卡尔曼滤波简介及其算法MATLAB实现代码

合集下载

rssi卡尔曼滤波matlab代码

rssi卡尔曼滤波matlab代码

rssi卡尔曼滤波matlab代码RSSI (Received Signal Strength Indicator) 是一种常见的无线通信信号强度测量方法。

在无线传感器网络中,RSSI常用于距离和位置估计。

卡尔曼滤波器是一种高效递归滤波器,可用于在有噪声的情况下,根据一系列测量值来估计状态变量。

在无线传感器网络中,卡尔曼滤波器可用于RSSI测量值的滤波和校正。

以下是一个简单的RSSI卡尔曼滤波器的MATLAB代码示例:```matlab% 假设你已经有了原始的RSSI测量值 rssi_measurements% 初始位置和速度x0 = [0, 0]; % 初始位置P0 = 1; % 初始位置的不确定性Q = 0.01; % 过程噪声协方差R = 1; % 测量噪声协方差% 卡尔曼滤波器参数dt = 0.1; % 时间间隔x = x0; % 当前位置P = P0; % 当前位置的不确定性K = zeros(2,1); % 卡尔曼增益for i = 1:length(rssi_measurements)% 预测步骤:状态转移方程x_pred = x + dt * x; % 预测位置P_pred = P + Q; % 预测位置的不确定性% 更新步骤:测量更新方程Z = rssi_measurements(i) + x_pred(2)^2 / (x_pred(1)^2 + x_pred(2)^2) - x_pred(1)^2 / (x_pred(1)^2 + x_pred(2)^2); % 计算测量值K = P_pred / (P_pred + R); % 计算卡尔曼增益x = x_pred + K * (Z - x_pred(1)); % 更新位置P = (1 - K) * P_pred; % 更新位置的不确定性end```请注意,这个代码只是一个简单的示例,并没有考虑所有可能的情况和参数。

在实际应用中,你可能需要根据具体的需求和环境条件来调整和优化这个代码。

卡尔曼滤波 正弦函数 matlab

卡尔曼滤波 正弦函数 matlab

一、介绍卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的线性动态系统的方法。

它是由朗迪·卡尔曼在1960年提出的。

卡尔曼滤波是一种递归滤波器,通过使用过去时刻的状态和测量,以及系统动态的模型,来预测当前时刻的状态。

二、卡尔曼滤波原理1. 状态更新步骤:在状态更新步骤中,卡尔曼滤波使用系统的动态方程来预测下一个时刻的状态。

这一步骤包括预测状态、预测状态协方差和计算卡尔曼增益。

2. 测量更新步骤:在测量更新步骤中,卡尔曼滤波使用最新的测量值来修正之前的预测。

这一步骤包括计算测量预测、计算残差、计算卡尔曼增益和更新状态估计。

三、正弦函数及其在卡尔曼滤波中的应用正弦函数是一种周期性变化的函数,具有良好的数学性质和广泛的应用。

在卡尔曼滤波中,正弦函数可以用于模拟系统的动态特性,对系统的状态进行预测和更新。

四、matlab中的卡尔曼滤波实现matlab是一种用于科学计算和工程应用的高级技术计算语言和交互环境。

在matlab中,可以很方便地实现和应用卡尔曼滤波算法。

1. 使用matlab进行线性动态系统建模在matlab中,可以使用state-space模型来表示线性动态系统的状态空间方程。

通过定义系统的状态方程、测量方程、过程噪声和观测噪声,可以建立系统的状态空间模型。

2. 使用matlab实现卡尔曼滤波算法在matlab中,可以使用kalman滤波器函数来实现卡尔曼滤波算法。

首先需要定义系统的状态转移矩阵、测量矩阵、过程噪声协方差矩阵和观测噪声协方差矩阵。

然后利用kalman滤波器函数,输入系统模型和测量值,即可得到卡尔曼滤波器的输出。

3. 使用matlab对正弦函数进行卡尔曼滤波在matlab中,可以构建一个包含正弦函数的模拟系统,并对其进行卡尔曼滤波。

通过比较卡尔曼滤波的结果和真实正弦函数的值,可以评估卡尔曼滤波算法的性能。

五、结论卡尔曼滤波是一种用于估计系统状态的有效方法,在很多领域都有广泛的应用。

自适应扩展卡尔曼滤波matlab

自适应扩展卡尔曼滤波matlab

自适应扩展卡尔曼滤波matlab自适应扩展卡尔曼滤波(Adaptive Extended Kalman Filter,AEKF)是一种用于非线性系统状态估计的滤波算法。

