植被光谱分析与植被指数计算

合集下载

植被覆盖 植被指数 植被光谱

植被覆盖 植被指数 植被光谱

NDVI的理论基础NDVI的理论基础植被指数按不同的监测方法和计算方法可分为多种多样的植被指数。

常用的有:归一化植被指数NDVI;垂直植被指数PVI;比值植被指数RVI;消除土壤影响的植被指数SAVI和全球植被指数GVI等。

其中,NDVI则是使用最广泛,效果也较好的一种。

NDVI(Normalized Difference Vegetation Index)归一化植被指数,又称标准化植被指数,在使用遥感图像进行植被研究以及植物物候研究中得到广泛应用,它是植物生长状态以及植被空间分布密度的最佳指示因子,与植被分布密度呈线性相关。

归一化植被指数(NDVI)是近红外与红色通道反射率比值(SR=NIR/RED)的一种变换形式,NDVI=(NIR-R)/(NIR+R)。

植被覆盖度(fv)fv=(NDVI-NDVImin)/(NDVImax-NDVImin).叶面积指数(LAI)LAI=k-1ln(1-fv)-1,k是消光系数,每种植被k各不相同,一般植被取值范围是0.8-1.3。

NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、枯叶、粗超度等,且与植被覆盖有关,-1≤NDVI≤1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大。

用NDVI判断植物生长的状态:植物叶绿素发生光合作用而吸收红光,所以长势越好的植物吸收红光越多,反射近红外光也越多。

所以NDVI能反应植物生物量的多少,NDVI越大,植物长势越好。

附表:植被指数指数应用计算公式测量值的意义优点局限性NDVI 归一化植被指数监测植被生长状态、植被覆盖度和消除部分辐射误差等NDVI=(NIR-R)/(NIR+R)-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等能反映出植物冠层的背景影响,如土壤、潮湿地面、枯叶、粗超度等,且与植被覆盖有关对高植被区具有较低的灵敏度RVI 比值植被指数是绿色植物的的灵敏指数参数,用于检测和估算植物生物量RVI=NIR/R绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。

植被指数计算方法

植被指数计算方法

2.1归一化植被指数(NDVI )归一化植被指数(Normalized Differenee Vegetation Index 即 NDVI )的计算公式为:其中:NIR 和RED 分别代表近红外波段和红光波段的反射率 NDVI 的值介于-1和 1之间。

2.2增强型植被指数(EVI )增强型植被指数(En ha need Vegetation In dex 即EVI )计算公式为:NIR 、 RED 和BLUE 分别代表近红外波段、红光波段和蓝光波段的反射率。

2.3高光谱归一化植被指数(Hyp_NDVI )对于环境与灾害监测预报小卫星高光谱载荷,选取中心波长分别位于近红外 和红光的谱段进行归一化植被指数计算:.. Hyp NIR Hyp RED Hyp NDVI----------- ------------ 一 Hyp _ NIR Hyp _ RED2.4其他植被指数(1) 比值植被指数(Ratio Vegetation Index ------ RVI )RVI 3RED该植被指数能够充分表现植被在红光和近红外波段反射率的差异,能增强植被与土壤背景之间的辐射差异。

但是RVI 对大气状况很敏感,而且当植被覆盖小于50%时,它的分辨能力显著下降。

(2) 差值植被指数(Differenee Vegetation Index -------- DVI )DVI NIR RED该植被指数对土壤背景的变化极为敏感,有利于对植被生态环境的监测,因 此又被称为环境植被指数(EVI )。

(3)土壤调整植被指数(Soil-Adjusted Vegetation Index --------- S AVI )NDVI NIR RED NIR REDEVI 2.5NIR RED NIR 6.° RED 7.5 BLUESAVI ―NR―RED(1 L)NIR RED L其中,L是一个土壤调节系数,该系数与植被浓度有关,由实际区域条件确定,用来减小植被指数对不同土壤反射变化的敏感性。

植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation indices ——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。

目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。

本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。

这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁迫性相关的色素、植被冠层中水分含量等。

包括以下内容:∙∙●植被光谱特征∙∙●植被指数∙∙●HJ-1-HSI植被指数计算1.植被光谱特征植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。

很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。

研究植被的波长范围一般为400 nm to 2500 nm,这也是传感器设计选择的波长范围。

这个波长范围可范围以下四个部分:∙∙●可见光(Visible):400 nm to 700 nm∙∙●近红外(Near-infrared——NIR):700 nm to 1300 nm∙∙●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm∙∙●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。

