人教版七年级数学上册有理数的加减法专项综合练习题58
新人教数学七年级上册有理数的加减法测试题

七年级上册有理数的加减法练习题一、 填空题1、+8与-12的和取___号,+4与-3的和取___号。
2、小华记录了一天的温度是:早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的温度是____℃。
3、3与-2的和的倒数是____,-1与-7差的绝对值是____。
4、小明存折中原有450元,取出260元,又存入150元,现在存折中还有____元。
5、-0.25比-0.52大____,比-521小2的数是____。
6、若b a ,b a -<>则0,0一定是____(填“正数”或“负数”) 7、已知21,43,32-=-==c b a ,则式子=--+-)()(c b a _____。
8、把下列算式写成省略括号的形式:)7()3()2()8()5(++---++-+=____。
9、+8与-12的和取___号,+4与-3的和取___号.10、0℃比-10℃高多少度?列算式为 ,转化为加法是 ,•运算结果为 . 11、小华记录了一天的温度是:早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的温度是 ℃.12、比-18小5的数是 ,比-18小-5的数是 .13、3与-2的和的倒数是____,-1与-7差的绝对值是____. 14、 已知两个数556和283-,这两个数的相反数的和是 . 15、小明存折中原有450元,取出260元,又存入150元,现在存折中还有____元. 16、将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是 .17、-0.25比-0.52大____,比-521小2的数是____. 18、已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 . 19、若b a ,b a -<>则0,0一定是____(填“正数”或“负数”)20、在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 . 21、已知21,43,32-=-==c b a ,则式子=--+-)()(c b a _____.22、有理数中,所有整数的和等于 .23、把下列算式写成省略括号的形式:)7()3()2()8()5(++---++-+=____. 24、某足球队在一场比赛中上半场负5球,下半场胜4球,•那么全场比赛该队净胜 球为______. 25、若,,则_____0,_______0.二、选择题(每小题3分,共24分)1、已知胜利企业第一季度盈利26000元,第二季度亏本3000元,该企业上半年盈利(或亏本)可用算式表示为( )A 、)3000()26000(+++B 、)3000()26000(++-C 、)3000()26000(-+-D 、)3000()26000(-++ 2、下面是小华做的数学作业,其中算式中正确的是( ) ①74)74(0=+-;②417)417(0=--;③510)51(-=-+;④510)51(-=+- A 、①② B 、①③ C 、①④ D 、②④3、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了( ) A 、12.25元 B 、-12.25元 C 、12元 D 、-12元4、-2与414的和的相反数加上651-等于( ) A 、-1218 B 、1214- C 、125 D 、12545、一个数加上-12得-5,那么这个数为( )A 、17B 、7C 、-17D 、-76、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A 、10米B 、15米C 、35米D 、5米7、计算:21)7()9()3()5(+---++--所得结果正确的是( ) A 、2110- B 、219- C 、218 D 、2123-8、若031=++-b a ,则21--a b 的值为( )A 、214-B 、212-C 、211-D 、2119、下面是小华做的数学作业,其中算式中正确的是( ) ①74)74(0=+-;②417)417(0=--;③510)51(-=-+;④510)51(-=+-A 、①②B 、①③C 、①④D 、②④ 10、下列交换加数的位置的变形中,正确的是( ) A 、14541445-+-=-+- B 、1311131134644436-+--=+-- C 、12342143-+-=-+- D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+- 11、下列计算结果中等于3的是( )A 、74-++B 、 ()()74-++C 、74++-D 、()()74+--12、已知胜利企业第一季度盈利26000元,第二季度亏本3000元,该企业上半年盈利(或亏本)可用算式表示为( )A 、)3000()26000(+++B 、)3000()26000(++-C 、)3000()26000(-+-D 、)3000()26000(-++ 13、下列说确的是( )A 、两个数之差一定小于被减数B 、减去一个负数,差一定大于被减数C 、减去一个正数,差一定大于被减数D 、0减去任何数,差都是负数6、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了( )A 、12.25元B 、-12.25元C 、12元D 、-12元 14、-2与414的和的相反数加上651-等于( ) A 、-1218 B 、1214- C 、125 D 、125415、一个数加上-12得-5,那么这个数为( )A 、17B 、7C 、-17D 、-716、x <0, y >0时,则x, x+y, x -y ,y 中最小的数是 ( )A x B x -y C x+y D y 17、下面结论正确的有 ( )①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数. ③两个负数和的绝对值一定等于它们绝对值的和. ④两个正数相加,和为正数. ⑤两个负数相加,绝对值相减. ⑥正数加负数,其和一定等于0.A 、0个B 、1个C 、2个D 、3个18、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A 、10米B 、15米C 、35米D 、5米18、计算:21)7()9()3()5(+---++--所得结果正确的是( ) A 、2110- B 、219- C 、218 D 、2123-19、若031=++-b a ,则21--a b 的值为( )A 、214-B 、212-C 、211-D 、211三、解答题(共52分) 1、列式并计算: (1)什么数与125-的和等于87-? (2)-1减去5232与-的和,所得的差是多少?2、计算下列各式:(1))8()13(2)6(0+---+-- (2))127(65)43(6513--+--(3)4122)75.0()218()25.6()4317(-+---+-+(4))8()13(2)6(0+---+-- (5))127(65)43(6513--+--(6)4122)75.0()218()25.6()4317(-+---+-+ (7)(-441)-(+531)-(-441)(8)-0.5-(-341)+2.75-(+721) (9) 712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(10) ()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(11) ()232321 1.75343⎛⎫⎛⎫⎛⎫------+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(12)(+9)+(-7)+(+10)+(-3)+(-9)3、下列是我校七年级5名学生的体重情况, (1)试完成下表:(3)最重的与最轻的相差多少?4、小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获。
七年级数学上册《第一章有理数的加减法》同步练习题及答案(人教版)

