模型预测控制 全面讲解
预测控制之模型算法控制

• 1982年,Meral等在MPHC基础上进一步提出模型算法控制 (MAC,Model Algorithm Control)
• 1987年,Clarke等提出广义预测控制(GPC,Generalized Predictive Control)
模型描述
• 对于一个线性定常系统,其所有动静态特性可以完全由其单位脉冲响应函数表达。若该系 统还是稳定的(此处指系统的极点具有负实部的情形,不包括临界稳定), 其单位脉冲响应函 数满足:
• 若对于离散时间控制系统,则相应的脉冲响应序列趋于零。根据控制原理,基于单位脉冲 响应函数的系统输出响应等于单位脉冲响应函数与系统输入的卷积,即有
• 内模控制是直接针对控制系统存在建模误差和外部干扰的情况下研究系 统的闭环稳定、提高相应性能指标的控制方法,可显著提高控制系统对 建模误差和外部干扰的鲁棒性。
• 传统控制系统
• 内模控制系统结构框图
非参数模型之单位脉冲响应函数
• 在MAC中对被控对象可采用单位脉冲响应函数(在离散情形也称为单位脉冲 响应序列)作为其数学模型描述。
模型算法控制(MAC)
• MAC系统(预测控制)的主要四个部分:内部模型、模型校正 与输出预测、参考轨迹\轨迹优化、控制优化目标\滚动优化
一、内模原理
• 所谓内模原理,是针对传统控制理论对被控对象模型及建模误差处理的 不足而提出的一种新的处理方法。
• 当建模所存在的误差控制在较小范围时,传统的控制系统设计方法具有 较好的克服建模误差和抗干扰的能力。建模误差超过一定程度时,所设 计的控制系统的反馈本身的抗干扰能力及系统的稳定性裕量则不能很好 地将系统稳定,并保持所期望的系统性能指标。
《模型预测控制算法研究及其在水泥回转窑中的应用》

《模型预测控制算法研究及其在水泥回转窑中的应用》篇一一、引言随着工业自动化和智能化的快速发展,模型预测控制(MPC)算法作为一种先进的控制技术,已在众多工业领域得到了广泛应用。
本文将详细研究模型预测控制算法的原理及其在水泥回转窑中的应用,以探讨其在实际生产中的优化效果。
二、模型预测控制算法研究1. 模型预测控制算法原理模型预测控制(MPC)是一种基于数学模型的先进控制方法,它通过对系统未来的行为进行预测,从而实现对系统的优化控制。
MPC算法主要包括预测模型、参考轨迹、滚动优化和反馈校正四个部分。
(1)预测模型:用于描述系统未来的动态行为,通常为线性时不变系统或非线性系统模型。
(2)参考轨迹:设定了系统期望的轨迹,用于指导系统的优化控制。
(3)滚动优化:在每个控制周期内,根据当前的状态和预测模型,计算出一个最优控制序列,以使系统的性能指标达到最优。
(4)反馈校正:根据实际系统的反馈信息,对预测模型进行校正,以提高预测的准确性。
2. 模型预测控制算法的特点模型预测控制算法具有以下特点:可处理约束问题、具有显式的控制策略、可适应时变系统和非线性系统等。
此外,MPC算法还可以与多种优化算法相结合,如线性规划、非线性规划等,以满足不同系统的需求。
三、水泥回转窑工艺及控制难题水泥回转窑是水泥生产过程中的关键设备,其工艺复杂、运行环境恶劣。
在生产过程中,需要控制的关键参数包括温度、压力、转速等。
然而,由于回转窑内物料流动的复杂性、热工过程的非线性以及外部干扰等因素的影响,使得回转窑的控制成为一个难题。
传统的控制方法往往难以满足生产要求,需要研究更先进的控制技术。
四、模型预测控制算法在水泥回转窑中的应用针对水泥回转窑的控制难题,本文将研究模型预测控制算法在水泥回转窑中的应用。
具体包括以下几个方面:1. 建立回转窑的数学模型:根据回转窑的工艺流程和实际运行数据,建立回转窑的数学模型,为MPC算法的应用提供基础。