本文将介绍AEKF算法的原理、步骤和实现方法,并结合MATLAB 编写代码进行演示。

一、扩展卡尔曼滤波原理扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波算法。

它通过使用线性化系统模型的方式将非线性系统转换为线性系统,在每个时间步骤中用线性卡尔曼滤波器进行状态估计。

然而,EKF仅限于具有凸多边形测量特性的问题,并且对线性化过程误差敏感。

为了解决这些问题,AEKF通过自适应更新协方差矩阵的方式提高了滤波器的性能。

AEKF通过测量残差的方差更新协方差矩阵,从而提高了滤波器对非线性系统的适应能力。

AEKF算法的步骤如下:1. 初始化状态向量和协方差矩阵。

2. 根据系统的非线性动力学方程和测量方程计算预测状态向量和协方差矩阵。

3. 计算测量残差,即测量值与预测值之间的差值。

4. 计算测量残差的方差。

5. 判断测量残差的方差是否超过预设阈值,如果超过,则更新协方差矩阵。

6. 利用更新后的协方差矩阵计算最优滤波增益。

7. 更新状态向量和协方差矩阵。

8. 返回第2步,进行下一次预测。

二、AEKF算法的MATLAB实现下面,我们将使用MATLAB编写AEKF算法的代码,并通过一个实例进行演示。

首先,定义非线性系统的动力学方程和测量方程。

在本例中,我们使用一个双摆系统作为非线性系统模型。

```matlabfunction x_next = nonlinear_dynamics(x_current, u)% Nonlinear system dynamicstheta1 = x_current(1);theta2 = x_current(2);d_theta1 = x_current(3);d_theta2 = x_current(4);g = 9.8; % Gravitational accelerationd_theta1_next = d_theta1 + dt * (-3*g*sin(theta1) - sin(theta1-theta2) ...+ 2*sin(theta1-theta2)*(d_theta2^2 + d_theta1^2*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));d_theta2_next = d_theta2 + dt * (2*sin(theta1-theta2)*(2*d_theta2^2 ...+ d_theta1^2*cos(theta1-theta2) + g*cos(theta1) +g*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));theta1_next = theta1 + dt * d_theta1_next;theta2_next = theta2 + dt * d_theta2_next;x_next = [theta1_next; theta2_next; d_theta1_next;d_theta2_next];endfunction y = measurement_model(x)% Measurement model, measure the angles of the double pendulumtheta1 = x(1);theta2 = x(2);y = [theta1; theta2];end```然后,定义AEKF算法的实现。

扩展卡尔曼滤波算法的matlab程序

扩展卡尔曼滤波算法的matlab程序

clear allv=150; %%目标速度v_sensor=0;%%传感器速度t=1; %%扫描周期xradarpositon=0; %%传感器坐标yradarpositon=0; %%ppred=zeros(4,4);Pzz=zeros(2,2);Pxx=zeros(4,2);xpred=zeros(4,1);ypred=zeros(2,1);sumx=0;sumy=0;sumxukf=0;sumyukf=0;sumxekf=0;sumyekf=0; %%%统计的初值L=4;alpha=1;kalpha=0;belta=2;ramda=3-L;azimutherror=0.015; %%方位均方误差rangeerror=100; %%距离均方误差processnoise=1; %%过程噪声均方差tao=[t^3/3 t^2/2 0 0;t^2/2 t 0 0;0 0 t^3/3 t^2/2;0 0 t^2/2 t]; %% the input matrix of process G=[t^2/2 0t 00 t^2/20 t ];a=35*pi/180;a_v=5/100;a_sensor=45*pi/180;x(1)=8000; %%初始位置y(1)=12000;for i=1:200x(i+1)=x(i)+v*cos(a)*t;y(i+1)=y(i)+v*sin(a)*t;endfor i=1:200xradarpositon=0;yradarpositon=0;Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror,1,1); Zmeasure(2,i)=sqrt((y(i)-yradarpositon)^2+(x(i)-xradarpositon)^2)+random('Normal',0,rangeerror,1,1);xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%%观测值yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i));measureerror=[azimutherror^2 0;0 rangeerror^2];processerror=tao*processnoise;vNoise = size(processerror,1);wNoise = size(measureerror,1);A=[1 t 0 0;0 1 0 0;0 0 1 t;0 0 0 1];Anoise=size(A,1);for j=1:2*L+1Wm(j)=1/(2*(L+ramda));Wc(j)=1/(2*(L+ramda));endWm(1)=ramda/(L+ramda);Wc(1)=ramda/(L+ramda);%+1-alpha^2+belta; %%%权值if