中考复习分式整式化简求值初三

合集下载

中考分式化简求值专项练习与答案(可编辑修改word版)

中考分式化简求值专项练习与答案(可编辑修改word版)

,代入值得:-1
a2
12、化简得: 2 ,代入值得: 2 1
x2
2
14、化简得: a a2 ,代入值得: 7 2
第 7 页(共 7 页)
2
x
5
的整
1
数解.
第 2 页(共 7 页)
7、化简求值:
a2
6ab 9b2 a 2 2ab
5b 2 a 2b
a
2b
1 a
,其中
a,b
满足
ab4 ab2
8、先化简,再求值:
1 x
x2 x2
1 x
x
2
1
1
,其中
x 1
x
的值为方程 2x
5x
1 的解.
9、先化简,再求值: (x 1 3 ) x2 4x 4 ,其中 x 是方程 x 1 x 2 0 的解。
中考专题训练——分式化简求值
1、先化简,再求值:
x2 2x x2 1
x
1
2x 1 x 1
,其中
x
1 2
a2 2、先化简,再求值: (
5a
2
1)
a 2 4 ,其中a 2 3
a2
a2 4a 4
3、先化简,再求值: (1 1 ) x 2 2x 1 ,其中 x 3
x2
x2 4
第 1 页(共 7 页)
x 1
x 1
25
第 3 页(共 7 页)
10、先化简,再求值:
a2
a2 4 4a
4
a
2
2
a2 a
2a 2
,
其中
a
3
1 11、先化简,再求值: (
a2)

中考数学复习:分式化简求值(含答案)

中考数学复习:分式化简求值(含答案)

中考数学复习分式化简求值 11、〔2021 XXXX 〕分式可变形为〔〕1x1111 A.B.C.D.x11x1xx12、〔2021 XX ,第6题,4分〕化简2 x1 + -1 -x1x 的结果是〔〕 1xA.x1B.x1C.x1D.x13、〔2021 ?XXXX,第16题3分〕计算:a a2 + -4 2+ a2a=________. 4、(2021年XX)化简a12 (1) 2a2a1a1 的结果是________. 5、分式乘除运算:〔1〕6a 8y 2 2y ·2 3a ;〔2〕 a2 + a -2 1 · 2+a2a ;〔3〕3x 2 y ÷ 6 y x 2;〔4〕 a a1 - 2-+ 4a4 ÷ 2 a1 - a 2 - 4;〔5〕 ab - ab + · 4 a -a a 2 - 2 b ab 2;〔6〕2 4x -426、计算:〔1〕 a + abb-b + bcc;〔2〕3 a+a15 - 5a;〔3〕2 x - 1+〔4〕2 x5 - x2 --x x2 --1 + x 2x - ;〔5〕1 x -3 -1 x +3〔6〕a2a 2- 4〔7〕先化简〔1+1 x - 1〕÷xx 2- 1,再选择一个恰当的x 值代入并求值. 7、〔2021 ?XXXX,第17题6分〕计算:﹣.8、(2021 河·南,第16题8分)先化简,再求值:a 22 -2abb+ 2a -2b11 ÷〔-〕,其中a51,b51.ba12 9、〔2021 ?XX莱芜,第18题6分〕先化简,再求值:〕x--÷〔2x--÷x2+4x-x+2,其中x=-4+3.11〔-÷10、〔2021 ?XX威海,第19题7分〕先化简,再求值:〕x1x1+-42+x2-x1,其中x=﹣2+.11、先化简,再求值:?+,其中x是从﹣1、0、1、2中选取的一个适宜的数.12、〔2021 XXXX〕先化简,再求值:a2-a2b22ab-b〔a-,其中a=2+3,b=2-3.÷〕a2a〔113、化简:-+〕a÷a1+a-12++a2a1.mn2mn+-14、化简:22mnmnnm+--15、化简:m-n2(m-n)-2mn+n2m-n2+nm-n16、〔2021XX中考,第17题,5分〕化简:2abba2b -.ababab17、〔2021XX中考,第17题,5分〕先化简、再求值:22x2xx1x1,其中1x.2中考数学复习分式化简求值【答案】a-21、【答案】选D.2、【答案】选A3、【答案】a4、【答案】 a115、【答案】〔1〕y2a;〔2〕a(1a-2)=12-a2a;〔3〕12x;〔4〕2a+2()(a+a-21)2;〔6〕〔5〕a(a-b)=a-ab2x-y(2x+y)2c-ax613-;〔2〕;〔3〕;〔4〕x+2;〔5〕;〔6〕6、【答案】〔1〕x2-ac195x-〔7〕原式=x+1,x取不等于-1,0,1的其他值,求值正确即可.1a+2;7、【答案】解:原式=﹣==.〔a2b〕a b ababab8、【答案】解:原式=ab2(ab)=2ab=2〔51〕(51)51当a51,b51时,原式=2229、【答案】-x-4,-10、【答案】解:原式=﹣,当x=﹣2+时,原式=﹣=﹣=﹣.11、【答案】解:原式=,当x=0时,原式==﹣.12、【答案】13、【答案】a1+a1-14、【答案】m+nmn-15、【答案】1m-n16、【答案】解:原式=2aab.x 17、【答案】解:原式==x1 1 3。