七年级数学上册《第一章有理数的加减法》同步练习题及答案(人教版) 班级姓名学号一、选择题(共8题)1.计算1+(−2)的正确结果是( )A.−2B.−1C.1D.32.如果某天北京的最低气温为a∘C,中午12点的气温比最低气温高了10∘C,那么中午12点的气温为( )A.(10−a)∘C B.(a−10)∘CC.(a+10)∘C D.(a+12)∘C3.有理数a,b在数轴上的对应的位置如图所示,则( )A.a+b<0B.a+b>0C.a−b=0D.a−b>04.比−3大1的数是( )A.2B.−2C.4D.−45.若x的相反数是3,∣y∣=5,则x+y的值为( )A.−8B.2C.8或−2D.−8或26.下列说法正确的是( )A.一个数,如果不是正数,必定是负数B.有理数的绝对值一定是正数C.两个有理数相加,和一定大于每个加数D.相反数等于本身的数是07.把算式:(−5)−(−4)+(−7)−(+2)写成省略括号的形式,结果正确的是( )A.−5−4+7−2B.5+4−7−2C.−5+4−7−2D.−5+4+7−28.若∣x∣=3,∣y∣=4则x+y值为( )A.±7或±1B.7或−7C.7D.−7二、填空题(共5题)9.计算:−(−4)+∣−5∣−7=.10.比−312大而比213小的所有整数的和为.11.我们知道,在三阶幻方中每行、每列、毎条对角线上的三个数之和都是相等的,在如图的三阶幻方中已经填入了两个数9和15,则图中最右上角的数n应该是.12.某天最高气温为8∘C,最低气温为−1∘C,则这天的最高气温比最低气温高∘C.13.某书店举行图书促销,每位促销人员以销售50本为基准,超过记为正,不足记为负,其中5名促销人员的销售结果如下(单位:本):5,2,3,−6,−3,这5名销售人员共销售图书本.三、解答题(共6题)14.计算:(1) (+11)−(−2).(2) (+26)+(−18)+5+(−26).15.某景区一电瓶小客车接到任务从景区大门出发,向东走3千米到达A景点,继续向东走 1.5千米到达B景点,然后又回头向西走8.5千米到达C景点,最后回到景区大门,任务完成.以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴.(1) 请在数轴上分别用点A,B,C表示出上述三个景点的位置,并写出各点表示的数.(2) A,C两景点之间的距离是多少?请列式计算.(3) 若电瓶车出发前剩余电量足够行驶20千米,在途中不充电的情况下,该电瓶车能否完成此次任务?请计算说明.16.粮库6天内发生粮食进、出库的吨数如下(“+”表示进库,“−”表示出库): +26,−32,−15,+ 34,−38,−20.(1) 经过这6天,库里的粮食是增多还是减少了?增加(减少)了多少?(2) 经过这6天,管理员结算时发现库里还存480吨粮,那么6天前库里存粮多少吨?(3) 如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费?17.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,−4,+13,−10,−12,+3,−13,−17,3.5.(1) 最后一名老师送到目的地时,小王在出车地点的什么方向?距出车地点的距离是多少?(2) 若汽车耗油量为0.4升/千米,每升汽油需7.2元,小王这天上午需汽油费多少元?18.对男生进行引体向上的测试,规定能做10个及以上为达到标准.测试结果记法如下:超过10个的部分用正数表示,不足10个的部分用负数表示.已知8名男生引体向上的测试结果如下:+2,−5,0,−2,+4,−1,−1,+3.(1) 这8名男生有百分之几达到标准?(2) 这8名男生共做了多少个引体向上?19.检修队乘汽车沿着东西走向的公路往返行驶检修线路,某天早上从A地出发到收工时所走的路程为(若约定向东为正方向),当天行驶的记录如下:(单位:km)+18,−9.5,+7,−14,−6.2,+13,−6.8,+10.5.(1) 收工时距A地多远?(2) 若汽车行驶每千米耗油0.3升,那么这一天共耗油多少升?参考答案1. 【答案】 B2.【答案】 C3.【答案】 A4.【答案】 B5.【答案】 D6.【答案】 D7.【答案】 C8.【答案】 A9.【答案】910.【答案】25111.【答案】1212.【答案】213. 【答案】−314.【答案】(1) 原式=11+2=13.(2) 原式=(26+5)+(−18−26)=31−44=−13.15. 【答案】(1) 点 A ,B ,C 分别表示 3,4.5,−4.(2) 3−(−4)=3+4=7.(3) ∣4.5∣×2+∣−4∣×2=9+8=17,因为 17<20所以在途中不充电的情况下,该电瓶车能完成此次任务.16. 【答案】(1) 26+(−32)+(−15)+34+(−38)+(−20)=−45 吨答:库里的粮食减少了,减少了 45 吨.(2) 480+45=525(吨)答:6 天前库里存粮 525 吨.(3) (26+∣−32∣+∣−15∣+34+∣−38∣−20)×5=165×5=825(元),答:这 6 天要付 825 元装卸费.17. 【答案】(1) 由题意得:+15−4+13−10−12+3−13−17+3.5=−21.5小王距出车地点的西方,距离是 21.5 千米.(2) 由题意得:(+15+∣−4∣+13+∣−10∣+∣−12∣+3+∣−13∣+∣−17∣+∣3.5∣)×0.4×7.2=90.5×0.4×7.2=260.64元.小王这天上午需汽油费 260.64 元18.【答案】(1) 这 8 名男生中有 4 人达标;48×100%=50% 所以这 8 名男生有百分之五十达到标准.(2)10×8+(2−5+0−2+4−1−1+3) =80+0=80(个).所以这8名男生共做了80个引体向上.19.【答案】(1) (+18)+(−9.5)+(+7)+(−14)+(−6.2)+(+13)+(−6.8)+(+10.5)=12所以收工时距A地12km.(2) ∣+18∣+∣−9.5∣+∣+7∣+∣−14∣+∣−6.2∣+∣+13∣+∣−6.8∣+∣+∣10.5∣=85所以85×0.3=25.5升.。
专题02 有理数的加减混合运算(计算题专项训练)-2024-2025学年七年级数学上册计算题专项训练

专题02 有理数的加减混合运算1.(2023·全国·七年级假期作业)计算:(1)−2−(+10);(2)0−(−3.6);(3)(−30)−(−6)−(+6)−(−15);(4)(−323)−(−234)−(+123)−(+1.75).【思路点拨】(1)根据有理数的减法法则计算即可;(2)根据有理数的减法法则计算即可;(3)根据有理数的减法法则计算即可;(4)根据有理数的减法法则计算即可;【解题过程】(1)−2−(+10)=−2+(−10)=−(2+10)=−12;(2)0−(−3.6)=0+(+3.6)=3.6;(3)(−30)−(−6)−(+6)−(−15)=(−30)+(+6)+(−6)+(+15)=−30+6−6+15=−15;(4)(−323)−(−234)−(+123)−(+1.75)=(−323)+(+234)+(−123)+(−134) =−323+234−123−134=−(323+123)+(234−134) =−513+1=−4132.(2022秋·重庆·七年级重庆市实验中学校考阶段练习)计算(1)(−7)+21+(−27)−(−5)(2)513−(+3.7)+(+813)−(−1.7)【思路点拨】(1)根据有理数的加减运算混合法则进行求解即可;(2)根据有理数的加减运算混合法则进行求解即可.【解题过程】(1)解:(−7)+21+(−27)−(−5)=−7+21−27+5 =−8;(2)解:513−(+3.7)+(+813)−(−1.7)=513−3.7+813+1.7=(513+813)−(3.7−1.7)=1−2=−1.3.(2022秋·甘肃张掖·七年级校考阶段练习)计算:(1)−7−(−10)+4;(2)1+(−2)−5+|−2−3|(3)12+29+(−13);(4)12−(−6)+(−9);(5)(−40)−28−(−19)+(−24)(6)15−[1−(−20−4)]【思路点拨】(1)先把有理数的减法转化为加法,然后按照从左到右的顺序进行计算即可解答;(2)先化简绝对值,然后按照从左到右的顺序进行计算即可解答;(3)按照从左到右的顺序进行计算即可解答;(4)先把有理数的减法转化为加法,然后按照从左到右的顺序进行计算即可解答;(5)先把有理数的减法转化为加法,然后按照从左到右的顺序进行计算即可解答;(6)先算小括号,再算中括号,然后进行计算即可解答.【解题过程】(1)−7−(−10)+4=−7+10+4=3+4=7;(2)1+(−2)−5+|−2−3|=1−2−5+|−5|=−6+5=−1;(3)12+29+(−13)=13 18+(−13)=13 18−618=718(4)12−(−6)+(−9)=12+6−9=18−9=9;(5)(−40)−28−(−19)+(−24) =−40−28+19−24=−68+19−24=−49−24=−73;(6)15−[1−(−20−4)]=15−[1−(−24)]=15−(1+24)=15−25=−10.4.