i==1xerror=rangeerror^2*cos(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*sin(Zmeasure(1,i))^2; yerror=rangeerror^2*sin(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*cos(Zmeasure(1,i))^2; xyerror=(rangeerror^2-Zmeasure(2,i)^2*azimutherror^2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i));P=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]'; endcho=(chol(P*(L+ramda)))';%for j=1:LxgamaP1(:,j)=xestimate+cho(:,j);xgamaP2(:,j)=xestimate-cho(:,j);endXsigma=[xestimate xgamaP1 xgamaP2];F=A;Xsigmapre=F*Xsigma;xpred=zeros(Anoise,1);for j=1:2*L+1xpred=xpred+Wm(j)*Xsigmapre(:,j);endNoise1=Anoise;ppred=zeros(Noise1,Noise1);for j=1:2*L+1ppred=ppred+Wc(j)*(Xsigmapre(:,j)-xpred)*(Xsigmapre(:,j)-xpred)';endppred=ppred+processerror;chor=(chol((L+ramda)*ppred))';for j=1:LXaugsigmaP1(:,j)=xpred+chor(:,j);XaugsigmaP2(:,j)=xpred-chor(:,j);endXaugsigma=[xpred XaugsigmaP1 XaugsigmaP2 ];for j=1:2*L+1Ysigmapre(1,j)=atan(Xaugsigma(3,j)/Xaugsigma(1,j)) ;Ysigmapre(2,j)=sqrt((Xaugsigma(1,j))^2+(Xaugsigma(3,j))^2);endypred=zeros(2,1);for j=1:2*L+1ypred=ypred+Wm(j)*Ysigmapre(:,j);endPzz=zeros(2,2);for j=1:2*L+1Pzz=Pzz+Wc(j)*(Ysigmapre(:,j)-ypred)*(Ysigmapre(:,j)-ypred)';endPzz=Pzz+measureerror;Pxy=zeros(Anoise,2);for j=1:2*L+1Pxy=Pxy+Wc(j)*(Xaugsigma(:,j)-xpred)*(Ysigmapre(:,j)-ypred)';endK=Pxy*inv(Pzz);xestimate=xpred+K*(Zmeasure(:,i)-ypred);P=ppred-K*Pzz*K';xukf(i)=xestimate(1,1);yukf(i)=xestimate(3,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% EKF PRO%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if i==1ekf_p=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];ekf_xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]';ekf_xpred=ekf_xestimate;end;F=A;ekf_xpred=F*ekf_xestimate;ekf_ppred=F*ekf_p*F'+processerror;H=[-ekf_xpred(3)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(1)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0;ekf_xpred(1)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(3)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0];ekf_z(1,1)=atan(ekf_xpred(3)/ekf_xpred(1)) ;ekf_z(2,1)=sqrt((ekf_xpred(1))^2+(ekf_xpred(3))^2);PHHP=H*ekf_ppred*H'+measureerror;ekf_K=ekf_ppred*H'*inv(PHHP);ekf_p=(eye(L)-ekf_K*H)*ekf_ppred;ekf_xestimate=ekf_xpred+ekf_K*(Zmeasure(:,i)-ekf_z);traceekf(i)=trace(ekf_p);xekf(i)=ekf_xestimate(1,1);yekf(i)=ekf_xestimate(3,1);errorx(i)=xx(i)+xradarpositon-x(i);errory(i)=yy(i)+yradarpositon-y(i);ukferrorx(i)=xestimate(1)+xradarpositon-x(i);ukferrory(i)=xestimate(3)+yradarpositon-y(i);ekferrorx(i)=ekf_xestimate(1)+xradarpositon-x(i); ekferrory(i)=ekf_xestimate(3)+yradarpositon-y(i);aa(i)=xx(i)+xradarpositon-x(i);;bb(i)=yy(i)+yradarpositon-y(i);sumx=sumx+(errorx(i)^2);sumy=sumy+(errory(i)^2);sumxukf=sumxukf+(ukferrorx(i)^2);sumyukf=sumyukf+(ukferrory(i)^2);sumxekf=sumxekf+(ekferrorx(i)^2);sumyekf=sumyekf+(ekferrory(i)^2);mseerrorx(i)=sqrt(sumx/(i-1));%噪声的统计均方误差mseerrory(i)=sqrt(sumy/(i-1));mseerrorxukf(i)=sqrt(sumxukf/(i-1));%UKF的统计均方误差mseerroryukf(i)=sqrt(sumyukf/(i-1));mseerrorxekf(i)=sqrt(sumxekf/(i-1));%EKF的统计均方误差mseerroryekf(i)=sqrt(sumyekf/(i-1));endfigure(1);plot(mseerrorxukf,'r');hold on;plot(mseerrorxekf,'g');hold on;plot(mseerrorx,'.');hold