初三分式化简求值练习题

初三分式化简求值练习题

初三分式化简求值练习题首先,让我们来回顾一下分式的定义和概念。

分式是一种数学表达式,由分子和分母组成,分子和分母可以是整数、变量、多项式等。

分式可以表示除法运算或者逻辑关系。

在初三数学中,我们需要学会化简和求值分式的练习题。

下面是一些初三分式化简求值练习题及其解答。

1. 化简分式 $\frac{3x^3 - 2x^2 - 5x}{2x^2 - x - 3}$。

解:首先,我们可以尝试因式分解分子和分母。

分子 $3x^3 - 2x^2 - 5x$ 可以因式分解为 $x(3x^2 - 2x - 5)$,分母 $2x^2 - x - 3$ 可以因式分解为 $(2x + 3)(x - 1)$。

因此,原分式可以化简为 $\frac{x(3x^2 - 2x - 5)}{(2x + 3)(x - 1)}$。

然后,我们可以观察到分子和分母中的 $3x^2 - 2x - 5$ 和 $2x +3$ 都无法继续因式分解。

所以我们无法进一步化简分式。

2. 求值分式 $\frac{2}{x^2 - 4}, x = 3$。

解:将 $x = 3$ 代入分式 $\frac{2}{x^2 - 4}$ 中,我们可以得到$\frac{2}{3^2 - 4} = \frac{2}{9 - 4} = \frac{2}{5}$。

因此,当 $x = 3$ 时,原分式的值为 $\frac{2}{5}$。

3. 化简分式 $\frac{2a^3 - ab^2}{4a^2b^2 - 2b^3}$。

解:首先,我们可以尝试因式分解分子和分母。

分子 $2a^3 -ab^2$ 可以因式分解为 $a(2a^2 - b^2)$,分母 $4a^2b^2 - 2b^3$ 可以因式分解为 $2b^2(2a^2 - b^2)$。

因此,原分式可以化简为 $\frac{a(2a^2 -b^2)}{2b^2(2a^2 - b^2)}$。

接下来,我们可以观察到分子和分母中的 $2a^2 - b^2$ 可以约去。

中考复习专题:分式的化简求值(选择适合的数值代入求值)

中考复习专题:分式的化简求值(选择适合的数值代入求值)

中考复习专题:分式的化简求值一、直接代入求值1.先化简,再求值:(2 +2 2−1+1)÷ +1 2−2 +1,其中x=4.2.先化简,再求值 −3 −2÷( +2−5 −2),其中a=﹣2.3.先化简,再求值:(3 +1− +1)÷ 2−4 +4 +1,其中x=﹣6.4.先化简,再求值:( +3 2− − 2−2 +1)÷2 −3 ,其中x满足x2﹣2x﹣1=0.二、选择适合的数值代入求值1.先化简(1−1 +2)÷ 2+2 +1 2−4,然后在﹣1,0,2中选一个你喜欢的x值,代入求值.2.先化简,再求值:(3 +1− +1)÷ 2−4 2+2 +1,其中a从﹣1、1、﹣2、2中取一个你认为合适的数代入求值.3.先化简,再求值:(1+ −1 +1)÷ 2−2 +1 2−1,然后从﹣2<x<2的范围内选取一个合适的整数作为x的值代入求值.4.先化简,再求值:( +1+1 −1)÷ 3 2−2 +1,其中x是满足条件x≤2的合适的非负整数.中考复习专题:分式的化简求值课后作业1.先化简,再求代数式(1 −1− −3 2−2 +1)÷2 −1的值,其中x=2.2.先化简,再求值:(1−2 −1)÷ 2−6 +9 −1,试从0,1,2,3四个数中选取一个你喜欢的数代入求值.3.先化简:( +1 −1+1)÷ 2+ 2−2 +1+2−2 2−1,然后从﹣2<x≤2的范围内选取一个合适的整数为x的值代入求值.4.先化简,再求值:(3 −1− −1)÷ −2 2−2 +1,其中x满足方程x2+x﹣5=0.5.化简求值:( −1+2−2 +1)÷ − 21+ ,其中x2﹣2x﹣3=0.6.先化简 2−2 +1 2−1÷( −1 +1− +1)然后从﹣3<x≤1中选取一个合适的整数作为x的值代入求值.7.先化简: 2−4 +4−1÷( +1−3 −1),再从±1,±2中选择一个合适的m值代入求值.8.先化简,再求值:( 2+ −1 +2− +2)÷ 2+6 +9 +2,从﹣1、﹣2、﹣3中选一个合适的a代入求值.。