如何进行遥感影像的植被监测与评估

如何进行遥感影像的植被监测与评估

如何进行遥感影像的植被监测与评估遥感影像的植被监测与评估广泛应用于农业、林业、生态学等领域,可以帮助我们了解植被的分布、生长状况和变化趋势等。

本文将介绍如何进行遥感影像的植被监测与评估的方法和技术。

一、植被指数的计算与分析植被指数是评估植被状况的重要指标,可以通过光谱反射率计算得到。

常用的植被指数有归一化植被指数(NDVI)、近红外参数指数(NDPI)等。

NDVI的计算公式为(NIR-RED)/(NIR+RED),其中NIR表示近红外波段的反射率,RED表示红光波段的反射率。

通过计算植被指数,可以得到植被的生长状况和空间分布特征。

二、遥感影像的分类与识别遥感影像的分类与识别是植被监测与评估的重要步骤。

通过遥感图像分类技术,可以将图像中的像元分为不同的类别,如植被、水体、建筑等。

常用的图像分类方法有支持向量机(SVM)、最大似然分类(MLC)等。

利用这些分类方法,可以识别出遥感影像中的植被区域,并进行面积统计和变化分析。

三、时间序列分析与变化检测时间序列分析是遥感影像植被监测中的重要手段,可以了解植被的季节性变化和长期趋势。

通过获取不同时间点的遥感影像数据,可以计算出植被指数的变化量,并对植被的生长状态进行分析。

变化检测技术可以将两幅或多幅遥感影像进行对比,检测出植被变化的区域和幅度。

这些数据可以用于制定植被保护和管理策略。

四、植被盖度和生物量估算植被盖度和生物量是评估植被状况的重要指标之一。

通过遥感影像的光谱信息和植被指数计算方法,可以估算出植被的覆盖度。

而植被的生物量可以通过多源数据融合和统计模型建立进行估算。

这些数据对于农业生产和生态环境评估具有重要意义。

五、植被监测系统的发展趋势随着遥感技术的不断发展和卫星观测系统的进步,植被监测系统也在不断完善。

高分辨率的遥感影像数据和多源数据融合技术使得植被监测与评估工作更加精准和全面。

同时,人工智能和机器学习算法的应用为植被监测提供了新的思路和方法。

植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算解读植被光谱是指随着光波长的变化,植物所吸收、反射和传输的光的能量分布的变化。