2. 设计MPC控制器:根据回转窑的数学模型和实际控制要求,设计合适的MPC控制器,实现对回转窑的优化控制。
现代控制理论中的模型预测控制和自适应控制

现代控制理论中的模型预测控制和自适应控制在现代控制理论中,模型预测控制和自适应控制是两种广泛应用的控制方法。
这两种控制方法各有优劣,适用于不同的控制场景。
本文将分别介绍模型预测控制和自适应控制的基本原理、应用范围和实现方法。
模型预测控制模型预测控制(MPC)是一种基于数学模型预测未来状态的控制方法。
MPC通过建立系统的数学模型,预测系统未来的状态,在控制循环中不断地更新模型和控制算法,实现对系统的精确控制。
MPC的核心思想是将控制问题转化为优化问题,通过最优化算法求解出最优的控制策略。
MPC的应用范围十分广泛,特别适用于需要对系统动态响应进行精确控制的场合,如过程控制、机械控制、化工控制等。
MPC 在控制精度、鲁棒性、适应性等方面都具有优异的表现,是目前工业控制和自动化领域的主流控制方法之一。
MPC的实现方法一般可分为两种,一种是基于离线计算的MPC,一种是基于在线计算的MPC。
离线计算的MPC是指在系统运行之前,先通过离线计算得到优化控制策略,然后将其存储到控制器中,控制器根据当前状态和存储的控制策略进行控制。
在线计算的MPC则是指在系统运行时,通过当前状态和模型预测计算器实时地优化控制策略,并将其传输到控制器中进行实时控制。
自适应控制自适应控制是指根据系统实时变化的动态特性,自动地调整控制算法和参数,以实现对系统的精确控制。
自适应控制可以适应系统动态响应的变化,提高控制精度和鲁棒性,是现代控制理论中的重要分支之一。
自适应控制的应用范围广泛,特别适用于对控制要求较高的复杂系统,如机械控制、电力控制、化工控制等。
自适应控制可以通过软件和硬件两种实现方式,软件实现是通过控制算法和参数的在线调整来实现,硬件实现则是通过控制器内部的调节器、传感器等硬件来实现。
自适应控制的实现方法一般可分为两种,一种是基于模型参考自适应控制(MRAC),一种是模型无关自适应控制(MIMO)。
MRAC是指通过建立系统的数学模型,基于参考模型的输出来进行控制的方法,适用于系统具有良好动态特性的场合;MIMO则是指在不需要建立系统数学模型的情况下,通过控制器内部的自适应算法来实现控制的方法,适用于系统非线性和时变性较强的场合。
模型预测控制技术在过程控制中的应用

模型预测控制技术在过程控制中的应用一、引言过程控制是指通过监测和调节一些过程变量来使一个系统达到一定的目标,可以应用于许多领域,例如化工、制造、环保、食品工业等。
而模型预测控制技术则是一种高级的控制方法,它基于动态系统的数学模型,运用优化算法,通过预测模型的输出进行控制。
本文将探讨模型预测控制技术在过程控制中的应用。
二、模型预测控制概述模型预测控制是一种基于模型的控制方法,它使用动态模型来预测系统的未来行为。
通常,模型预测控制可以分为两个阶段:模型预测和控制。
在模型预测阶段,系统未来的状态是根据过去的行为和当前的状态预测的。
在控制阶段,使用这些预测结果进行控制,以实现期望目标。
三、模型预测控制技术在过程控制中的应用模型预测控制技术可以应用于各种过程控制问题,包括控制高温反应、水质控制、发电厂机组控制等。
下面将探讨它在化工行业中的应用。
1. 反应控制反应控制是化工过程中的一个重要环节。
不同的反应过程需要的控制方法是不同的,有些反应是需要在有限时间内控制温度,使反应达到一定程度,而有些反应是需要在一定温度条件下,控制反应速度。
模型预测控制技术可以根据反应动态响应模型来预测其未来变化趋势,控制反应过程。
2. 浓度控制浓度控制是化工工艺中的另一个重要方面。