on;ylabel('MSE of X axis','fontsize',15);xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(2)plot(mseerroryukf,'r');hold on;plot(mseerroryekf,'g');hold on;plot(mseerrory,'.');hold on;ylabel('MSE of Y axis','fontsize',15); xlabel('sample number','fontsize',15); legend('UKF','EKF','measurement error');figure(3)plot(x,y);hold on;plot(xekf,yekf,'g');hold on;plot(xukf,yukf,'r');hold on;plot(xx,yy,'m');ylabel(' X ','fontsize',15);xlabel('Y','fontsize',15);legend('TRUE','UKF','EKF','measurements');。

维纳、卡尔曼滤波简介及MATLAB实现

维纳、卡尔曼滤波简介及MATLAB实现

现代数字信号处理课程作业维纳、卡尔曼、RLS、LMS算法matlab实现维纳滤波从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。

设维纳滤波器的输入为含噪声的随机信号。

期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。

因此均方误差越小,噪声滤除效果就越好。

为使均方误差最小,关键在于求冲激响应。

如果能够满足维纳-霍夫方程,就可使维纳滤波器达到最佳。

维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。

维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声为非平稳的随机过程的情况,对于向量情况应用也不方便。

因此,维纳滤波在实际问题中应用不多。

下面是根据维纳滤波器给出的图像处理matlab实例,在下面实例中维纳滤波和均值滤波相比较,并且做了维纳复原、边缘提取、图像增强的实验:%****************维纳滤波和均值滤波的比较*********************I=imread('lena.bmp');J=imnoise(I,'gaussian',0,0.01);Mywiener2 = wiener2(J,[3 3]);Mean_temp = ones(3,3)/9;Mymean = imfilter(J,Mean_temp);figure(1);subplot(121),imshow(Mywiener2),title('维纳滤波器输出');subplot(122),imshow(uint8(Mymean),[]),title('均值滤波器的输出');%***********************维纳复原程序********************figure(2);subplot(231),imshow(I),title('原始图像');LEN = 20;THETA =10;PSF = fspecial('motion',LEN,THETA);Blurred = imfilter(I,PSF,'circular');subplot(232),imshow(Blurred),title('生成的运动的模糊的图像');noise = 0.1*randn(size(I));subplot(233),imshow(im2uint8(noise)),title('随机噪声');BlurredNoisy=imadd(Blurred,im2uint8(noise));subplot(234),imshow(BlurredNoisy),title('添加了噪声的模糊图像');Move=deconvwnr(Blurred,PSF);subplot(235),imshow(Move),title('还原运动模糊的图像');nsr = sum(noise(:).^2)/sum(im2double(I(:)).^2);wnr2 = deconvwnr(BlurredNoisy,PSF,nsr);subplot(236),imshow(wnr2),title('还原添加了噪声的图像');%****************维纳滤波应用于边缘提取*********************N = wiener2(I,[3,3]);%选用不同的维纳窗在此修改M = I - N;My_Wedge = im2bw (M,5/256);%化二值图像BW1 = edge(I,'prewitt');BW2 = edge(I,'canny');BW3 = edge(I,'zerocross');BW4 = edge(I,'roberts');figure(3)subplot(2,4,[3 4 7 8]),imshow(My_Wedge),title('应用维纳滤波进行边沿提取'); subplot(241),imshow(BW1),title('prewitt');subplot(242),imshow(BW2),title('canny');subplot(245),imshow(BW3),title('zerocross');subplot(246),imshow(BW4),title('roberts');%*************************维纳滤波应用于图像增强***************************for i = [1 2 3 4 5] K = wiener2(I,[5,5]);end K = K + I; figure(4);subplot(121),imshow(I),title('原始图像'); subplot(122),imshow(K),title('增强后的图像');维纳滤波器输出均值滤波器的输出原始图像生成的运动的模糊的图像随机噪声添加了噪声的模糊图像还原运动模糊的图像还原添加了噪声的图像卡尔曼滤波卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列预测出物体的坐标位置及速度。

无损卡尔曼滤波UKF Matlab程序

无损卡尔曼滤波UKF Matlab程序