(2023秋·全国·七年级专题练习)计算下列各题:(1)(−3)+1−5−(−8)(2)(−3)+(−10)+4−(−8)(3)9712−(345+3112)(4)11.125−114+478−4.75(5)|−34|+16+(−23)−52(6)1918+(−534)+(−918)−1.25【思路点拨】(1)根据有理数的加减混合运算从左到右进行计算即可;(2)根据有理数的加减混合运算从左到右进行计算即可;(3)根据加法交换律和加法结合律将整数部分加整数部分,分数部分加分数部分,再把所得结果相加即可;(4)根据根据加法交换律和加法结合律先把能凑整的数相加,再进行计算即可;(5)先求绝对值,再通分,进而计算即可;(6)根据根据加法交换律和加法结合律先把能凑整的数相加,再进行计算即可.【解题过程】(1)解:(−3)+1−5−(−8),=−2−5+8,=−7+8,=1;(2)解:(−3)+(−10)+4−(−8),=−13+4−(−8),=−9−(−8),=−9+8,=−1;(3)解:9712−(345+3112), =(9+712)−(3+45)−(3+112), =(9−3−3)+(712−45−112),=3+(−310), =2710; (4)解:11.125−114+478−4.75,=(11.125+478)+(−114−4.75), =16+(−6),=10;(5)解:|−34|+16+(−23)−52,=34+16+(−23)−52,=912+212+(−812)−3012,=9+2−8−3012, =−94; (6)解:1918+(−534)+(−918)−1.25, =[1918+(−918)]+[(−534)−1.25],=10+[−7],=3.5.(2022秋·河南郑州·七年级郑州一中经开区实验学校校考阶段练习)计算(1)−7−|−9|−(−11)−3(2)5.6+(−0.9)+4.4+(−8.1)(3)(−16)+(+13)+(−112)(4)25−|−112|−(+214)−(−2.75)【思路点拨】(1)化简绝对值,按照有理数加减法运算法则计算即可.(2)运用交换律,结合律凑整计算即可.(3)通分计算即可.(4)把分数科学分解,小数化分数,简便计算即可.【解题过程】(1)−7−|−9|−(−11)−3=−7−9+11−3=−8.(2)5.6+(−0.9)+4.4+(−8.1)=(5.6+4.4)+[(−0.9)+(−8.1)]=10+(−9)=1.(3)(−16)+(+13)+(−112)=−212+412−112=112. (4)25−|−112|−(+214)−(−2.75) =25−1−12−2−14+2+34 =−35.6.(2023·江苏·七年级假期作业)计算,能用简便方法的用简便方法计算.(1)26-18+5-16 ;(2)(+7)+(-21)+(-7)+(+21)(3) (−123)+112+(+714)+(−213)+(−812) (4)3.587−(−5)+(−512)+(+7)−(+314)−(+1.587)(5)2.25+318−234+1.875 (6)−312+534+456−6518【思路点拨】(1)根据有理数的加减混合运算法则解答;(2)根据加法的交换律与结合律以及互为相反数的两个数之和为0解答;(3)根据加法的交换律与结合律解答;(4)先统一成加法,再根据加法的交换律与结合律解答;(5)先统一成小数形式,再根据加法的交换律与结合律解答;(6)先把带分数化为整数部分与小数部分,再根据加法的交换律与结合律解答【解题过程】(1) 26-18+5-16=31-34=-3;(2)(+7)+(-21)+(-7)+(+21)=(+7)+(-7)+(-21)+(+21)=0;(3)(−123)+112+(+714)+(−213)+(−812)=[(−123)+(−213)]+[112+(−812)]+714=(−4)+[(−7)+714] =−334; (4)3.587−(−5)+(−512)+(+7)−(+314)−(+1.587)=3.587+5+(−512)+7+(−314)+(−1.587) =[3.587+(−1.587)]+(5+7)+[(−512)+(−314)] =2+12+(−834) =514; (5)2.25+318−234+1.875=(2.25−2.75)+(3.125+1.875)=−0.5+5=4.5;(6)−312+534+456−6518=−3−12+5+34+4+56−6−518=(−3+5+4−6)+(−12+34+56−518)=0+−18+27+30−1036=2936.7.(2022秋·全国·七年级专题练习)计算下列各题(1)−20+(−17)−(−18)−11;(2)(−49)−(+91)−(−5)+(−9);(3)434−(+3.85)−(−314)+(−3.15).【思路点拨】(1)先去括号,再计算有理数的加减法即可得;(2)先去括号,再计算有理数的加减法即可得;(3)先去括号,再利用有理数加法的交换律与结合律进行计算即可得.【解题过程】(1)解:原式=−20−17+18−11=−37+18−11=−19−11=−30.(2)解:原式=−49−91+5−9=−140+5−9=−135−9=−144.(3)解:原式=434−3.85+314−3.15=434+314−3.85−3.15=(434+314)−(3.85+3.15)=8−7=1.8.(2022秋·江苏·七年级校考周测)计算(1)(−17)+7;(2)(−14)−(−39);(3)7+(−14)−(−9)−|−12|;(4)4.7+(−0.8)+5.3+(−8.2);(5)(−16)+(+13)+(−112) ;(6)−9+5−(−12)+(−3);(7)−(+1.5)−(−414)+3.75−(+812); (8)(−225)−(+4.7)−(−0.4)+(−3.3);(9)535+(−523)+425+(−13);(10)312−(−214)+(−13)−14−(+16).【思路点拨】(1)根据有理数加法法则计算即可;(2)根据有理数减法法则计算即可;(3)先化简绝对值,然后按照有理数加减混合运算法则计算即可;(4)按照交换律和结合律将原始变换为4.7+5.3−(0.8+8.2),然后按照有理数加减混合运算法则计算即可;(5)按照交换律和结合律将原始变换为−(16+112)+13,然后按照有理数加法法则计算即可;(6)先去括号,然后按照有理数加法法则计算即可;(7)先将分数化为小数,再按照交换律和结合律变换为[-(1.5+8.5)+(4.25+3.75)],然后按照有理数加法法则计算即可;(8)先将分数化为小数,再按照交换律和结合律变换为[-(2.4-0.4)-(4.7+3.3)],然后按照有理数加减混合运算法则计算即可;(9)先按照交换律和结合律变换为[(535+425)−(523+13)],然后按照有理数加减混合运算法则计算即可;(10)先按照交换律、结合律以及有理数加减混合运算法则计算即可.【解题过程】(1)解:原式=−(17−7)=-10;(2)解:原式=(−14)+39=+(39−14)=25;(3)解:原式=−(14−7)+9−12=−7+9−12=-10;(4)解:原式=4.7−0.8+5.3−8.2=4.7+5.3−(0.8+8.2)=10-9=1;(5)解:原式=−(16+112)+13=−14+13=112;(6)解:原式=−9+5+12−3=−12+5+12=5;(7)解:原式=−1.5+414+3.75−812=-1.5+4.25+3.75-8.5=-(1.5+8.5)+(4.25+3.75)=-10+8=-2;(8)解:原式=−225−4.7+0.4−3.3=-2.4-4.7+0.4-3.3=-(2.4-0.4)-(4.7+3.3)=-2-8=-10;(9)解:原式=535+425+(−523)+(−13)=(535+425)−(523+13)=10-6 =4;(10)解:原式=312+214−13−14−16=312+(214−14)−13−16=312+2−13−16=(312−13−16)+2=3+2 =5.9.(2022秋·浙江宁波·七年级校考阶段练习)计算: (1)7﹣(﹣4)+(﹣5) (2)﹣7.2﹣0.8﹣5.6+11.6 (3)(−213)−(−423)−56(4)0.125+(+314)+(−318)+(+78)+(−0.25) 【思路点拨】(1)根据有理数的加减法法则计算即可; (2)根据有理数的加减法法则计算即可; (3)根据有理数的加减法法则计算即可; (4)根据有理数的加法法则计算即可. 【解题过程】(1)解:7-(-4)+(-5), =7+4+(-5), =11+(-5), =6(2)解:−7.2−0.8−5.6+11.6,=[−7.2+(−0.8)]+(−5.6)+11.6=(−8)+(−5.6)+11.6 =(−13.6)+11.6=−2(3)解:(−213)−(−423)−56=(−213)+423+(−56)=213+(−56)=32(4)解:0.125+(+314)+(−318)+(+78)+(−0.25)=18+314+(−318)+(+78)+(−14) =[18+(−318)+314+(−14)]+78=7810.