交实 验的结果,2月8日在当地的科学协会上宣 读了一篇题为“植物杂交实验”的论文, 1866年正式发表在该协会的会刊上。 孟德尔临终前说:“ 等着瞧吧,我的时 代总有一天要来临”
分离现象的解释 遗传因子假说
孟德尔提出遗传性状是由遗传 因子决定的,遗传因子在体细胞 内是成对的
C--红花--显性因子 c--白花--隐性因子
孟德尔对分离现象的解释
分离定律的实质
成对的基因(等位基因)在配子形成过 程中彼此分离,互不干扰,因而配 子中只具有成对基因的一个
分离规律的验证
(一)、测交法 (二)、自交法
现代遗传学
MODERE GENETICS
细胞遗传学 分子遗传学
基因工程原理和方法
绪 论
这一学科名称是英国遗传学家贝 特森(Bateson,W)于1906年首 先提出的。 遗传学是生命科学领域中一门新 兴的学科,主要是研究遗传与变 异的规律和机制的一门科学。
泛生论
1866年达尔文(Darwin)提出了泛生论 (hypothesis of pangenesis),认为身 体各部分细胞里都存在一种芽球
1、分离比实现的条件 2、各对基因位于不同对的同源染色体上 3、各对非等位基因之间不存在相互做作 用
独立分配规律的验证
1、测交法 用F1与双隐性纯合体测交。当 F1形成配子时,不论雌配子或 雄配子,都有四种类型,即YR 、Yr、yR、yr,而且出现的比 例相等,即1:1:1:1
豌豆黄色、圆粒 绿色、皱粒的F1和双隐性亲本 测交的结果
1809年拉马克(Lamarck, J.B)提出了 “ 用进废退”的进化论观点,由此而 得出获得性状 (acquiredcharacteristics) 是可以遗传的。
6.德国的生物学家魏斯曼(Weismann A) 做了连续22代剪断小鼠尾巴的实验,否 定了泛生论。 1883和1885年他将Roux, W.理论发展成 为完整的遗传和发育的理论——种质论 (germplasm theory),认为多细胞生物 可分为: 种质(germ plasm):独立,连续, 能产生后代的种质和体质。 体质(somatoplasm):体质是不连 续的,不能产生种质。
同时发现Mendel的论文 公认为1900年是遗传学的诞生年
孟德尔的功绩:
采用32个品种 观察了7对性状, 经8年研究, 发现了2个定律:独立分配和自由组合 定律,创立了“ 遗传学 ”
第二节 分离定律
基本概念: 性状、单位性状、相对性状 等位基因、非等位基因 基因型、表现型 纯合体、杂合体
孟德尔定律的二次发现
荷兰阿姆斯特丹大学的教授狄夫瑞斯(de Vries) 德国土宾根大学的教授科伦斯(Correns,C.E) 奥地利维也纳农业大学的讲师切尔迈克 (Tschermak)1900年分别同时发现了孟德尔的业 绩。 狄夫瑞斯:进行了见月草杂交试验,发现F2的分离 比为3:1。 1900,3,26日其论文“ 杂种分离法则” 发表在《德国植物学会杂志》(18)83-90;和法国 科学院的《纪事录》(130)845-847。狄夫瑞斯曾 从L.H拜莱的《植物育种》中查到孟德尔的工作。 他在德文版中提到了孟德尔的工作,但在法文版 中却只字未提。
ቤተ መጻሕፍቲ ባይዱ 三、孟德尔的自由组合定律
孟德尔由此提出了自由组合定律:位于非同源染色体上 两对或两对以上的基因,在形成生殖细胞时,同源染色体上 的等位基因彼此分离,非同源染色体上的基因自由组合,分 别形成不同基因型的生殖细胞。这就是孟德尔的第二定律。 现代分子生物学对染色体上基因定位的研究证明,豌豆 有7对染色体,控制黄、绿(Yy)的等位基因在第1对同源染色 体上,控制圆、皱(Rr)的等位基因位于第7对同源染色体上。 孟德尔的自由组合定律适用于非同源染色体上两对或两对以 上基因控制的性状遗传。故在减数分裂中,非同源染色体的 自由组合是自由组合定律的细胞学基础。自由组合定律的实 质是非等位基因的自由组合。
独立分配现象的解释 独立分配规律:控制不同相对 性状的等位基因在配子形成过 程中,这一对等位基因与另一 对等位基因的分离和组合是互 不干扰,各自独立分配到配子 中去的 。
P
黄、圆YYRR 绿、皱yyrr
YR yr
配子
F1
♀ ♂
黄、圆YyRr
YR
YYRR 黄圆 YYRr 黄圆 YyRR 黄圆
Yr