在浓度控制问题中,需要根据工艺的特点设计控制器,以便在变量过程中保持恒定的浓度。
模型预测控制技术可以较为准确地预测进程变量的发展趋势,使控制器更为优化,从而实现浓度控制。
3. 在线优化在线优化是一种高效、可预测的优化方法,其目标是在过程运行中,根据实时变化的输入变量进行优化,从而使得输出变量满足一定的条件。
模型预测控制技术可以较好地应用于在线优化,以便根据实时的反馈信息对控制器进行实时优化,使系统稳定且具有较高的性能。
四、总结在过程控制中,模型预测控制技术有着广泛的应用。
它可以有效地控制反应过程、浓度控制和在线优化等方面,从而使得化工生产更加高效和稳定。
模型预测控制

,得最优控制率:
根据滚动优化原理,只实施目前控制量u2(k):
式中:
多步优化MAC旳特点: 优点: (i)控制效果和鲁棒性优于单步MAC算法简朴;
(ii)合用于有时滞或非最小相位对象。 缺陷: (i)算法较单步MAC复杂;
(ii)因为以u作为控制量, 造成MAC算法不可防止地出现稳态误差.
第5章 模型预测控制
5.3.1.2 反馈校正 为了在模型失配时有效地消除静差,能够在模型预测值ym旳基础上 附加一误差项e,即构成反馈校正(闭环预测)。
详细做法:将第k时刻旳实际对象旳输出测量值与预测模型输出之间 旳误差附加到模型旳预测输出ym(k+i)上,得到闭环预测模型,用 yp(k+i)表达:
第5章 模型预测控制
5.1 引言
一 什么是模型预测控制(MPC)?
模型预测控制(Model Predictive Control)是一种基于模型旳闭环 优化控制策略,已在炼油、化工、冶金和电力等复杂工业过程中得到 了广泛旳应用。
其算法关键是:可预测过程将来行为旳动态模型,在线反复优化计
算并滚动实施旳控制作用和模型误差旳反馈校正。
2. 动态矩阵控制(DMC)旳产生:
动态矩阵控制(DMC, Dynamic Matrix Control)于1974年应用在美国壳牌石 油企业旳生产装置上,并于1980年由Culter等在美国化工年会上公开刊登,
3. 广义预测控制(GPC)旳产生:
1987年,Clarke等人在保持最小方差自校正控制旳在线辨识、输出预测、 最小方差控制旳基础上,吸收了DMC和MAC中旳滚动优化策略,基于参数 模型提出了兼具自适应控制和预测控制性能旳广义预测控制算法。
模型预测控制设计报告

模型预测控制设计报告引言模型预测控制(Model Predictive Control,简称MPC)是一种先进的控制算法,它在过程中基于数学模型进行预测,并优化控制动作以使系统的响应最佳化。
本报告将对MPC算法进行介绍,并探讨其在工业控制领域的应用。
MPC算法原理MPC算法的核心思想是通过建立系统的动态模型,预测系统未来的响应,并通过求解优化问题来计算最佳控制动作。
MPC通常包含以下几个步骤:1. 建立数学模型:根据系统的物理特性、实验数据等,建立系统的动态模型。
动态模型可以是线性或非线性的,用差分方程、微分方程、状态方程等形式表示。
2. 预测系统响应:基于已知的系统初始状态和当前的控制动作,利用数学模型进行系统的状态预测。
预测的时间范围可以根据需求进行选择。
3. 优化问题求解:根据预测的系统响应和控制要求,构建一个优化问题,并通过求解优化算法找到最佳的控制动作。
优化问题的目标可以是最小化误差、最大化系统指标等。
4. 调整控制动作:根据求解得到的最佳控制动作,对系统进行调整。
通常需要考虑控制动作的可行性和实时性。
MPC在工业控制中的应用MPC算法在许多工业控制领域中都得到了广泛的应用,并取得了良好的效果。
以下是几个主要的应用领域:1. 化工过程控制:MPC在化工过程控制中的应用十分广泛。