(2022秋·河南南阳·七年级统考阶段练习)计算: (1)−24+3.2−16−3.5+0.3 (2)−8+(−14)+723−|−0.25|−23 【思路点拨】(1)根据有理数加减混合运算的运算方法,进行运算,即可求得其结果;(2)首先去括号和绝对值符号,再根据有理数加减混合运算的运算方法,进行运算,即可求得其结果. 【解题过程】(1)解:−24+3.2−16−3.5+0.3 =(−24−16)+(3.2+0.3)−3.5 =−40+(3.5−3.5)=−40+0 =−40(2)解:−8+(−14)+723−|−0.25|−23=−8−14+723−14−23=−812+7=−112.11.(2022秋·山东济南·七年级校考阶段练习)计算:(1)(−7)−(−10)+(−8)−(+2);(2)(−1.2)+[1−(−0.3)];(3)(−4)−(+13)+(−5)−(−9)+7;(4)614−3.3−(−6)−(−334)+4+3.3.【思路点拨】(1)根据有理数的加减混合运算求解即可;(2)根据有理数的加减混合运算求解即可;(3)根据有理数的加减混合运算求解即可;(4)根据有理数的加减混合运算求解即可.【解题过程】(1)解:(−7)−(−10)+(−8)−(+2),=(−7)+10+(−8)−(+2),=3+(−8)−(+2),=−5−(+2),=−5+(−2),=−7;(2)解:(−1.2)+[1−(−0.3)],=(−1.2)+[1+0.3],=(−1.2)+1.3,=0.1;(3)解:(−4)−(+13)+(−5)−(−9)+7,=(−4)+(−13)+(−5)−(−9)+7,=(−17)+(−5)−(−9)+7,=(−22)−(−9)+7,=(−22)+9+7,=(−13)+7,=−6;(4)解:614−3.3−(−6)−(−334)+4+3.3,=614+(−3.3)+6+334+4+3.3,=[3.3+(−3.3)]+6+4+(334+614),=6+4+10,=20.12.(2022秋·四川成都·七年级校考阶段练习)计算:(1)2−5+4−(−7)+(−6)(2)(−11)−(−7.5)−(+9)+2.5(3)−15−(−34)+7−|−0.75|(4)103+(−114)−(−56)+(−712)【思路点拨】(1)根据有理数的加减混合运算进行计算;(2)根据有理数的加减混合运算进行计算;(3)根据有理数的加减混合运算进行计算;(4)根据有理数的加减混合运算进行计算即可求解.【解题过程】(1)2−5+4−(−7)+(−6)=2−5+4+7−6=2+4+7−5−6 =2;(2)(−11)−(−7.5)−(+9)+2.5=−11+7.5−9+2.5=−11−9+(7.5+2.5)=−20+10=−10;(3)−15−(−34)+7−|−0.75|=−15+34+7−34=−15+7=−8;(4)103+(−114)−(−56)+(−712)=103−114+56−712 =206+56−3312−712 =5012−4012 =1012=56.13.(2022秋·山东枣庄·七年级校考阶段练习)计算 (1)−20−(−18)+(−14)+13 (2)−85−(−77)+|−85|−(−3) (3)(−2.5)−(−214)+213(4)(−23)+(−16)−(−14)−12【思路点拨】(1)根据有理数的加减计算法则进行求解即可; (2)根据有理数的加减计算法则进行求解即可; (3)根据有理数的加减计算法则进行求解即可; (4)根据有理数的加减计算法则进行求解即可. 【解题过程】(1)解:原式=−20+18−14+13=−3(2)解:原式=−85+77+85+3 =80;(3)解:原式=−212+214+213=2+412+312−612=2112;(4)解:原式=−23−16+14−12=−812−212+312−612=−1312.14.(2022秋·吉林长春·七年级校考阶段练习)计算:(1)(−52)+(−19)−(+37)−(−24);(2)−14+56+23−12;(3)312−(−214)+(−13)−14−(+16);(4)|−738+412|+(−1814)+|−6−12|.【思路点拨】(1)先去括号,负数与负数相加,正数与正数相加,所得结果再相加即可;(2)负数与负数相加,正数与正数相加,然后通分计算即可;(3)先去括号,带分数拆成整数加真分数,然后整数与整数相加减,分数与分数相加减,所得结果再相加减即可;(4)先去绝对值符号,再按(3)的方法计算即可.【解题过程】(1)解:原式=−52−19−37+24=−108+24=−84;(2)原式=(−14−12)+(56+23)=−34+32=34;(3)原式=312+214−13−14−16=(3+2)+(14−14)+(12−13−16) =5(4)原式=738−412−1814+612=(7−4−18+6)+(−12+12−14+38)=−9+18=−878.15.(2023·全国·九年级专题练习)(1)计算:0.47−456−(−1.53)−116.(2)计算:25−|−112|−(+214)−(−2.75).(3)计算:4.73−[223−(145−2.63)]−13.【思路点拨】(1)先根据减去一个数等于加上这个数的相反数化简,再利用凑整进行简便运算即可;(2)先计算绝对值,去括号,再进行同分母凑整进行简便运算即可;(3)观察本题发现括号内与外部可以凑整,故先对式子进行去括号,之后再进行简便运算即可.【解题过程】解:(1)原式=0.47−456+1.53−116=0.47+1.53−456−116=2−6=−4;(2)原式=25−112−214+2.75,=25−112−214+234=25−112+12=25−1=−35;(3)原式=4.73−(223−145+2.63)−13=4.73−223+145−2.63−13=4.73−2.63−223−13+145=2.1−3+1.8 =3.9−3=0.9.16.(2022秋·山东日照·七年级校考阶段练习)计算: (1)28−(−35)+19−21;(2)−18.25+(−5.75)+2014+(−334); (3)−1.25+1112−3.75+(−2312)−|−3|;(4)(−23)+(−16)−(−14)−(+12). 【解题过程】(1)解:原式=28+35+19−21=63+19−21 =82−21=61;(2)解:原式=−(18.25+5.75)+(2014−334)=−24+1612=−712;(3)解:原式=−(1.25+3.75)+(1112−2312)−3=−5−1−3=−9;(4)解:原式=−(23+16)+(14−12)=−56−14=−1312.17.(2023秋·全国·七年级专题练习)计算下列各题:(1)114+(−6.5)+338+(−1.25)−(−258)(2)|−0.75|+(+314)−(−0.125)−|−0.125|(3)25−|−112|−(+214)−(−2.75)+|−35|(4)−(−32)+(−56)+[712−(−16)−(+116)]【思路点拨】(1)先把相反数相加,能凑整的加数相加,进而利用有理数的加法计算即可;(2)先算绝对值,再把相反数相加,能凑整的加数相加即可得解;(3)先算绝对值,再把相反数相加,能凑整的加数相加即可得解;(4)先算括号里面的,再按有理数的加减混合运算顺序计算即可.【解题过程】(1)解:114+(−6.5)+338+(−1.25)−(−258)=[114+(−1.25)]+(−6.5)+(338+258)=(−6.5)+6=−12;(2)解:|−0.75|+(+314)−(−0.125)−|−0.125|=0.75+314+0.125−0.125=(0.75+314)+(0.125−0.125)=4;(3)解:25−|−112|−(+214)−(−2.75)+|−35|=25−112−214+2.75+35=(25+35)+(−112−214+2.75)=1+(−1)=0;(4)解:−(−32)+(−56)+[712−(−16)−(+116)]=−(−32)+(−56)+[712+16−116]=32+(−56)+[−1312] =−512.18.(2023秋·七年级单元测试)计算. (1)12+(−12)−(−8)−52(2)−556+(−923)+1734+(−312). (3)0.125+314−18+523−0.25(4)(−112)+(−200056)+400034+(−199923). 【思路点拨】(1)根据有理数加减混合运算法则进行计算即可;(2)将原式的整数和分数拆开,根据有理数加减混合运算法则结合加法运算律进行计算即可; (3)将原式的整数和分数拆开,根据有理数加减混合运算法则结合加法运算律进行计算即可; (4)将原式的整数和分数拆开,然后根据有理数加减混合运算法则结合加法运算律进行计算即可. 