ukf(无迹卡尔曼滤波)算法的matlab程序. function [x,P]=ukf(fstate,x,P,hmeas,z,Q,R)% UKF Unscented Kalman Filter for nonlinear dynamic systems% [x, P] = ukf(f,x,P,h,z,Q,R) returns state estimate, x and state covariance, P% for nonlinear dynamic system (for simplicity, noises are assumed as additive): % x_k+1 = f(x_k) + w_k% z_k = h(x_k) + v_k% where w ~ N(0,Q) meaning w is gaussian noise with covariance Q% v ~ N(0,R) meaning v is gaussian noise with covariance R% Inputs: f: function handle for f(x)% x: "a priori" state estimate% P: "a priori" estimated state covariance% h: fanction handle for h(x)% z: current measurement% Q: process noise covariance% R: measurement noise covariance% Output: x: "a posteriori" state estimate% P: "a posteriori" state covariance%% Example:%{n=3; %number of stateq=0.1; %std of processr=0.1; %std of measurementQ=q^2*eye(n); % covariance of processR=r^2; % covariance of measurementf=@(x)[x(2);x(3);0.05*x(1)*(x(2)+x(3))]; % nonlinear state equationsh=@(x)x(1); % measurement equations=[0;0;1]; % initial statex=s+q*randn(3,1); %initial state % initial state with noiseP = eye(n); % initial state covraianceN=20; % total dynamic stepsxV = zeros(n,N); %estmate % allocate memorysV = zeros(n,N); %actualzV = zeros(1,N);for k=1:Nz = h(s) + r*randn; % measurmentssV(:,k)= s; % save actual statezV(k) = z; % save measurment[x, P] = ukf(f,x,P,h,z,Q,R); % ekfxV(:,k) = x; % save estimates = f(s) + q*randn(3,1); % update processendfor k=1:3 % plot resultssubplot(3,1,k)plot(1:N, sV(k,:), '-', 1:N, xV(k,:), '--')end%}%% By Yi Cao at Cranfield University, 04/01/2008%L=numel(x); %numer of statesm=numel(z); %numer of measurementsalpha=1e-3; %default, tunableki=0; %default, tunablebeta=2; %default, tunablelambda=alpha^2*(L+ki)-L; %scaling factorc=L+lambda; %scaling factorWm=[lambda/c 0.5/c+zeros(1,2*L)]; %weights for meansWc=Wm;Wc(1)=Wc(1)+(1-alpha^2+beta); %weights for covariancec=sqrt(c);X=sigmas(x,P,c); %sigma points around x[x1,X1,P1,X2]=ut(fstate,X,Wm,Wc,L,Q); %unscented transformation of process % X1=sigmas(x1,P1,c); %sigma points around x1% X2=X1-x1(:,ones(1,size(X1,2))); %deviation of X1[z1,Z1,P2,Z2]=ut(hmeas,X1,Wm,Wc,m,R); %unscented transformation of measurmentsP12=X2*diag(Wc)*Z2'; %transformed cross-covarianceK=P12*inv(P2);x=x1+K*(z-z1); %state updateP=P1-K*P12'; %covariance updatefunction [y,Y,P,Y1]=ut(f,X,Wm,Wc,n,R)%Unscented Transformation%Input:% f: nonlinear map% X: sigma points% Wm: weights for mean% Wc: weights for covraiance% n: numer of outputs of f% R: additive covariance%Output:% y: transformed mean% Y: transformed smapling points% P: transformed covariance% Y1: transformed deviationsL=size(X,2);y=zeros(n,1);Y=zeros(n,L);for k=1:LY(:,k)=f(X(:,k));y=y+Wm(k)*Y(:,k);endY1=Y-y(:,ones(1,L));P=Y1*diag(Wc)*Y1'+R;function X=sigmas(x,P,c)%Sigma points around reference point%Inputs:% x: reference point% P: covariance% c: coefficient%Output:% X: Sigma pointsA = c*chol(P)';Y = x(:,ones(1,numel(x))); X = [x Y+A Y-A];。

卡尔曼滤波的MATLAB实现演示教学

卡尔曼滤波的MATLAB实现演示教学

卡尔曼滤波的MATLAB 实现一、实验内容一个系统模型为 )()()1(,1,0),()()()1(22211k w k x k x k k w k x k x k x +=+=++=+同时有下列条件:(1) 初始条件已知且有T x ]0,0[)0(=。

(2) )(k w 是一个标量零均值白高斯序列,且自相关函数已知为jk k w j w E δ=)]()([。