植被光谱分析通过测量植物在不同波长的光下的反射或吸收情况,可以获取丰富的生理和生态信息。

一般来说,植物对于光谱中的红光和近红外光具有较高的反射能力,而对于绿光的反射较低。

利用这些特点,可以通过光谱数据对植物的生理状态、营养状况、水分含量等进行分析。

植被指数是从植被光谱数据中计算出的一种定量指标,用于揭示植物的生长状况和生理特征。

常见的植被指数有归一化植被指数(NDVI)、叶绿素指数(CI)、简化绿度指数(SR)、水分指数(WI)等。

植被指数的计算一般是通过光谱数据中的不同波段的反射值进行比较和组合计算得出的。

归一化植被指数(NDVI)是最常用的植被指数之一、它是利用红光和近红外光之间的差异来评估植被生长状况的指数。

NDVI的计算公式为:NDVI=(NIR - Red)/(NIR + Red),其中NIR代表近红外光波段的反射值,Red代表红光波段的反射值。

NDVI的取值范围为-1到1,数值越大表示植被生长状况越好。

叶绿素指数(CI)是评估植被叶绿素含量的指标。

叶绿素是植物光合作用的重要组成部分,通过测量不同波段的光反射率可以推算出植物叶绿素的含量。

常见的叶绿素指数包括结构化叶绿素指数(SCI)和非结构化叶绿素指数(NNCI)等。

简化绿度指数(SR)是一种用于估计植物总叶绿素含量的指标。

它基于不同波段的光反射率之间的比较和计算进行求解。

SR的计算公式为:SR = (NIR - Red) / NIR,其中NIR代表近红外光波段的反射值,Red代表红光波段的反射值。

水分指数(WI)是评估土壤水分状况和植物水分含量的指标。

通过测量植物叶片在不同波段的反射率,可以推算出植物的水分含量和土壤的水分状况。

常见的水分指数有归一化差异植被指数(NDWI)、水分转换指数(WTCI)等。

植被光谱分析与植被指数计算在许多领域有着广泛的应用。

红树林遥感提取方法

红树林遥感提取方法

红树林遥感提取方法
红树林是一种特殊的生态系统,其遥感提取方法通常涉及多种技术和数据处理步骤。

首先,遥感数据的获取是关键的一步。

常用的遥感数据包括卫星影像和航空摄影图像。

这些数据可以通过卫星或者飞机获取,然后利用遥感技术进行处理和分析。

在遥感数据获取后,常见的红树林提取方法包括光谱特征分析和植被指数计算。

光谱特征分析是通过分析遥感图像中不同波段的反射率或辐射率来识别红树林的特征。

红树林在不同波段的反射率具有特定的特征,可以利用这些特征进行识别和提取。

植被指数计算则是通过计算遥感图像中的植被指数(如归一化植被指数NDVI)来评估红树林的分布和健康状况。

此外,红树林的提取方法还可以结合地物目标分类和监督分类等技术。

地物目标分类是将遥感图像中的像元按照其地物类型进行分类,可以通过人工智能算法进行自动分类,从而实现对红树林的提取。

监督分类则是利用已知的红树林样本数据进行训练,然后对整幅遥感图像进行分类识别,从而实现对红树林的提取。

除了以上提到的方法,还有一些新兴的技术如深度学习和人工
智能在红树林遥感提取中的应用也越来越广泛。

这些技术能够更准
确地识别红树林,并且能够处理大规模的遥感数据,提高了红树林
遥感提取的效率和精度。

综上所述,红树林遥感提取方法涉及多种技术和数据处理步骤,包括光谱特征分析、植被指数计算、地物目标分类、监督分类以及
深度学习和人工智能等技术的应用。

这些方法可以相互结合,以提
高红树林遥感提取的准确性和效率。

植被指数

植被指数
编辑本段DVIEVI——差值环境植被指数
DVI=NIR-R,或两个波段反射率的计算。 1.对土壤背景的变化极为敏感 SAVITSAVIMSAVI——调整土壤亮度的植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。 1.目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。 2.SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI3、SAVI4等改进模型。 小结:上述几种VI均受土壤背景的影响大。植被非完全覆盖时,土壤背景影响较大
编辑本段GVI——绿度植被指数
k-t变换后表示绿度的分量。 1.通过k-t变换使植被与土壤的光谱特性分离。植被生长过程的光谱图形呈所谓的"穗帽"状,而土壤光谱构成一条土壤亮度线,土壤的含水量、有机质含量、粒度大小、矿物成分、表面粗糙度等特征的光谱变化沿土壤亮度线方向产生。 2.kt变换后得到的第一个分量表示土壤亮度,第二个分量表示绿度,第三个分量随传感器不同而表达不同的含义。如,MSS的第三个分量表示黄度,没有确定的意义;TM的第三个分量表示湿度。 3.第一二分量集中了>95%的信息,这两个分量构成的二位图可以很好地反映出植被和土壤光谱特征的差异。 4.GVI是各波段辐射亮度值的加权和,而辐射亮度是大气辐射、太阳辐射、环境辐射的综合结果,所以GVI受外界条件影响大。
利用卫星不同波段探测数据组合而成的,能反映植物生长状况的指数。植物叶面在可见光红光波段有很强的吸收特性,在近红外波段有很强的反射特性,这是植被遥感监测的物理基础,通过这两个波段测值的不同组合可得到不同的植被指数。差值植被指数又称农业植被指数,为二通道反射率之差,它对土壤背景变化敏感,能较好地识别植被和水体。

光化学植被指数波段

光化学植被指数波段

光化学植被指数波段
光化学植被指数(Photochemical Reflectance Index,PRI)是一种用于评估植被光合活性的指标。

它基于植被在光合作用过程中对光的吸收和反射特性的变化。

PRI波段通常涵盖在531-570纳米范围内,主要包括绿色和黄绿波段。

PRI的计算公式为:PRI = (R531 - R570) / (R531 + R570),其中R531是531纳米波段的反射率,R570是570纳米波段的反射率。

PRI的值越高,表示植被光合活性越强。

PRI波段的选择是基于光合作用过程中的光合色素对不同波长的反射特性。

在531纳米波段,叶绿素的吸收峰位于这个范围内,而在570纳米波段,叶黄素的吸收峰位于这个范围内。

通过比较这两个波段的反射率,可以评估植被的光合活性和叶绿素含量。

PRI波段的应用可以帮助研究人员监测和评估植被的生长状态、光合效率和应对环境变化的能力。

特别是对于叶绿素含量较高的植被,PRI可以提供更准确的光合活性评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

植被光谱分析与植被指数计算在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation indices——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。

目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。

本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。

这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁迫性相关的色素、植被冠层中水分含量等。

包括以下内容:植被光谱特征植被指数HJ-1-HSI植被指数计算1.植被光谱特征植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。