通过准确的模型化和优化求解,MPC能够更好地控制化工过程的温度、压力、浓度等参数,提高产品质量和生产效率。
2. 电力系统控制:MPC在电力系统的控制中也起到了重要的作用。
通过对发电机组的控制,MPC能够减少能量损失、优化电网稳定性,并满足不同的负荷需求。
3. 汽车控制:MPC在汽车控制中被广泛应用于敏感系统(如刹车、悬挂)的控制中。
通过对车辆动力系统的控制,MPC能够提高车辆的操纵性和安全性。
4. 机器人控制:MPC在机器人控制中的应用也逐渐增多。
通过准确的模型预测和动作优化,MPC能够实现机器人的精确控制和路径规划。
模型预测控制的基本原理

模型预测控制的基本原理
模型预测控制(MPC)是一类特殊的控制。
它的当前控制动作是在每一个采样瞬间通过求解一个有限时域开环最优控制问题而获得。
过程的当前状态作为最优控制问题的初始状态,解得的最优控制序列只实施第一个控制作用。
这是它与那些使用预先计算控制律的算法的最大不同。
本质上模型预测控制求解一个开环最优控制问题。
它的思想与具体的模型无关,但是实现则与模型有关。
模型预测控制的三个基本要素
1、预测模型预测模型是指一类能够显式的拟合被控系统的特性的动态模型。
2、滚动优化滚动优化是指在每个采样周期都基于系统的当前状态及预测模型,按照给定的有限时域目标函数优化过程性能,找出最优控制序列,并将该序列的第一个元素施加给被控对象。
3、反馈校正反馈校正用于补偿模型预测误差和其他扰动。
模型预测控制全面讲解..pdf

hT={h1,h2,…,hN} 可完全描述系统的动态特性
主要内容 预测模型 反馈校正 参考轨迹 滚动优化
第三节 模型算法控制(MAC) 一. 预测模型
MAC的预测模型 渐近稳定线性被控对象的单位脉冲响应曲线
y
h11 h2
有限个采样周期后
lim
j
h
j
0
hN
0 12
t/T N
系统的离散脉冲响应示意图第节 模型算法控制(MAC) 一. 预测模型
MAC算法中的模型参数
1─k 时刻的预测输出 2─k +1时刻实际输出
t/T
3─ k +1 时刻预测误差 4─k +1时刻校正后的预测输出
第三节 模型算法控制(MAC)
模型算法控制(Model Algorithmic Control): 基于脉冲响应模型的预测控制,又称模型预测 启发式控制(MPHC)
60年代末,Richalet等人在法国工业企业中应用 于锅炉和精馏塔的控制
1987年,Clarke 提出了基于时间序列模型和在线辨识的 广义预测控制(Generalized Predictive Control, GPC)
1988年,袁璞提出了基于离散状态空间模型的状态反馈预 测控制(State Feedback Predictive Control, SFPC)
第一节 预测控制的发展
反馈校正
在每个采样时刻,都要通过实际测到的输出信息对基于 模型的预测输出进行修正,然后再进行新的优化
闭环优化
不断根据系统的实际输出对预测输出作出修正,使滚动 优化不但基于模型,而且利用反馈信息,构成闭环优化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1979年,Cutler提出了基于阶跃响应的动态矩阵控制 (Dynamic Matrix Control,DMC)
值和给定值的偏差来确定当前的控制输入 预测控制:不仅利用当前的和过去的偏差值,
而且还利用预测模型来预测过程未来的偏差值。 以滚动优化确定当前的最优控制策略,使未来 一段时间内被控变量与期望值偏差最小 从基本思想看,预测控制优于PID控制
第二节 预测控制的基本原理
r(k)
+_
d(k)
在线优化 控制器
)
Yr
(k
)T