另外,我们有下列观测模型,即 )1()1()1(,1,0),1()1()1(222111+++=+=+++=+k v k x k y k k v k x k y且有下列条件:(3) )1(1+k v 和)1(2+k v 是独立的零均值白高斯序列,且有 ,2,1,0,2)]()([,)]()([2211===k k v j v E k v j v E jk jk δδ(4) 对于所有的j 和k ,)(k w 与观测噪声过程)1(1+k v 和)1(2+k v 是不相关的,即,2,1,0,,2,1,0,0)]()([,0)]()([21====k j k v j w E k v j w E我们希望得到由观测矢量)1(+k y ,即T k y k y k y )]1(),1([)1(21++=+估计状态矢量T k x k x k x )]1(),1([)1(21++=+的卡尔曼滤波器的公式表示形式,并求解以下问题:(a ) 求出卡尔曼增益矩阵,并得出最优估计)1(+k x 和观测矢量)1(),...,2(),1(+k y y y 之间的递归关系。

(b ) 通过一个标量框图(不是矢量框图)表示出状态矢量)1(+k x 中元素)1(1+k x 和)1(2+k x 估计值的计算过程。

(c ) 用模拟数据确定状态矢量)(k x 的估计值,10,...,1,0),(=∧k k k x 并画出当k =0,1,…,10时)(1k k x ∧和)(2k k x ∧的图。

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码卡尔曼滤波算法实现代码(C,C++分别实现)卡尔曼滤波器简介近来发现有些问题很多人都很感兴趣。

所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。

现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。

因为这里不能写复杂的数学公式,所以也只能形象的描述。

希望如果哪位是这方面的专家,欢迎讨论更正。

卡尔曼滤波器– Kalman Filter1.什么是卡尔曼滤波器(What is the Kalman Filter?)在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。

跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。

1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。

1957年于哥伦比亚大学获得博士学位。

我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。

如果对这编论文有兴趣,可以到这里的地址下载:/~welch/media/pdf/Kalman1960.pdf。

简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。

对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。

他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。

近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

2.卡尔曼滤波器的介绍(Introduction to the Kalman Filter)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卡尔曼滤波简介说明及其算法MATLAB实现代码卡尔曼滤波算法实现代码(C,C++分别实现)卡尔曼滤波器简介近来发现有些问题很多人都很感兴趣。

所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。

现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。

因为这里不能写复杂的数学公式,所以也只能形象的描述。

希望如果哪位是这方面的专家,欢迎讨论更正。

卡尔曼滤波器– Kalman Filter1.什么是卡尔曼滤波器(What is the Kalman Filter?)在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。

跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。

1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。

1957年于哥伦比亚大学获得博士学位。

我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。

如果对这编论文有兴趣,可以到这里的地址下载:/~welch/media/pdf/Kalman1960.pdf。

简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。

对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。

他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。

近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

2.卡尔曼滤波器的介绍(Introduction to the Kalman Filter)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。

但是,他的5条公式是其核心内容。

结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。

在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

假设我们要研究的对象是一个房间的温度。

根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。

假设你对你的经验不是100%的相信,可能会有上下偏差几度。

我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。

另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。

我们也把这些偏差看成是高斯白噪声。

好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。