很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。

研究植被的波长范围一般为400 nm to 2500 nm,这也是传感器设计选择的波长范围。

这个波长范围可范围以下四个部分:可见光(Visible):400 nm to 700 nm近红外(Near-infrared——NIR):700 nm to 1300 nm短波红外1(Shortwave infrared 1——SWIR-1):1300 nm to 1900 nm短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。

SWIR-1 和SWIR-2的过渡区(1900nm附近)也是大气水的强吸收范围。

植被可分为三个部分组成:植物叶片(Plant Foliage)植被冠层(Plant Canopies)非光合作用植被(Non-Photosynthetic Vegetation)这三个部分是植被分析的基础,下面对他们详细介绍。

1.1植物叶片(Plant Foliage)植物叶片包括叶、叶柄以及其他绿色物质,不同种类的叶片具有不同的形状和化学成份。

对波谱特征产生重要影响的主要化学成份包括:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),这也是遥感反演的基础,如用植被指数来估算叶子的化学成份。

色素(Pigments)叶色素主要包括叶绿素、叶黄素和花青素。

这些都是植被的健康的指标,比如含高浓度叶绿素的植被一般很健康,相反,叶黄素和花青素常常出现在健康较差的植被,濒临死亡的植被出现红色、黄色或棕色。

叶色素只影响可见光部分(400nm~700nm),图1为几种叶色素在可见光范围的相对光谱吸收特征。

图1 部分叶色素的相对光谱吸收特征水分(Water)叶子的几何特性、冠层结构和对水的需求影响植被的水分含量。

水分对植被反射率的影响波段范围在NIR和SWIR(图2)。

在1400nm和1900nm附近有吸收波谷,但是传感器一般会避开这两个波段范围。

在970nm和1190nm附近也有强吸收特征,可利用这两个波段范围监测植被水分。

碳(Carbon)植物中的碳是以很多形式存在,包括糖,淀粉,纤维素和木质素等。

纤维素和木质素的吸收特征表现在短波光谱范围内容(图3)。

图2 叶片水和碳(纤维素和木质素)相对光谱吸收特征氮(Nitrogen)叶子中的氮元素一般包含在叶绿素、蛋白质以及其他分子中。

植被指数(VI)对包含在叶绿素中的氮元素很敏感(大约含6%氮)。

包含在蛋白质中的氮元素在1500nm~1720 nm范围内对叶片波谱特征影响比较大。

从上可以看出,植被与辐射的相互作用主要体现在叶片的波谱特征,因此,在可见光谱段内,主要太阳辐射的吸收来自叶绿素、叶黄素和花青素,形成450nm和670nm附近的吸收谷;在近红外谱段内,主要太阳辐射的吸收来自水分,形成970nm和1190nm两个水吸收带;在短波红外谱段内,除了水分,各种形式存在的碳和氮也对太阳辐射的吸收有一定的贡献,形成1400nm和1900nm吸收谷。

图3是叶片反射率与透射光谱(Transmittance Spectra)对比例子,木本植被和草本植被在色素、水分、氮等含量不一样,反射率与透射光谱关系也不一样。

图3木本植物(A)和草本植物(B)的叶片反射率与透射光谱1.2植被冠层(Plant Canopies)单片叶子的反射特性对植被冠层光谱特征是重要的,此外,叶子数量和冠层结构对植被冠层的散射、吸收也有重要的影响。

比如不同的生态系统中,森林、草原、或农业用地等都具有不同的反射特性,虽然它们单个叶子很类似。

有很多植被模型用于描述冠层光谱特征。

两个最重要的是叶面积指数(LAI)和叶倾叶角分布(LAD)。

LAI指每单位面积地上绿叶面积,这表现了冠层中绿色植被的总数;LAD描述了树叶所有类型的定向,常用平均叶倾角(MLA)近似。

MLA表示冠层中的每个叶片角度与水平方向的差值的平均值。

图4表示LAI和LAD对植被冠层的影响效果,MLA近似LAD。

在近红外谱段内,植被强反射太阳辐射,植被冠层在可见光和SWIR-2是强吸收。

使用可见光和SWIR-2的植被指数对上层林冠非常敏感。

图4LAI (A) 和MLA (B) 的增减对植被冠层的影响1.3非光合作用植被(Non-Photosynthetic Vegetation)在自然界里,还包括占了全球植被覆盖一半的衰老或死亡植被,它们被称为非光合作用植被(简称NPV)。