中考数学专题知识点题型复习训练及答案解析(经典珍藏版):16 分式化简求值

中考数学专题知识点题型复习训练及答案解析(经典珍藏版):16 分式化简求值

备考中考一轮复习点对点必考题型题型16 分式化简求值考点解析1.分式的混合运算(1)分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.(3)分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.【规律方法】分式的混合运算顺序及注意问题1.注意运算顺序:分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.2.注意化简结果:运算的结果要化成最简分式或整式.分子、分母中有公因式的要进行约分化为最简分式或整式.3.注意运算律的应用:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.2.分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【规律方法】分式化简求值时需注意的问题1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.五年中考1.(2019•成都)先化简,再求值:(1),其中x1.2.(2018•成都)化简:(1)3.(2017•成都)化简求值:(1),其中x1.4.(2016•成都)化简:(x).5.(2015•成都)化简:().一年模拟1.(2019•成华二诊)先化简,再求值:(x﹣2),其中|x|=2.2.(2019•青羊二诊)先化简,再求值:,其中x=﹣1.3.(2019•锦江二诊)化简求值:,其中.4.(2019•武侯区二诊)化简:5.(2019•双流二诊)先化简,再求值:(),其中x=2.6.(2019•金牛二诊)化简:(a﹣2).7.(2019•郫都一诊)化简:8.(2019•郫都二诊)化简:9.(2019•高新一诊)化简:10.(2019•龙泉二诊)化简:精准预测1.先化简,再求值:(x﹣2),其中x=24.2.化简求值:,其中x.3.化简:()4.化简:.5.先化简,再求值:,其中a2+a﹣1=0.6.化简:(1).7.计算:8.先化简,再求值:1,其中x=﹣2,y.9.计算:(1);(2).10.计算:(x+1)11.(2)12.先化简,再求值:(m+2),其中m=﹣1.13.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:,则是“和谐分式”.(1)下列分式中,属于“和谐分式”的是(填序号);①;②;③;④(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式为:(要写出变形过程);(3)应用:先化简,并求x取什么整数时,该式的值为整数.14.先化简,再求值:(a+2),其中a满足等式|a+1|=0.15..备考中考一轮复习点对点必考题型题型16 分式化简求值考点解析1.分式的混合运算(1)分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.(3)分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.【规律方法】分式的混合运算顺序及注意问题1.注意运算顺序:分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.2.注意化简结果:运算的结果要化成最简分式或整式.分子、分母中有公因式的要进行约分化为最简分式或整式.3.注意运算律的应用:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.2.分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【规律方法】分式化简求值时需注意的问题1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.五年中考1.(2019•成都)先化简,再求值:(1),其中x1.【点拨】可先对进行通分,可化为,再利用除法法则进行计算即可【解析】解:原式将x1代入原式2.(2018•成都)化简:(1)【点拨】根据分式的运算法则即可求出答案.【解析】解:原式=x﹣13.(2017•成都)化简求值:(1),其中x1.【点拨】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解析】解:(1)•,∵x1,∴原式.4.(2016•成都)化简:(x).【点拨】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解析】解:原式••x+1.5.(2015•成都)化简:().【点拨】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解析】解:原式••.一年模拟1.(2019•成华二诊)先化简,再求值:(x﹣2),其中|x|=2.【点拨】根据分式的减法和除法可以化简题目中的式子,然后根据|x|=2即可解答本题.【解析】解:(x﹣2),∵|x|=2,x﹣2≠0,解得,x=﹣2,∴原式.2.