【解题过程】(1)原式=12+(−12)+8+(−52)=12+8+(−12)+(−52)=20−3=17;(2)原式=−5+(−56)+(−9)+(−23)+17+34+(−3)+(−12)=−5+(−9)+17+(−3)+(−56)+(−23)+34+(−12)=0+(−1012)+(−812)+912+(−612) =−54;(3)原式=18+3+14−18+5+23−14=18−18+14−14+3+5+23=0+0+8+23=823;(4)(−112)+(−200056)+400034+(−199923) 原式=(−1)+(−12)+(−2000)+(−56)+4000+34+(−1999)+(−23)=(−1)+(−2000)+4000+(−1999)+(−12)+(−56)+34+(−23) =0+(−612)+(−1012)+912+(−812) =−54. 19.(2023秋·全国·七年级专题练习)计算下列各题:(1)−0.5+(−314)+(−2.75)−(−712) (2)137+(−213)+247+(−123)(3)|−0.85|+(+0.75)−(+234)+(−1.85) (4)12.32−|−14.17|−|−2.32|+(−5.83)【解题过程】(1)−0.5+(−314)+(−2.75)−(−712)=−12+(−314)+(−234)+712=−12+712+(−314)+(−234)=7+(−6)=1(2)137+(−213)+247+(−123) =137+247+(−213)+(−123)=4+(−4)=0(3)|−0.85|+(+0.75)−(+234)+(−1.85)=0.85+(+0.75)+(−2.75)+(−1.85)=0.85+(−1.85)+(+0.75)+(−2.75)=−1+(−2)=−3(4)12.32−|−14.17|−|−2.32|+(−5.83)=12.32−14.17−2.32+(−5.83)=12.32−2.32−14.17−5.83=10−20=−1020.(2022秋·七年级课时练习)用较为简便的方法计算下列各题:(1)(+213)-(+1013)+(−815)-(+325);(2)-8 721+531921-1 279+4221;(3)-|−35−(−25)|+|(−14)+(−12)|.(4)314+(−516)−(−134)−(+356)+(1037)−1025【思路点拨】(1)原式结合后,相加即可得到结果;(2)原式结合后,相加即可得到结果;(3)原式结合后,相加即可得到结果;(4)原式利用减法法则变形,结合后计算即可得到结果.【解题过程】(1)(+213)-(+1013)+(−815)-(+325) =(213−1013)−(815+325) =−8−1135 =−1935;(2)-8 721+531921-1 279+4221=(-8 721-1 279)+(531921+4221) =-10 000+58=-9 942; (3)-|−35−(−25)|+|(−14)+(−12)| =−|−15|+|−34| =−15+34 =1120;(4)314+(−516)−(−134)−(+356)+(1037)−1025=314−516+134−356+1037−1025 =(314+134)−(516+356)+(1037−1025) =5−9+135 =−33435.。
七年级数学上册有理数加减乘除混合运算练习人教新课标版

数 学 练 习(一)〔有理数加减法运算练习〕一、加减法法则、运算律的温习。
A .△同号两数相加,取__________________,并把____________________________。
一、(–3)+(–9) 2、85+(+15)3、(–361)+(–332) 4、(–)+(–532)△绝对值不相等的异号两数相加,取_________________________,并用____________________ _____________. 互为__________________的两个数相加得0。
一、(–45) +(+23) 2、(–)+3、412+(–) 4、(–9)+7△ 一个数同0相加,仍得_____________。
一、(–9)+ 0=______________; 2、0 +(+15)=_____________。
B 一、(–)+(–)+ (– 二、23+(–17)+(+7)+(–13)3、(+ 341)+(–253)+ 543+(–852) 4、52+112+(–52)C .有理数的减法能够转化为_____来进行,转化的“桥梁”是△减法法则:减去一个数,等于_____________________________。
一、(–3)–(–5) 二、341–(–143) 3、0–(–7)D .加减混合运算能够统一为_______一、(–3)–(+5)+(–4)–(–10) 二、341–(+5)–(–143)+(–5)△把––(–)+(–)+ (+写成省略加号的和的形式是______________,读作:__________________________,也能够读作:__________________________。
一、 1–4 + 3–5 二、– + – + 3、 381–253 + 587–852二、综合提高题。
1、 –99 + 100–97 + 98–95 + 96–……+2 二、–1–2–3–4–……–1003、一个病人天天下午需要测量一次血压,下表是病人礼拜一至礼拜五收缩压的转变情形,该病人上个礼拜日的请算出礼拜五该病人的收缩压。
人教版七年级上册数学有理数加减法练习题及答案

1.3.1 第1课时 有理数的加法法则1.下列四个数中,与-2的和为0的数是( ) A .-2 B .2 C .0 D .-12 2.比-1大1的数是( ) A .2 B .1 C .0 D .-2 3.计算-|-3|+1的结果是( ) A .4 B .2 C .-2 D .-44.两个数相加,如果和小于每一个加数,那么( ) A .这两个加数同为正数 B .这两个加数同为负数 C .这两个加数的符号不同 D .这两个加数中有一个为0 5.313的相反数与-223的绝对值的和为________. 6.计算:(1)(-6)+(-8); (2)(-4)+2.5;(3)(-7)+(+7); ( 4)(-7)+(+4);(5)(+2.5)+(-1.5); (6)0+(-2);(7)-3+2; (8)(+3)+(+2).7.列式并计算:(1)求+1.2的相反数与-1.3的绝对值的和. (2)423与-212的和的相反数是多少?8.一艘潜水艇所在的高度是-50 m ,一条鲨鱼在潜水艇上方10 m 处,鲨鱼所在的高度是多少?9.a ,b ,c 三个数在数轴上的位置如图所示,则下列结论不正确的是( )A .a +b<0B .b +c<0C .b +a>0D .a +c>010.规定一种新的运算:a ⊗b =1a +1b ,那么(-2)⊗(-3)=____. 11.已知|a|=8,|b|=2.(1)当a ,b 同号时,求a +b 的值; (2)当a ,b 异号时,求a +b 的值.12.下面列出了国外几个城市与北京的时差,带正号的数表示同一时刻比北京早的时数.巴黎 东京 芝加哥 -7+1-14(1)如果现在的北京时间是9月20日17时,那么现在的芝加哥时间是多少?东京时间是多少?(2)冬冬17时想给远在巴黎的爸爸打电话,你认为他打电话的时间合适吗?(7:00—20:00打电话均为合适时间)参考答案1.B 2.C 3.C 4.B 5.-236.(1)-14 (2)-1.5 (3)0 (4)-3 (5)1 (6)-2 (7)-1 (8)57.(1)-(+1.2)+||-1.3=0.1. (2)-⎣⎢⎡⎦⎥⎤423+⎝ ⎛⎭⎪⎫-212=-216.8.鲨鱼所在的高度是-40 m . 9.C 10.-5611.(1)10或-10 (2)6或-612.(1)芝加哥时间是9月20日凌晨3时,东京时间是9月20日18时; (2)他打电话的时间合适.第2课时 有理数的加法运算律1.计算-23+⎝ ⎛⎭⎪⎫+1734+(-1.234)+⎝ ⎛⎭⎪⎫-1734+(+23)的结果是( ) A .0 B .-12.34 C .-1.234 D .1.2342.运用加法的运算律计算⎝ ⎛⎭⎪⎫+613+(-18)+⎝ ⎛⎭⎪⎫+423+(-6.8)+18+(-3.2),最适当的是( )A.⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫+613+⎝ ⎛⎭⎪⎫+423+18+[(-18)+(-6.8)+(-3.2)] B.⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫+613+(-6.8)+⎝ ⎛⎭⎪⎫+423+[(-18)+18+(-3.2)]C.⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫+613+(-18)+⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫+423+(-6.8)+[18+(-3.2)]D.⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫+613+⎝ ⎛⎭⎪⎫+423+[(-18)+18]+[(-6.8)+(-3.2)] 3.根据加法运算律填空:756+⎝ ⎛⎭⎪⎫-513+214+⎝ ⎛⎭⎪⎫-434=[________________]+[__________________]=________________=__0__.4.计算:(-20.75)+[314+(-4.25)+1934]=____. 5.绝对值大于2而小于7的所有整数的和是____. 6.用简便方法计算: (1)-4+17+(-36)+73;(2)-56+15+116+⎝ ⎛⎭⎪⎫-45.7.计算:(1)(-0.8)+(+1.2)+(-0.6)+(-2.4);(2)(-0.5)+⎝ ⎛⎭⎪⎫+214+⎝ ⎛⎭⎪⎫-912+(+9.75);(3)⎝ ⎛⎭⎪⎫-319+(-2.16)+814+319+(-3.84)+(-0.25)+45.8.10袋小麦,每袋小麦以90 kg 为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下(单位:kg):+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1.这10袋小麦一共重多少千克?9.阅读下面的解题方法.计算:-556+⎝ ⎛⎭⎪⎫-923+1734+⎝ ⎛⎭⎪⎫-312. 解:原式=⎣⎢⎡⎦⎥⎤(-5)+⎝ ⎛⎭⎪⎫-56+⎣⎢⎡⎦⎥⎤(-9)+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫17+34+⎣⎢⎡⎦⎥⎤(-3)+⎝ ⎛⎭⎪⎫-12=[(-5)+(-9)+17+(-3)]+⎣⎢⎡⎝ ⎛⎭⎪⎫-56+⎝ ⎛⎭⎪⎫-23+⎦⎥⎤34+⎝ ⎛⎭⎪⎫-12=0+⎝ ⎛⎭⎪⎫-54=-54.上述解题方法叫做拆项法,按此方法计算: ⎝⎛⎭⎪⎫-2 01956+⎝ ⎛⎭⎪⎫-2 01823+4 03623+112.参考答案1.C 2.D 3.756+⎝ ⎛⎭⎪⎫-513 214+⎝ ⎛⎭⎪⎫-434212+⎝⎛⎭⎪⎫-212 0 4.-2 5.0 6.(1)50 (2)25 7.(1)-2.6 (2)2 (3)245 8.这10袋小麦一共重905.4 kg . 9.-131.3.2 第1课时 有理数的减法法则一、选择题1.下列等式计算正确的是( )A.(-2)+3=-1B.3-(-2)=1C.(-3)+(-2)=6D.(-3)+(-2)=-5答案 D (-2)+3=1,故选项A错误;3-(-2)=3+2=5,故选项B错误;(-3)+(-2)=-5,故选项C错误,选项D正确,故选D.2.-3,-14,7的和比它们的绝对值的和小( )A.-34B.-10C.10D.34答案 D 可列式:(|-3|+|-14|+|7|)-(-3-14+7)=24-(-10)=34.3.某日的最高气温为3 ℃,最低气温为-9 ℃,则这一天的最高气温比最低气温高( )A.-12 ℃B.-6 ℃C.6 ℃D.12 ℃答案 D 3-(-9)=3+9=12(℃).4.下列各式中与a-b-c不相等的是( )A.a-(b-c)B.a-(b+c)C.(a-b)+(-c)D.(-b)+(a-c)答案 A a-(b-c)=a-b+c.5.为计算简便,把(-2.4)-(-4.7)-(+0.5)+(+3.4)+(-3.5)写成省略括号的代数和的形式,并适当交换加数的位置,正确的是( )A.-2.4+3.4-4.7-0.5-3.5B.-2.4+3.4+4.7+0.5-3.5C.-2.4+3.4+4.7-0.5-3.5D.-2.4+3.4+4.7-0.5+3.5答案 C (-2.4)-(-4.7)-(+0.5)+(+3.4)+(-3.5)=-2.4+3.4+4.7-0.5-3.5.故选C.二、填空题6.式子-6-(-4)+(+7)-(-3)写成省略括号的代数和的形式是.答案-6+4+7+3解析-6-(-4)+(+7)-(-3)=-6+4+7+3.7.如果一个数的实际值为a,测量值为b,我们把|a-b|称为绝对误差,称为相对误差.若有一种零件实际长度为5.0 cm,测量得4.8 cm,则测量所产生的绝对误差是cm,相对误差是.答案0.2;0.04解析零件实际长度为5.0 cm,测量得4.8 cm,则测量所产生的绝对误差为|5-4.8|=0.2 cm,相对误差为=0.04.8.如果数轴上的点A所对应的数为-3,那么与点A相距2个单位长度的点所表示的数是.答案-5或 -1解析这个点有可能在A点的左边,也可能在A点的右边.9.某天上午的温度是5 ℃,中午上升了3 ℃,下午由于冷空气南下,到夜间下降了9 ℃,则这天夜间的温度是℃.答案-1解析依题意列式为5+3+(-9)=5+3-9=8-9=-1(℃).所以这天夜间的温度是-1 ℃.三、解答题10.根据题意列出式子计算:(1)一个加数是1.8,和是-0.81,求另一个加数;(2)求-的绝对值的相反数与的相反数的差.解析(1)另一个加数为-0.81-1.8=-2.61.(2)--=.11.计算:(1)-2.4+3.5-4.6+3.5;(2)-+-.解析(1)-2.4+3.5-4.6+3.5=(-2.4-4.6)+(3.5+3.5)=(-7)+7=0.(2)-+-=+5++=+5=+5=-8.12.计算:(1)-2-5+3+6-7;(2)-40-28-(-19)+(-24)-(-32);(3)2.25+3-4-5;(4)-+--.解析(1)原式=(-2-5-7)+(3+6)=-14+9=-5.(2)原式=-40-28+19-24+32=(-40-28-24)+(19+32)=-92+51=-41.(3)原式=+=6-9=-3.(4)原式=--+-=+=-+=-.13.识图理解:请认真观察下图给出的未来一周某市的每天的最高气温和最低气温,并回答下列问题:(1)这一周该市的最高气温和最低气温分别是多少?(2)这一周中,星期几的温差最大?是多少?解析(1)最高气温和最低气温分别是9 ℃和-4 ℃.(2)这一周中,星期四的温差最大,温差是4-(-4)=8 ℃.14.请根据图示的对话解答下列问题.求:(1)a,b的值;(2)8-a+b-c的值.解析(1)∵a的相反数是3,b的绝对值是7,∴a=-3,b=±7.(2)∵b=±7,c和b的和是-8,∴当b=7时,c=-15;当b=-7时,c=-1.当a=-3,b=7,c=-15时,8-a+b-c=8-(-3)+7-(-15)=33;当a=-3,b=-7,c=-1时,8-a+b-c=8-(-3)+(-7)-(-1)=5.1.3.2 第2课时有理数加减混合运算1.把-(-15)-(+8)-(-7)+(-4)写成省略括号和加号的形式为() A.-15-8-7+4 B.15+8-7-4C.15-8+7-4 D.-15-8+7-42.计算(2-3)+(-1)的结果是( ) A .-2 B .0 C .1 D .23.计算56-38+⎝ ⎛⎭⎪⎫-278的结果是( )A .-23B .-2512C .-3124D .-1411244.计算:(-0.25)-⎝ ⎛⎭⎪⎫-314+2.75-⎝ ⎛⎭⎪⎫+712=____. 5.计算:(1)-5+3-2; (2)-20-(-18)+(-14)+13; (3)5.6+(-0.9)+4.4+(-8.1).6.用简便方法计算下列各题: (1)3-(+63)-(-259)-(-41); (2)⎝ ⎛⎭⎪⎫213-⎝ ⎛⎭⎪⎫+1013+⎝ ⎛⎭⎪⎫-815-⎝ ⎛⎭⎪⎫+325; (3)598-1245-335-84;(4)-8 721+531921-1 279+4221.7.市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:(1)若标准质量为450 g ,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格范围为(450±5)g ,求该食品的抽样检测的合格率.8.出租车司机小王某天运营是在东西走向的大街上进行,如果规定向东为正,向西为负,他这天下午的里程数依次为(单位:km):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.(1)将最后一名乘客送到目的地时,小王在什么位置?(请注意给出准确的描述)(2)若汽车耗油量为0.05 L/km ,这天小王的汽车共耗油多少升?9.小明在做数学题时,发现下面有趣的结果:3-2=1;8+7-6-5=4;15+14+13-12-11-10=9;24+23+22+21-20-19-18-17=16.根据以上规律可知第100行左起第一个数是____.参考答案1.C 2.A 3.B 4.-1.755.(1)-4 (2)-3 (3)16.(1)240 (2)-1935 (3)49735 (4)-9 9427.(1)9 017 g(2)95%8.(1)小王在起始以东39 km的位置;(2)这天小王的汽车共耗油3.25 L. 9.10 200。