NPV的冠层也具有木本森林结构,如树干,茎,和树枝等。

NPV主要包含碳元素,以淀粉,纤维素和木质素形式存在,NPV的光谱特征主要受这些物质支配。

在短波红外内的波动比较大,与绿色植被相反,SWIR-1 和SWIR-2范围内散射占主导。

图5显示了绿色植被和NPV冠层光谱特征。

图5 透射绿色植被和干植被的冠层反射特性的变化(400nm~2500nm)2.植被指数植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。

所有的植被指数要求从高精度的多光谱或者高光谱反射率数据中计算。

未经过大气校正的辐射亮度或者无量纲的DN值数据不适合计算植被指数。

下面是7大类27种植被指数的说明,这些植被指数都是经过严格生物条件下测试的。

2.1宽带绿度——Broadband Greenness (5种)宽带绿度指数可以简单度量绿色植被的数量和生长状况,它对植物的叶绿素含量、叶子表面冠层、冠层结构比较敏感,这些都是植被光合作用的主要物质,与光合有效辐射(fAPAR)也有关系。

宽带绿度指数常用于植被物候发育的研究,土地利用和气候影响评估,植被生产力建模等。

宽带绿度指数选择的波段范围在可见光和近红外,一般的多光谱都包含这些波段。

下面的公式中规定波段的中心波长:ρNIR= 800 nm,ρRED= 680 nm,ρBLUE= 450 nm。

表1 宽带绿度指数Difference Vegetation Index)红色波段范围叶绿素吸收的差异。

比值植被指数(Simple Ratio Index)在近红外波段范围绿叶的散射与红色波段范围叶绿素吸收的比值。

增强植被指数(Enhanced Vegetation Index)增强NDVI,解决土壤背景和大气气溶胶对茂密植被的影响大气阻抗植被指数(Atmospherically Resistant Vegetation Index)增强NDVI,更好地解决大气散射的影响。

绿波段总和指数(Sum Green Index)绿色波段范围的整体光散射对植被冠层间隙的敏感度。

1)归一化植被指数(Normalized Difference Vegetation Index——NDVI)NDVI众所周知的一种植被指数,在LAI值很高,即植被茂密时其灵敏度会降低。

其计算公式为:NDVI=(式1)值的范围是-1~1,一般绿色植被区的范围是0.2~0.8。

2)比值植被指数(Simple Ratio Index——SR)SR指数也是众所周知的一种植被指数,在LAI值很高,即植被茂密时其灵敏度会降低。

其计算公式为:SR=(式2)值的范围是0~30+,一般绿色植被区的范围是2~8。

3)增强植被指数(Enhanced Vegetation Index——EVI)EVI通过加入蓝色波段以增强植被信号,矫正土壤背景和气溶胶散射的影响。

EVI常用于LAI值高,即植被茂密区。

其计算公式为:EVI=(式3)值的范围是-1~1,一般绿色植被区的范围是0.2~0.8。

4)大气阻抗植被指数(Atmospherically Resistant Vegetation Index——ARVI)ARVI是NDVI的改进,它使用蓝色波段矫正大气散射的影响(如气溶胶),ARVI常用于大气气溶胶浓度很高的区域,如烟尘污染的热带地区或原始刀耕火种地区。

其计算公式为:EVI=(式4)值的范围是-1~1,一般绿色植被区的范围是0.2~0.8。

5)绿度总和指数(Sum Green Index——SG)SG指数是用于探测绿色植被变化最简单的植被指数。

由于在可见光范围内,绿色植被对光强吸收,SG指数对稀疏植被的小变化非常敏感。

SG指数是500 nm ~600 nm范围内平均波谱反射率。

总和最后会被转化回反射率。

值的范围是0~50+,一般植被区域是10~25。

2.2窄带绿度——Narrowband Greenness (7种)窄带绿度指数对叶绿素含量、叶子表面冠层、叶聚丛、冠层结构非常敏感。

它使用了红色与近红外区域部分——红边,红边是介于690 nm ~ 740 nm之间区域,包括吸收与散射。

它比宽带绿度指数更加灵敏,特别是对于茂密植被。

表2窄带绿度指数植被指数基本描述红边归一化植被指数(Red Edge Normalized Difference使用红边波段的改进型NDVI。

Vegetation Index)改进红边比值植被指数(Modified Red Edge Simple使用红边和蓝色波段比值。

Ratio Index)改进红边归一化植被指数(Modified Red Edge使用蓝色波段,补偿了光散射。

Normalized Difference Vegetation Index)Vogelmann 红边指数1(Vogelmann Red Edge Index 1)标示红色至近红外过渡的交接处,指示树冠压力。

相关文档
最新文档