(2019•青羊二诊)先化简,再求值:,其中x=﹣1.【点拨】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解析】解:原式•,当x=﹣1时,原式=﹣1.3.(2019•锦江二诊)化简求值:,其中.【点拨】首先把括号内的式子进行通分相加,然后把除法转化为乘法,计算乘法即可化简,然后把x的值代入求解即可.【解析】解:原式••当时,原式.4.(2019•武侯二诊)化简:【点拨】首先进行通分运算,进而利用分式的混合运算法则计算得出答案.【解析】解:原式.5.(2019•双流二诊)先化简,再求值:(),其中x=2.【点拨】根据分式的运算法则即可求出答案.【解析】解:原式=[()]•(x﹣2)2•(x﹣2)2=x﹣2将x=2代入,得x﹣2=226.(2019•金牛二诊)化简:(a﹣2).【点拨】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解析】解:原式••.7.(2019•郫都二诊)化简:【点拨】首先进行通分运算,进而利用分式的混合运算法则计算得出答案.【解析】解:原式.8.(2019•郫都一诊化简:【点拨】直接将括号里面通分,进而分解因式化简即可.【解析】解:原式.9.(2019•高新一诊)化简:【点拨】根据分式的混合运算顺序和运算法则计算可得.【解析】解:原式=()•.10.(2019•龙泉二诊)化简:【点拨】直接去括号,进而分解因式化简即可.【解析】解:原式=3(a+1)﹣(a﹣1)=2a+4.精准预测1.先化简,再求值:(x﹣2),其中x=24.【点拨】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.【解析】解:(x﹣2)•=x+4,当x=24时,原式=24+4=2.2.化简求值:,其中x.【点拨】根据分式的混合运算先将分式化简,再代入求值即可.【解析】解:原式•=﹣x(x+1)=﹣x2﹣x当x时,原式=﹣2.3.化简:()【点拨】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解析】解:原式••=a.4.化简:.【点拨】原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果.【解析】解:原式•a﹣b.5.先化简,再求值:,其中a2+a﹣1=0.【点拨】先根据分式的混合运算顺序和运算法则化简原式,再由等式得出a2=1﹣a,代入计算可得.【解析】解:原式=[]•,当a2+a﹣1=0时,a2=1﹣a,则原式1.6.化简:(1).【点拨】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解析】解:原式=()••m﹣n.7.计算:【点拨】原式先计算除法运算,再计算加减运算即可求出值.【解析】解:原式•.8.先化简,再求值:1,其中x=﹣2,y.【点拨】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把x与y的值代入计算即可求出值.【解析】解:原式=1•1,当x=﹣2,y时,原式.9.计算:(1);(2).【点拨】(1)直接利用分式的加减运算法则化简得出答案;(2)直接利用分式的混合运算法则化简得出答案.【解析】解:(1)原式;(2)原式=b(a﹣b)••.10.计算:(x+1)【点拨】根据分式的混合运算顺序和运算法则计算可得.【解析】解:原式=()••.11.计算:(2)【点拨】首先将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【解析】解:原式.12.先化简,再求值:(m+2),其中m=﹣1.【点拨】把m+2看成,先计算括号里面的,再算乘法,化简后代入求值.【解析】解:(m+2),=(),,,=﹣2(m+3),=﹣2m﹣6,当m=﹣1时,原式=﹣2×(﹣1)﹣6=2﹣6=﹣4.13.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:,则是“和谐分式”.(1)下列分式中,属于“和谐分式”的是①③④(填序号);①;②;③;④(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式为:a﹣1(要写出变形过程);(3)应用:先化简,并求x取什么整数时,该式的值为整数.【点拨】(1)由“和谐分式”的定义对①③④变形即可得;(2)由原式a﹣1可得;(3)将原式变形为2,据此得出x+1=±1或x+1=±2,即x=0或﹣2或1或﹣3,又x≠0、1、﹣1、﹣2,据此可得答案.【解析】解:(1)①1,是和谐分式;②1,不是和谐分式;③1,是和谐分式;④1,是和谐分式;故答案为:①③④.(2)a﹣1,故答案为:a﹣1.(3)原式•=2,∴当x+1=±1或x+1=±2时,分式的值为整数,此时x=0或﹣2或1或﹣3,又∵分式有意义时x≠0、1、﹣1、﹣2,∴x=﹣3.14.先化简,再求值:(a+2),其中a满足等式|a+1|=0.【点拨】先根据分式的混合运算顺序和运算法则化简原式,再由绝对值的性质得出a的值,代入计算可得.【解析】解:原式()•,∵|a+1|=0,∴a+1=0,则a=﹣1,所以原式.15.计算:.【点拨】先计算括号内分式的加法、将除法转化为乘法,再约分即可得.【解析】解:原式•=2a.。