QYP
(k
)
Yr
(k
)
U
T 2
(k
)
RU
2
(k
)
代入YP(k)
J H1U1(k) H2U2 (k) βe(k) Yr (k)T QH1U1(k) H2U2 (k) βe(k) Yr (k)
U
T 2
(k
)
RU
2
(k
)
求解最优控制率 J 0
U2 (k)
第三节 模型算法控制(MAC) 四. 最优控制
第一节 预测控制的发展
工业过程的特点
多变量高维复杂系统难以建立精确的数学模型 工业过程的结构、参数以及环境具有不确定性、
时变性、非线性,最优控制难以实现
预测控制的产生
基于模型的控制,但对模型的要求不高 采用滚动优化策略,以局部优化取代全局最优 利用实测信息反馈校正,增强控制的鲁棒性
第一节 预测控制的发展
第一节 预测控制的发展
预测控制的特点 建模方便,对模型要求不高 滚动的优化策略,具有较好的动态控制效果 简单实用的反馈校正,有利于提高控制系统的
鲁棒性 不增加理论困难,可推广到有约束条件、大纯
滞后、非最小相位及非线性等过程 是一种计算机优化控制算法
第二节 预测控制的基本原理
模型预测控制与PID控制 PID控制:根据过程当前的和过去的输出测量
1973年,DMC应用于美国壳牌石油公司的生产 装臵上
1979年,Cutler等在美国化工学会年会上首次 介绍了DMC算法
主要内容 预测模型 反馈校正 参考轨迹 滚动优化
第四节 动态矩阵控制(DMC) 一. 预测模型
DMC的预测模型
渐近稳定线性被控对象的单位阶跃响应曲线
过去 yd
未来
y(k)
yr(k)
yP(k)
u(t)
k k+1
k+P
t/T
第三节 模型算法控制(MAC) 三. 设定值与参考轨迹
根据设定值和当前过程输出测量值确定参考轨迹 最广泛使用的参考轨迹为一阶指数变化形式
yr (k j) j y(k) (1 j ) yd j 1, 2, , P
Ts
e T
1
0 12
t/T
t/T
y u
4.6 6 5 2
3 1.6
0 12
t/T
t/T
第三节 模型算法控制(MAC) 一. 预测模型
y 7.6 8.5
6.5
4.6 6 3.8
5
3 2.3 3 2.5 1.5 0.8 0 1 2 34 5 6 u
2 1 u(0) u(1)
y(1) h1u(0) y(2) h2u(0) h1u(1) y(3) h3u(0) h2u(1) y(4) h4u(0) h3u(1) y(5) h5u(0) h4u(1)
u(k N 1) h1
u(k N 2)
h2
u(k N M )
u(k N M 1)
u(k M 2) u(k M 3) u(k P N ) hN
第三节 模型算法控制(MAC) 一. 预测模型
Ym (k) H1U1(k) H2U2 (k)
N
t/T
y(k) hiu(k i)
i 1
y(t) 0 g()u(t )d
t/T
第三节 模型算法控制(MAC) 一. 预测模型
采用脉冲响应模型对未来时刻输出进行预测
N
ym (k j) hiu(k j i) i 1
P 称为预测时域
j 1, 2, , P
取u(k + i)在i = M - 1后保持不变
u(k)
y(k) 受控过程
+ y(k+j| k)
+
模型输出 反馈校正
动态 预测模型
y(k|k)
_ +
三要素:预测模型 滚动优化 反馈校正
第二节 预测控制的基本原理 一. 预测模型(内部模型)
预测模型的功能 根据被控对象的历史信息{ u(k - j), y(k - j) |
j≥1 }和未来输入{ u(k + j - 1) | j =1, …, m} ,预测 系统未来响应{ y(k + j) | j =1, …, p} 预测模型形式 参数模型:如微分方程、差分方程 非参数模型:如脉冲响应、阶跃响应