七年级数学上册《第一章 有理数的加减法》同步练习题及答案(人教版)

七年级数学上册《第一章有理数的加减法》同步练习题及答案(人教版)姓名班级学号一、单选题1.下列四个数中,最小数是()A.﹣12B.﹣2 C.0 D.22.计算:|﹣5+3|的结果是()A.-2 B.2 C.-8 D.83.数轴上到-3的距离为6的点表示的数为()A.3 B.4 C.9 D.3或-94.若两数之和为负数,则下列叙述正确的是().A.两个都是负数B.这两个数不可能有正数C.两个数不可能有0 D.至少有一个负数5.有理数a在数轴上的对应点的位置如图所示,若有理数b满足−b>a,则b的值可能是()A.−1B.0C.−3D.26.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.25.30千克B.25.51千克C.24.80千克D.24.70千克7.已知m、n均为非零有理数,下列结论正确的是()A.若m≠n,则|m|≠|n| B.若|m|=|n|,则m=nC.若m>n>0,则1m >1nD.若m>n>0,则m2>n28.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,-a,b,-b按照从小到大的顺序排列()A.-b<-a<a<b B.-a<-b<a<b C.-b<a<-a<b D.-b<b<-a<a二、填空题9.比-4大3的数是.10.已知|a|=8,|b|=3,|a+b|=a+b,则a+b= .11.绝对值大于1又小于4的整数有个.| (填“=”“>”或“<”).12.比较大小:-(-0.3) |−1313.已知数轴上有A、B两点,A点表示的数是−2,A、B两点的距离为3个单位长度,则满足条件的点B表示的数是.三、解答题14.计算:16+(﹣25)+24+(﹣35).15.已知a的绝对值是4,|b|=3且a>b,求a-b的值.16.在数轴上表示下列各数:并用“<”号连接17.写出符合下列条件的数:(1)大于﹣3且小于2的所有整数;(2)绝对值大于2且小于5的所有负整数(3)在数轴上,与表示﹣1的点的距离为2的所有数;18.下表是云南某地气象站本周平均气温变化的情况:(记当日气温上升为正).星期一二三四五六日气温变化(℃)+3.5+8.9+2.6−7.6+6.5−9.4−5.5(1)上周星期日的平均气温为15℃,则本周气温最高的是哪一天?请说明理由;(2)本周日与上周日相比,气温是升高了还是下降了?升或降了多少℃?19.出租车司机老姚某天上午营运全是在东西走向的解放路上进行.如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:+8,+6,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+8,﹣9,﹣12.(1)将第几名乘客送到目的地时,老姚刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老姚距上午出发点多远?在出发点的东面还是西面?(3)若汽车耗油量为0.075L/km,这天上午老姚的出租车耗油多少L?参考答案1.B2.B3.D4.D5.C6.C7.D8.C9.-110.5或1111.412.<13.-5或114.解:16+(﹣25)+24+(﹣35)=16﹣25+24﹣35=(16+24)+(﹣25﹣35)=40+(﹣60)=﹣2015.解:∵a的绝对值是4 |b|=3∴a=±4 b=±3∵a>b∴a=4 b=±3当a=4,b=3时a−b=4−3=1;当a=4,b=−3时a−b=4−(−3)=7;综上所述,a-b的值为1或7.16.解:如图所示-4.2<-2<0<1 13<3 12<717.(1)解:大于﹣3且小于2的所有整数为:﹣2,﹣1,0,1.(2)解:绝对值大于2且小于5的所有负整数为:﹣4,﹣3.(3)解:设在数轴上,与表示﹣1的点的距离为2的数为x则有:|x﹣(﹣1)|=2解得:x1=1,x2=﹣3.∴在数轴上,与表示﹣1的点的距离为2的所有数为1,﹣3.18.(1)解:由条件可得,本周的平均气温如下表所示:星期一二三四五六日气温(℃)18.527.430 22.428.919.514∵30 > 28.9 > 27.4 > 22.4 > 19.5 > 18.5 >14∴本周气温最高的一天是星期三;(2)解:由(1)表可知本周日气温为14℃比上周日气温15℃下降了,下降了1℃. 19.(1)解:因为+8+6﹣10﹣3+6﹣5﹣2=0所以将第7名乘客送到目的地时,老姚刚好回到出发点(2)解:+8+6﹣10﹣3+6﹣5﹣2﹣7+4+8﹣9﹣12=﹣16,所以老姚距上午出发点16km因为﹣16是负的,所以在出发点的西边16km处.(3)解:|+8|+|+6|+|﹣10|+|﹣3|+|+6|+|﹣5|+|﹣2|+|﹣7|+|+4|+|+8|+|﹣9|+|﹣12|=80 80×0.075=6(L),所以这天上午老姚的出租车油耗为6 L。
有理数的加减法 同步练习 2022—2023学年人教版七年级数学上册

人教版七年级数学上册有理数加减运算同步练习(附参考答案)一.有理数的加法(共19小题)1.若|a|=3,|b|=2,且a﹣b<0,则a+b的值等于()A.1或5B.1或﹣5C.﹣1或5D.﹣1或﹣52.已知|a|=2,b=2,且a,b异号,则a+b=()A.4B.0C.0或4D.不能确定3.已知|x|=5,|y|=2,则x+y的值()A.±3B.±7C.3或7D.±3或±74.两个有理数的和为正数,那么这两个数一定()A.都是正数B.至少有一个正数C.有一个是0D.绝对值不相等5.已知|a|=6,|b|=4,且a<b,则a+b的值为()A.﹣2B.﹣2或﹣10C.﹣10D.以上都不是6.若|a|=3,|b|=2,且a<b,a+b的值等于()A.1或5B.1或﹣5C.﹣1或﹣5D.﹣1或57.绝对值大于或等于1,而小于4的所有的整数的和是()A.8B.7C.6D.08.绝对值小于5的所有整数的和为()A.0B.﹣8C.10D.209.若非零数a,b满足|a+b|=|a|+|b|,则()A.a,b均为正数B.a,b均为负数C.a,b异号D.a,b同号10.已知|m|=6,|n|=3,|m+n|=﹣m﹣n,则m+n的值是()A.9B.﹣9C.﹣9或﹣3D.±9或±311.已知两个有理数的和比其中任何一个加数都小,那么一定是()A.这两个有理数同为正数B.这两个有理数同为负数C.这两个有理数异号D.这两个有理数中有一个为零12.2015个不全相等的有理数之和为0,则这2015个有理数中()A.至少有一个是零B.至少有1003个正数C.至少有一个是负数D.至多有1000个是负数13.绝对值大于2且小于5的所有的整数的和是()A.7B.﹣7C.0D.514.如果两个数的和为正数,那么()A.这两个加数都是正数B.一个数为正,另一个为0C.两个数一正一负,且正数绝对值大D.必属于上面三种之一15.小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?16.某登山队5名队员以二号高地为基地,开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,﹣32,﹣43,+205,﹣30,+25,﹣20,﹣5,+30,﹣25,+75.(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)登山时,5名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升.他们共使用了氧气多少升?17.下表记录的是今年长江某一周内的水位变化情况,这一周的上周末的水位已达到警戒水位33米(正号表示水位比前一天上升,负号表示水位比前一天下降).星期一二三四五六+0.2+0.8﹣0.4+0.2+0.3﹣0.2水位变化(米)(1)本周哪一天长江的水位最高?位于警戒水位之上还是之下?(2)与上周周末相比,本周周末长江的水位是上升了还是下降了?并通过计算说明理由.18.出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:﹣2,+5,﹣1,+1,﹣6,﹣2,问:(1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为0.2L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?19.