九年级数学专题复习(分式化简)2018.05.22

九年级数学专题复习(分式化简)2018.05.22

九年级数学专题复习(分式化简)2018.05.22
1.先化简,再求值:÷(a-1-)其中a 是方程-x=6的根.(整体化简,整体代入)
2. 先化简,再求值:(-)÷其中+2a-1=0
3:
先化简:÷(-x+1)然后以-1.0.1.2中选择一个合适的数作为x的值代
入求值.
4.
先化简,再求值:÷(m+2-)其中m 是方程+3x-1=0的根.
5.先化简,在求值:
(-)÷其中m 的值从不等式组的整数解中选取.
6:先化简,再求值:()÷(-4)其中x 为一元二次方程-5x+6=0的解. 7:先化简,再求值:+(2a+b)(2a-b)-2a(a+b)其中a . b
的值满足方程组
8.先化简,再求值:÷-其中a=+2
9.先化简,再求值:-)÷其中a=2sin60°-tan45°
10.先化简,再求值:÷(x-) 其中x为数据0,-1,-3,1,2的极差.
11.先化简,再求值:其中2x+4y-1=0
12. 已知++2b+1=0,求+-的值.
13.先化简,再求值:-x(x+4)+(x-2)(x+2),其中x=-1.。

2023年九年级数学中考分类专题训练:分式的化简求值专项提升

2023年九年级数学中考分类专题训练:分式的化简求值专项提升

2022-2023学年九年级数学中考分类专题训练分式的化简求值 专项提升1.先化简,再求值:(a +2+4a−2)÷a 3a 2−4a+4,其中a =3.2.先化简,后求值:(3xx−1−2xx+1)÷x x 2−1,然后在−2<x <3中选择一个整数代入求值.3.先化简,再求值:x 2−4x 2−4x+4÷x+2x+1÷xx−2,其中x =2+√2.4.先化简,再求值:(x+2x 2−2x −x−1x 2−4x+4)÷x−4x,其中x =tan30°+2.5.化简求值:x+2x 2−9÷(1−1x+3),其中x =3+√26.先化简,再求值a 2−4a÷(a −4a−4a)−2a−2,其中a =(π−2022)0+(12)−17.先化简1(x+1)(x−1)⋅(x−1)2x−2x+1,然后从−1,0,2中选一个合适的x 的值,代入求值.8.先化简,再求值:1−(x +1−2x−1x−1)÷x 2−2x x 2−1,其中x =cos30°+tan60°.9.先化简再求值:(a +2−5a−2)÷a 2+6a+9a−2,其a 从−2,2,−3,3中选一个合适的数代入求值.10.先化简(a a 2−4+12−a)÷2a+4a 2+4a+4,再求值,其中a =√3+2.20.先化简,在求值:(x 2x+1−x +1)÷x−1x 2+2x+1,再从−1≤x ≤1中选择一个你认为合适的整数作为x 的值代入求值.21.先化简,再求值:(−6x x−3−x +3)÷x 2+9x÷3xx 2−9,其中x 为不等式组{x +4>05x +1<2(x −1)的整数解.22.先化简,再求值:a 2+aa 2−2a+1÷(2a−1−1a ),并在−3<a <2中选取一个使式子有意义的整数代入求值.23.先化简(1−1x−1)÷x 2−4x+4x 2−1,然后从−1≤x ≤2的范围内选一个你喜欢的整数作为x 的值代入求值.24.先化简,再求值:(3a+1−a +1)÷a 2−4a 2+2a+1,其中a 在一组未排序的数据7、9、6、a 、8、5中,已知这组数据的极差是6.。

化简求值(解析版)--中考数学抢分秘籍(全国通用)

化简求值(解析版)--中考数学抢分秘籍(全国通用)

化简求值--中考数学抢分秘籍(全国通用)概率预测☆☆☆☆☆题型预测解答题☆☆☆☆☆考向预测①分式的化简求值②整式的化简求值化简求值题是全国中考的热点内容,更是全国中考的必考内容。

每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。

1.从考点频率看,加减乘除运算是数学的基础,也是高频考点、必考点,所以必须提高运算能力。

2.从题型角度看,以解答题的第一题或第二题为主,分值8分左右,着实不少!一、分式1.分式的加减乘除运算,注意去括号,添括号时判断是否需要变号,分子计算时要看作整体。