1─k 时刻的预测输出 2─k +1时刻实际输出
t/T
3─ k +1 时刻预测误差 4─k +1时刻校正后的预测输出
第三节 模型算法控制(MAC)
模型算法控制(Model Algorithmic Control): 基于脉冲响应模型的预测控制,又称模型预测 启发式控制(MPHC)
60年代末,Richalet等人在法国工业企业中应用 于锅炉和精馏塔的控制
预测控制有关公司及产品 SetPoint : IDCOM DMC : DMC AspenTech : SetPoint Inc : SMC- IDCOM
DMC Corp : DMCplus Profimatics: PCT Honeywell : Profimatics : RMPCT Adersa(法) : HIECON Invensys : Predictive Control Ltd : Connoisseur DOT(英) : STAR
h1
h1
h2
PM 1
hi
i1
PM
第三节 模型算法控制(MAC) 二. 反馈校正
以当前过程输出测量值与模型计算值之差修正模型预测值
yP (k j) ym (k j) j y(k) ym (k)
N
ym (k) hiu(k i) i 1
对于P步预测
j 1, 2, , P
反馈校正
在每个采样时刻,都要通过实际测到的输出信息对基于 模型的预测输出进行修正,然后再进行新的优化
闭环优化
不断根据系统的实际输出对预测输出作出修正,使滚动 优化不但基于模型,而且利用反馈信息,构成闭环优化
第二节 预测控制的基本原理 三. 反馈校正(误差校正)
反馈校正示意图
2
4 3
y
1
u
k
k+1
i 1
i jM 2
控制作用可分为两步
j M , M 1, , P
U1(k) u(k N 1)
u(k N 2)
u(k
1)
T 1( N 1)
已知控制作用
U2 (k) u(k)
u(k 1)
u(k
M
1)
T 1M
未知控制作用
第三节 模型算法控制(MAC) 一. 预测模型
ym (k 1) u(k)
hN
0
H1
hN 1
hN
0
hN
h1
h2
h2
h3
H2
hM
hP1 P( N 1)
hM 1
hP
h1
hM 1
hM
hP1
U1(k) u(k N 1)
u(k N 2)
u(k
1)
T 1( N 1)
U2 (k) u(k)
u(k 1)
u(k
M
1)
T 1M
0 hPM 2
最优控制率为
U2(k)
H
T 2
QH
2
R
1
H
T 2
Q
Yr
(k)
H1U1(k )
βe(k )
Q diagq1 q2 qP R diagr1 r2 rM
现时刻k的最优控制作用
U2 (k) DT Yr (k) H1U1(k) βe(k)
DT 1
0
0 1M
H
T 2
QH
2
R
第四章
模型预测控制
内容要点
1 预测控制的发展 2 预测控制的基本原理 3 模型算法控制(MAC) 4 动态矩阵控制(DMC) 5 状态反馈预测控制(SFPC) 6 多变量协调预测控制
第一节 预测控制的发展
现代控制理论的发展与特点 特点 状态空间分析法 最优性能指标设计 应用 航天、航空等军事领域 要求 精确的数学模型
局部优化
不是采用一个不变的全局最优目标,而是采用滚动式的 有限时域优化策略。在每一采样时刻,根据该时刻的优 化性能指标,求解该时刻起有限时段的最优控制率
在线滚动
计算得到的控制作用序列也只有当前值是实际执行的, 在下一个采样时刻又重新求取最优控制率
第二节 预测控制的基本原理 二. 滚动优化(在线优化)
滚动优化示意图
k 时刻优化
yr
y
2 1
3
u
k+1 时刻优化
yr
2
1
y
3
u
k k+1