F1黄、圆YyRr 绿、皱yyrr
配子
理论期 望的测 交后代
实际测 交结果
F1母本 F1父本
YR
YyRr 黄圆 1
Yr
Yyrr 黄皱 1
yR
yyRr 绿圆 1
yr
yyrr
绿皱
yr
1
31 24
27 22
26 25
26 26
四、多对基因的遗传 控制多对不同性状的等位 基因,分别载于不同对的 同源染色体上时,其遗传 都符合独立分配规律。
三、对分离实验结果的验证
为了验证子1代细胞中确实存在一对等位基因Rr,并且,这一对等位基 因在减数分裂中真的彼此分离,分别进入到不同的生殖细胞中去,孟德尔设 计了著名的测交试验。
测交就是让杂种个体与隐性 纯合类型杂交,用以测定杂种基 因组合的方法。子1代杂合子Rr, 在形成生殖细胞时,R基因和r基 因彼此分离,形成两类数量相等 的生殖细胞,而隐性亲本则只形 成一种含r的生殖细胞,随机受 精后将形成基因型为Rr、rr数量 相等的受精卵,将来分别开出紫 花和白花,约成l:1的比例。测 交结果与预期的设想完全一致, 说明实验是正确的。
四、基因的分离定律
综上所述,可得出如下结论:在杂合子细胞中,位于 一对同源染色体相同位置上的一对等位基因,各白独立存 在,互不影响。在形成生殖细胞时,等位基因随同源染色 体的分开而分离,分别进入不同的生殖细胞。这就是分离 定律,也称为孟德尔第一定律。减数分裂中同源染色体的 分离是分离定律的细胞学基础。分离定律的实质是等位基 因的分离。
P 黄色、圆粒 × 绿色、皱粒
F1
黄色、圆粒
黄色 黄色 绿色 绿色 总数 圆粒 皱粒 圆粒 皱粒 实得粒数 315 101 108 32 556
F2
理论比例
9 : 3 :3 :1
16
豌豆两对性状的杂交试验
分别按一对性状进行分析: 黄色:绿色 ≈ 3:1 圆粒:皱粒 ≈ 3:1
-- 仍然符合分离规律 -- F2群体出现重组型个体 -- ( 3:1)( 3:1)=9 :3 :3 :1
1、测交法
测交:被测验的个体与隐性纯 合个体间的杂交 所得的后代为测交子代,Ft
P
红花 白花 CC cc
c
红花 白花 Cc cc
C c c
配子 C Ft
Cc红花
红花Cc cc白花 1 :1
图4-3
豌豆红花和白花一对基因的分离
2、自交法
第三节 自由组合定律
两对相对性状的遗传
为了研究两对相对性状的遗传,孟德尔 仍以豌豆为材料,选取具有两对相对性 状差异的纯合亲本进行杂交
YYRr 黄圆 YYrr 黄皱 YyRr 黄圆
yR
YyRR 黄圆 YyRr 黄圆 yyRR 绿圆
yr
YyRr 黄圆
Yyrr 黄皱
YR F2 Yr yR
yyRr 绿圆
yr
YyRr 黄圆
Yyrr 黄皱
yyRr 绿圆
yyrr 绿皱
豌豆黄色、圆粒×绿色、皱粒的F2分离图解
自由组合(9:3:3:1)实现的条件
1.5 统计学原理在遗传学中的应用
1.5.1 概率的概念
概率(probability)又称几率(chance):是指某事件
未发生前人们对该事件出现的可能性进行的一种估 计。
P(A)=lim(nA/n)
频率:指某一事件已发生的情况。如人口出生率 的统计,升学率的统计等等。但某事件以往发生的 频率也可以作为对未来事件发生的可能性的估计。
切尔迈克也作了豌豆杂交试验,发现了分离现象,撰 写了“ 关于豌豆的人工杂交”的讲师就职论文, 清样出来后他读到了狄夫瑞和斯科伦斯的论文,于 是急忙投寄论文摘要,于1900,6,24日也发表在 《德国植物学会杂志》(18)232-239.三个人的工作 都发表在《德国植物学会杂志》,都证实了孟德尔 法则, 这就是遗传学发展史上著名的孟德尔法则的重新发现。 孟德尔法则的发现在学说界皆引起了一场激烈的论战: 牛津大学动物学教授韦尔登(Weldon) 剑桥大学的遗传学教授贝特森(Bateson)
Hugo De Vries (1848~1935)
Carl Erich Correns (1864~1933)
Erich von Tschermak
(1871~1962)
重新发现孟德尔的生物学家
遗传学的诞生
1900年 荷兰 狄弗里斯 H. de Vries 德国 柯伦斯 C. E. Correns 奥地利 柴马克 E. V. Tschermak
概率原理与应用
(一)、概率(probability):