2.分式有意义、无意义的条件:因为0不能做除数,所以在分式AB中,若B≠0,则分式AB有意义;若B=0,那么分式AB没有意义.3.分式的加减法同分母的分式相加减,分母不变,把分子相加减,即ac±bc=a±bc.异分母的分式相加减,先通分,变为同分母的分式,然后相加减,即ab±cd=ad±bcbd.4.分式的乘除法分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即ab·cd=acbd.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即ab÷cd=ab·dc=adbc.5.分式的混合运算在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.二、因式分解因式分解的方法:(1)提公因式法公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法①运用平方差公式:a 2-b 2=(a +b )(a -b ).②运用完全平方公式:a 2±2ab +b 2=(a ±b )2.化简求值的解法第一种是直接代入求值,已知给出了字母的值或通过已知能求出字母的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.教学目标:1、分式的化简求值,理解分式的化简步骤,以及在化简过程中的注意事项2、整式的化简求值,了解整式化简的步骤,以及在化过程中的注意事项1.教学重难点:1分式的约分和通分化简以及化简过程中的方法技巧2整式幂的运算,合并同类项以及化简过程中的方法技巧分式的化简求值一、分式的概念一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫作分式.分式会AB中A叫作分子,B叫作分母.注意:1判断一个式子是否为分式,关键是看分母中是否有字母.2分式与整式的根本区别:分式的分母中含有字母,如12,2x是整式,而2x是分式.3分式有无意义的条件:①若0B≠,则分式AB有意义;②若0B=,则分式AB无意义.4分式的值为零的条件:若{00A B=≠,则分式A B的值为零,反之也成立.二、分式的基本性质分式的基本性质:分式的分子与分母同乘或除以同一个不等于0的整式,分式的值不变.用式子表示是:A A MB B M⋅=⋅,()0A A MMB B M÷=≠÷,其中A,B,M是整式.课题分式整式的化简求值学生姓名年级初三日期注意:1分式的基本性质可类比分数的基本性质去理解记忆.利用分式的基本性质,可以在不改变分式的值的条件下,对分式作一系列的变形.2当分式的分子或分母是多项式,运用分式的基本性质时,要先把分式的分子或分母用括号括上.再将分子与分母同乘或除以相同的整式.三、约分、最简分式及通分的概念1.约分根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫作分式的约分.说明:约分的关键是准确找出分子与分母的公因式,找公因式的方法:1当分子和分母都是单项式时,先找出它们系数的最大公约数,再确定相同字母的最低次幂,它们的乘积就是分子与分母的公因式.2当分子、分母是多项式时,先将分子、分母因式分解,把分子、分母化为几个因式的积后,再找出分子、分母的公因式.约分应注意一定要把公因式约尽,还应注意分子、分母的整体都要除以同一个公因式.当分子或分母是多项式时,要用分子、分母的公因式去除整个多项式,不能只除某一项,更不能减去某一项.例如2233a x a b x b+=+是错误的. 2.最简分式分子与分母没有公因式的分式叫作最简分式.判断一个分式是否为最简分式,关键是确定其分子与分母是否有公因式1除外.分式的约分,一般要约去分子和分母的所有公因式,使所得结果成为最简分式或整式.注意:1最简分式与小学学过的最简分数类似.2最简分式是对一个独立的分式而言的,最大的特点是只有一条分数线.形如322x y ++,233ax y ++的分式都不是最简分式. 3.通分根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫作分式的通分.通分的关键是确定几个分式的最简公分母.4最简公分母:各分母所有因式的最高次幂的积,叫作最简公分母.注意:确定最简公分母的一般方法:1如果各分母都是单项式,确定最简公分母的方法是:①取各分母系数的最小公倍数;②凡单独出现的字母,连同它的指数作为最简公分母的一个因式;③同底数幂取次数最高的.这样得到的积就是最简公分母.学科网2如果各分母都是多项式,就要把它们分解因式,再按照分母是单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去求.方法技巧归纳方法技巧 一应用分式概念解题的规律1.分式的判别方法 根据定义判定式子A B 是否为分式要注意两点:一是A ,B 都是整式,二是B 中含字母且0B ≠.判断一个代数式是否为分式,还应注意不能把原式变形如约分等,而只能根据它的最初形式进行判断.如根据()()()()22222a b a b a b a b a b a b +---==++,判定()222a b a b -+不是分式,这是错误的. 2.对分式有无意义或值为0的条件判断二分式基本性质的应用分式的基本性质是分式恒等变形和分式运算的理论依据,正确理解和熟练掌握这一性质是学好分式的关键.利用分式的基本性质可将分式恒等变形,化简分式,简化计算等.1.约分参考三12.通分参考三3三分式值的特殊情况拓展1.分式的值为1或1-的讨论 若分成()10A B B =≠,则A B =,反之也成立;若分式()10A B B=-≠,则A 与B 互为相反数,反之也成立.2.分式的值为正数的讨论分式的值为正数时,分式的分子与分母同号,利用这一关系构造不等式组可求出待定字母的取值范围.3.