下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。

假如我们要估算k时刻的是实际温度值。

首先你要根据k-1时刻的温度值,来预测k时刻的温度。

因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟 k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。

然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。

由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。

究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的 covariance来判断。

因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78* (25-23)=24.56度。

可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。

现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。

到现在为止,好像还没看到什么自回归的东西出现。

对了,在进入 k+1时刻之前,我们还要算出k 时刻那个最优值(24.56度)的偏差。

算法如下:((1-Kg)*5^2)^0.5=2.35。

这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。

就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。

他运行的很快,而且它只保留了上一时刻的covariance。

上面的Kg,就是卡尔曼增益(Kalman Gain)。

他可以随不同的时刻而改变他自己的值,是不是很神奇!下面就要言归正传,讨论真正工程系统上的卡尔曼。

3.卡尔曼滤波器算法(The Kalman Filter Algorithm)在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。

下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。

但对于卡尔曼滤波器的详细证明,这里不能一一描述。

首先,我们先要引入一个离散控制过程的系统。

该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。

A和B是系统参数,对于多模型系统,他们为矩阵。

Z(k)是k时刻的测量值,H 是测量系统的参数,对于多测量系统,H为矩阵。

W(k)和V(k)分别表示过程和测量的噪声。

他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。

下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。

首先我们要利用系统的过程模型,来预测下一状态的系统。

假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。

我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式 (2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。

式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。

结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3)其中Kg为卡尔曼增益(Kalman Gain):Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。

但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:P(k|k)=(I-Kg(k) H)P(k|k-1) (5)其中I 为1的矩阵,对于单模型单测量,I=1。

当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。

这样,算法就可以自回归的运算下去。

卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。

根据这5个公式,可以很容易的实现计算机的程序。

下面,我会用程序举一个实际运行的例子。

4.简单例子(A Simple Example)这里我们结合第二第三节,举一个非常简单的例子来说明卡尔曼滤波器的工作过程。

所举的例子是进一步描述第二节的例子,而且还会配以程序模拟结果。

根据第二节的描述,把房间看成一个系统,然后对这个系统建模。

当然,我们见的模型不需要非常地精确。

我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。

没有控制量,所以U(k)=0。

因此得出:X(k|k-1)=X(k-1|k-1) (6)式子(2)可以改成:P(k|k-1)=P(k-1|k-1) +Q (7)因为测量的值是温度计的,跟温度直接对应,所以H=1。

式子3,4,5可以改成以下:X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) (8)Kg(k)= P(k|k-1) / (P(k|k-1) + R) (9)P(k|k)=(1-Kg(k))P(k|k-1) (10)现在我们模拟一组测量值作为输入。

假设房间的真实温度为25度,我模拟了200个测量值,这些测量值的平均值为25度,但是加入了标准偏差为几度的高斯白噪声(在图中为蓝线)。

为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。

他们的值不用太在意,随便给一个就可以了,因为随着卡尔曼的工作,X会逐渐的收敛。

但是对于P,一般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使算法不能收敛。

我选了 X(0|0)=1度,P(0|0)=10。

该系统的真实温度为25度,图中用黑线表示。

图中红线是卡尔曼滤波器输出的最优化结果(该结果在算法中设置了Q=1e-6,R=1e-1)。

最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。

从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。

相关文档
最新文档