弘文中学定于十一月份举行运动会,组委会在整修百米跑道时,工作人员从A处开工,约定向东为正,向西为负,从开工处A到收工处B所走的路线(单位:米),分别为+10、﹣3、+4、﹣2、+13、﹣8、﹣7、﹣5、﹣2,工作人员整修跑道共走了多少路程?二.有理数的减法(共10小题)20.若|x|=2,|y|=3,且x+y>0,则x﹣y的值是()A.﹣1或5B.1或﹣5C.﹣5或﹣1D.5或1 21.已知数a,b在数轴上表示的点的位置如图所示,则下列结论正确的是()A.a+b>0B.a﹣b>0C.﹣a>﹣b>a D.a•b>0 22.计算|3.14﹣π|的结果等于()A.3.14﹣πB.0C.π﹣3.14D.﹣π﹣3.14 23.若|a|=4,|b|=1,a与b异号,则a﹣b的值为()A.3B.5C.±3D.±524.若|a|=4,|b|=6,且a﹣b>0,则a+b的值是()A.﹣2B.﹣10或2C.﹣10或﹣2D.1025.已知|a|=4,|b|=2,且|a+b|=a+b,则a﹣b值等于()A.2B.6C.2或6D.±2或±6 26.下列说法正确的是()A.若两数差为0,则这两个数一定相等B.两个有理数的差一定小于被减数C.互为相反数的两个数之差为0D.如果两数之差为负数,那么这两个数都是负数27.已知m是6的相反数,n比m的相反数小2,则m﹣n等于.28.若a<0,b<0,|a|>|b|,则a﹣b0.(填“>”“<”或“=”)29.如果|m|=5,|n|=10,且|m﹣n|=n﹣m,那么m+n的值为.三.有理数的加减混合运算(共31小题)30.下列各运算中正确的是()A.﹣4﹣(﹣3)=1B.5﹣(﹣5)=0C.10+(﹣7)=﹣3D.﹣5﹣4﹣(﹣4)=﹣531.下列运算正确的是()A.﹣2+(﹣5)=﹣(5﹣2)=﹣3B.(+3)+(﹣8)=﹣(8﹣3)=﹣5 C.(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D.(+6)+(﹣4)=+(6+4)=+1032.若“方框”表示运算x﹣y+z+w,则“方框”=.33.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w,则+=(直接写出答案).34.规定图形表示运算x+z﹣y﹣w.则=.35.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则=(直接写出答案).36.有一个运算程序,可以使a⊕b=n(n为常数)时,得(a+1)⊕b=n+1,a⊕(b+1)=n﹣2.现在已知1⊕1=2,那么2009⊕2009=.37.我们规定一种新运算:a△b=a﹣b+1,如3△4=3﹣4+1=0,那么2△(﹣3)的值为.38.我们规定“※”是一种数学运算符号,A※B=(A+B)﹣(A﹣B),那么3※(﹣5)=.39.计算﹣4.2+5.7﹣8.4+10.(﹣12)﹣5+(﹣14)﹣(﹣39)8+(﹣1)﹣5﹣(﹣). 1.5﹣(﹣4)+3.75﹣(+8).﹣2﹣(﹣1)+(﹣11)﹣(+12)..40.计算:6+(﹣8)﹣(﹣5);.(﹣11)﹣(﹣7.5)﹣(+9)+2.5;..8+(﹣)﹣5﹣(﹣0.25);(+23)+(﹣27)+(+9)+(﹣5);﹣7+13﹣6+20.(1)(﹣51)+(﹣37);(2)(﹣4)+(+2);(2)(﹣2)﹣5;(4)[(﹣5)﹣(+8)]﹣(﹣3).(1)﹣27+(﹣32)+(﹣8)+72;(2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4).(1)(﹣11)+8+(﹣14);(2)13﹣(﹣12)+(﹣21).(1)﹣28+(﹣35);(2)﹣12﹣23;(2)﹣25﹣(﹣13);(4).(1)23﹣17﹣(﹣7)+(﹣16).(2)12﹣(﹣18)+(﹣7)﹣15.(1)(﹣12)+(﹣13)﹣(﹣14)﹣(+15)+(+16);(2)﹣6.35+(﹣1.4)+(﹣7.6)+5.35.41.阅读下面文字:对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)﹣1+(﹣2)+7+(﹣4)=计算:(2)(﹣2017)+2016+(﹣2015)+16.42.阅读下面的计算过程,体会“拆项法”计算:﹣5+(﹣9)+17+(﹣3)解:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1启发应用用上面的方法完成下列计算:(1)(﹣3)+(﹣1)+2﹣(﹣2);(2)(﹣2000)+(﹣1999)+4000+(﹣1).57.计算题:(1)(﹣53)+(+21)﹣(﹣69)﹣(+37)(2)5.7﹣4.2﹣8.4﹣2.3+1(3)﹣(﹣12)+(+18)﹣(+37)+(﹣41)(4)(﹣1)﹣1+(﹣2)﹣(﹣3)﹣(﹣1)+4.43.小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家.(1)以小明家为原点,以向东的方向为正方向,用1 个单位长度表示1千米,你能在数轴上表示出中心广场,小彬家和小红家的位置吗?(2)小彬家距中心广场多远?(3)小明一共跑了多少千米?44.计算下列各题:(1)49+(﹣23)+(﹣35)+0 (2)19﹣(﹣76)﹣22﹣(﹣52)(﹣6)﹣(﹣)+(﹣4)﹣(4)0.5+(﹣)﹣(﹣3.75)+(3)(4)(﹣)﹣7﹣(﹣3.2)+(﹣1)(6)﹣1.6+3.2﹣0.4﹣3+1.8.45.计算(1)7+(﹣3.04);(2)(﹣2.9)+(﹣0.31);(2)(﹣9.18)+6.18;(4)4.23+(﹣6.77);(5)(﹣3)﹣(﹣7)(6)(﹣10)﹣3 (7)33﹣(﹣27)(8)(﹣4)﹣16 (9)(+0.5)﹣+(﹣)﹣(+)(9)(﹣0.5)﹣(﹣)+(+2.75)﹣(+5.5)(11)10﹣24﹣15+26﹣24+18﹣20.参考答案一.有理数的加法(共19小题)1.D;2.B;3.D;4.B;5.B;6.C;7.D;8.A;9.D;10.C;11.B;12.C;13.C;14.D;15.;16.;17.;18.;19.;二.有理数的减法(共10小题)20.C;21.C;22.C;23.D;24.C;25.C;26.A;27.﹣10;28.<;29.15或5;三.有理数的加减混合运算(共31小题)30.D;31.B;32.﹣8;33.0;34.﹣2;35.﹣2;36.﹣2006;37.6;38.﹣10;。
最新2019-2020年度人教版七年级数学上册《有理数加减乘除混合运算》综合练习题-经典试题

数 学 练 习(一)〔有理数加减法运算练习〕一、加减法法则、运算律的复习。
A .△同号两数相加,取__________________,并把____________________________。
1、(–3)+(–9)2、85+(+15)3、(–361)+(–332) 4、(–3.5)+(–532)△绝对值不相等的异号两数相加,取_________________________,并用____________________ _____________. 互为__________________的两个数相加得0。
1、(–45) +(+23)2、(–1.35)+6.353、412+(–2.25) 4、(–9)+7△ 一个数同0相加,仍得_____________。
1、(–9)+ 0=______________;2、0 +(+15)=_____________。
B .加法交换律:a + b = ___________ 加法结合律:(a + b) + c = _______________1、(–1.76)+(–19.15)+ (–8.24)2、23+(–17)+(+7)+(–13)3、(+ 341)+(–253)+ 543+(–852) 4、52+112+(–52)C .有理数的减法可以转化为_____来进行,转化的“桥梁”是___________。
△减法法则:减去一个数,等于_____________________________。
即a –b = a + ( )1、(–3)–(–5)2、341–(–143) 3、0–(–7)D .加减混合运算可以统一为_______运算。
即a + b –c = a + b + _____________。
1、(–3)–(+5)+(–4)–(–10)2、341–(+5)–(–143)+(–5)△把–2.4–(–3.5)+(–4.6)+ (+3.5)写成省略加号的和的形式是______________,读作:__________________________,也可以读作:__________________________。