分式的值为负数的讨论分式的值为负数时,分式的分子与分母异号,利用这一关系构造不等式组可求出待定字母的取值范范围.4.分式的值为整数的讨论若分式的值为整数,则分母必为分子的约数,利用这一关系可对分母进行讨论.四、分式的乘除法分式的乘除法与分数的乘除法类似,法则如下:1乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,用式子表示是:a c a c b d b d⋅⋅=⋅. 2除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,用式子表示是:ac ad a d b d b c b c⋅÷=⋅=⋅. 3分式的乘方:分式乘方要把分子、分母分别乘方,用式子表示是:n n n a a b b ⎛⎫= ⎪⎝⎭n 是正整数.注意:1法则中的字母a ,b ,c ,d 所代表的可以是单项式,也可以是多项式. 2运算的结果必须是最简分式或整式.五、分式的加减法1.同分母分式加减法的法则与同分母的分数加减法类似,同分母分式相加减,分母不变,把分子相加减. 用式子表示是:a b a b c c c ±±=. 注意:1“同分母分式相加减”是把各个分式的“分子的整体”相加减,即当分子是多项式时,应将各分子加括号,括号不能省略,2运算结果必须化为最简分式或整式.2.异分母分式加减法的法则与异分母的分数加减法类似,异分母分式相加减,先通分,变为同分母的分式,再加减. 用式子表示是:ac ad bc ad bc b d bd bd bd±±=±=. 六、分式的混合运算分式的混合运算的顺序是:先乘方,再乘除,最后算加减;遇到括号,先算括号内的;在同级运算中,从左向右依次进行.注意:1实数的运算律对分式同样适用,注意灵活运用,提高解题的质量和速度.2结果必须化为最简分式或整式.3分子或分母的系数是负数时,要把“-”提到分数线的前边.4对于分式的乘除混合运算,应先将除法运算转化为乘法运算,分子、分母是多项式时,可先将分子、分母分解因式,再相乘.方法技巧归纳方法技巧 一分式的乘除法及乘方运算的解题技巧1.分式的乘除法分式的乘除运算可以统一成乘法运算,分式的乘法一般情况下是先约分再相乘,这样做省时简单易行,又不易出错;当除式或被除式是整式时,可以看作分母是1的式子,然后再按分式的乘除法则计算.2.分式的乘方做分式乘方时,一是注意养成先确定结果的符号,再做其他运算的良好习惯;二是注意运算顺序,先乘方,再乘除,最后加减.二分式加减运算的解题技巧 分式的加减法与分数的加减法的运算法则实质是相同的,分为同分母加减法和异分母加减法,所不同的是分式的加减运算比分数的加减运算要复杂得多,它是整式运算、因式分解和分式运算的综合运用.分式加减运算需要运用较多的基础知识,运算步骤增多,符号变换复杂,解题方法灵活多样.三分式化简、求值的解题技巧分式的化简、求值问题,一是化简要求值的分式,只要能化简就考虑化简;二是化简已知条件,化到最简后,再考虑代入求值. 四分式混合运算的解题技巧分式的混合运算,除了掌握运算顺序外,在运算过程中,可灵活运用交换律、结合律、分配律使运算简化,值得提醒的是最后结果必须是最简分式或整式.五分式通分的解题技巧分式的加减运算,分同分母分式相加减和异分母分式相加减,对于异分母分式的加减法,有时直接通分会很繁琐,我们可以根据式子的特点,灵活的采用不同的方法通分,从而起到事半功倍的效果.1.分组通分2.逐项通分3.公式()11111n n n n =-++的运用 核心考点 分式的化简求值分式化简求值是中考的热点,常以解答题的题型进行考查,主要考查分式的运算能力.在考查时经常运用分式的基本性质进行运算,解题时要充分运用分式运算法则进行求解.经典示例化简分式:2223442x x x x x ---+-÷234x x --,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.答题模板第一步,化简:化简运算过程中要注意约分、通分时分式的值保持不变.第二步,运算:由已知条件,根据分式的基本性质,适当把分式进行变形,使变形后的分式出现已知条件的形式,然后把已知条件代入变形后的分式,来求分式的值. 第三步,求解:分式的化简求值题,关键是要准确地运用分式的运算法则,然后代入求值.四步,反思:查看关键点、易错点,要注意分清运算顺序,先乘除,后加减,如果有括号,先进行括号内的运算..模拟训练先化简,再求值:22214()244a a a a a a a a +--+÷--+,其中011(3)()2a -=π+. 1.2017·湖南常德先化简,再求值:243133x x x x -+---22212322x x x x x -+--+-,其中x =4. 2.2017·湖北襄阳先化简,再求值:2111()x y x y xy y +÷+-+,其中x 52,y 5-2.3.2017·吉林某学生化简分式21211x x ++-出现了错误,解答过程如下: 原式=12(1)(1)(1)(1)x x x x ++-+-第一步 =12(1)(1)x x ++-第二步 =231x -.第三步 1该学生解答过程是从 步开始出错的,其错误原因是 ; 2请写出此题正确的解答过程.4.先化简,再求值:22124)(1)442a a a a a a a -+-÷--+-,其中a 满足不等式组7223a a ->⎧⎨>⎩的整数解.5.先化简,再求值:221a a +-2142a a +÷1-2414a a +,其中a 是不等式x -413x ->1的最大整数解.6.已知1A x +-3B x -=5(1)(3)x x x ++- 其中A ,B 为常数,求A 2 018B 的值. 整式的化简求值一、整式的概念1.单项式和多项式1单项式的概念:由数与字母或字母与字母相乘组成的代数式叫做单项式,单独一个数或字母也叫做单项式,如0,1,a …2单项式的系数:单项式中的数字因数叫做这个单项式的系数;3单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数; 注①单个字母的系数是1,如a 的系数是1;②只含字母因数的代数式的系数是1或1,如ab 的系数是1,a 3b 的系数是1. 4多项式的概念:由几个单项式相加组成的代数式叫做多项式;5多项式的项:在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项;6多项式的次数:次数最高的项的次数就是这个多项式的次数;学科网 7常数项:代数式中不含字母的项叫做常数项,如6x 22x 7中的常数项是7. 2. 同类项多项式中,所含字母相同,并且相同字母的指数也相同的项,叫做同类项所有常数项也看做同类项.3.合并同类项1定义:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变. 2理论依据:逆用乘法分配律.3法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.注①如果两个同类项的系数互为相反数,合并同类项后结果为0;②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;③只要不再有同类项,就是最后结果,结果还是代数式.(4)合并同类项的步骤:第一步:观察多项式中各项,准确找出同类项,项数比较多时,不同的同类项可以给出不同的标记;第二步:利用乘法的分配律,把同类项的系数加在一起用小括号,字母和字母的指数不变;第三步:写出合并后的结果.4.去括号法则去括号规律要准确理解,去括号应对括号的每一项的符号都予以考虑,做到要变都变;要不变,则谁也不变;法则顺口溜:去括号,看符号,是“+”号,不变号;是“-”号,全变号.另外,括号内原有几项去掉括号后仍有几项.注如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.二、整式的计算1.整式的加减法整式的加减实质上就是合并同类项,若有括号,要先用“去括号法则”去掉括号,然后合并同类项.注1两个整式相减时,减数一定要先用括号括起来;2整式加减的最后结果中:不能含有同类项;一般按照某一字母的降幂或升幂排列;不能出现带分数,带分数要化成假分数.2.幂的运算1同底数幂的乘法同底数幂运算法则:同底数幂相乘,底数不变,指数相加,即()m n m n a a a m n +⋅=、为正整数m 、n 均为正整数.学科网推导公式:同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即 ()m n p m n p a a a a m n p ++⋅⋅=、、为正整数.底数互换关系 22()()n n a b b a -=- ,2121()()n n b a a b ++-=--注同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.2幂的乘方的运算性质运算性质: 幂的乘方,底数不变,指数相乘,即()m n mn a a =m 、n 均为正整数. 注幂的乘方的底数是指幂的底数,而不是指乘方的底数.指数相乘是指幂的指数与乘方的指数相乘,一定要注意与同底数幂相乘中“指数相加”区分开.3积的乘方的运算性质运算性质:积的乘方,把积中各个因式分别乘方,再把所得的幂相乘,即:()n n n ab a b =n 为正整数.补充:()p m n mp np a b a b = m 、n 、p 是正整数.注运用积的乘方法则时,数字系数的乘方,应根据乘方的意义计算出结果.运用积的乘方法则时,应把每一个因式都分别乘方,不要遗漏其中任何一个因式.3.整式的乘除1 单项式乘单项式法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里的字母,则连同它的指数作为积的一个因式.注计算时要运用乘法交换律,乘法结合律2单项式乘多项式法则:单项式与多项式相乘,因单项式乘多项式的每一项,再把所得的积相加注运用乘法分配律转化成单项式乘单项式3多项式乘多项式法则:多项式与多项式相乘,先用多项式的每一项乘里一个多项式的每一项,再把所得的积相加.4.乘法公式1完全平方公式:a+b2=a2+2ab+b2, ab2=a22ab+b2解读:()222首尾首首尾尾,公式中的a、b可以是单独的数字,字母,单+=+⨯⨯+2项式或多项式2平方差公式:a+bab=a2b2核心考点整式的化简求值1.整式化简求值在广东省中考中,在解答题部分,大多以先化简再求值的题型出现,要求熟悉乘法公式的特点,看清项数及公式形式中的a、b,准确进行计算;2.要准确认识平方差和完全平方公式,可以结合面积法证明这两个公式,这种证明方法在初中数学中体现了数形结合的思想;3.在化简求值时要注意:当字母是负数时,代入后应加上括号;当字母是分数时,遇到乘方也要加括号.经典示例先化简,再求值:2()()2a b a b a +-+,其中1a =,2b =.答题模板第一步,计算:利用整式乘法和除法法则或乘法公式进行展开.第二步,化简:利用整式的加减法法则合并同类项化简. 第三步,求值:把字母的值代入化简结果计算.第四步,反思:反思回顾,查看关键点、易错点,对结果进行估算,检查规范性. 模拟训练1.计算:(3)(1)(2)a a a a +-+-.2. 先化简,再求值.()()223234(1)(2)x x x x x +---+-,其中3x =-.1.2017·浙江宁波先化简,再求值:2215x xx x ,其中32x . 2.2017·湖南怀化先化简,再求值:2212112a a a a a ,其中21a .3.2017·江苏无锡计算:a +ba ﹣b ﹣aa ﹣b4.2017·浙江嘉兴化简:(2)(2)33m m m m +--⨯. 5.2017·河南先化简,再求值: 2(2)()()5()x y x y x y x x y ++-+--,其中21x =,21y =.。

相关文档
最新文档