大学数学经典求极限方法(最全)

大学数学经典求极限方法(最全)
大学数学经典求极限方法(最全)

大学数学经典求极限方

法(最全)

-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

求极限的各种方法

1.约去零因子求极限

例1:求极限1

1

lim 41--→x x x

【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1

)

1)(1)(1(lim

2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限

例2:求极限1

3lim 32

3+-∞→x x x x

【说明】

型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3

11323=

+-=+-∞→∞→x x

x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ????

???

=<∞>=++++++----∞→n

m b a n m n m b x b x b a x a x a n n

m m m m n n n n x 0lim 01101

1

3.分子(母)有理化求极限

例3:求极限)13(lim 22+-++∞

→x x x

【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1

3)

13)(13(lim

)13(lim 2

2

22222

2

+++++++-+=+-++∞

→+∞

→x x x x x x x x x x

01

32lim

2

2

=+++=+∞

→x x x

例4:求极限3

sin 1tan 1lim

x

x

x x +-+→ 【解】x

x x x

x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim

3030

+-+-=+-+→→ 41

sin tan lim 21sin tan lim

sin 1tan 11

lim

30300

=-=-+++=→→→x x x x x x x

x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键

4.应用两个重要极限求极限

两个重要极限是1sin lim 0=→x

x

x 和e x n x x x n n x x =+=+=+→∞→∞→1

0)1(lim )11(lim )11(lim ,第

一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。

例5:求极限x

x x x ??

?

??-++∞→11lim

【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X

1

+,最后凑指数部分。

【解】22

21212112111lim 121lim 11lim e x x x x x x x x

x x

x =????

????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =???

??-++∞

→x

x a x a x ,求a 。

5.用等价无穷小量代换求极限 【说明】

(1)常见等价无穷小有:

当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -,

()abx ax x x b

~11,2

1~

cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式..

; (3)此方法在各种求极限的方法中应作为首选.....

。 例7:求极限0ln(1)

lim

1cos x x x x →+=-

【解】 002

ln(1)lim lim 211cos 2

x x x x x x

x x →→+?==-.

例8:求极限x x

x x 30tan sin lim -→

【解】x x x x 30tan sin lim -→613lim 31cos lim sin lim 22

2102030-=-==-=-=→→→x

x x x x x x x x x 6.用罗必塔法则求极限

例9:求极限220)

sin 1ln(2cos ln lim x

x x x +-→ 【说明】

∞∞或0

型的极限,可通过罗必塔法则来求。

【解】220)sin 1ln(2cos ln lim x x x x +-→x

x x

x x x 2sin 12sin 2cos 2sin 2lim 20+-

-=→ 3sin 11

2cos 222sin lim

2

0-=??

?

??+--=→x x x x x 【注】许多变动上显的积分表示的极限,常用罗必塔法则求解

例10:设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim

??--→x x

x dt

t x f x dt

t f t x

【解】 由于?

??=-=

-=-0

)())(()(x

x

x

u t x du u f du u f dt t x f ,于是

?????

-=--→→x

x

x

x x x

x du

u f x dt

t tf dt t f x dt

t x f x dt

t f t x 00

)()()(lim

)()()(lim

=?

?+-+→x

x

x x xf du u f x xf x xf dt t f 0

)

()()

()()(lim

=?

?+→x x

x x xf du u f dt

t f 0

)

()()(lim

=)

()()(lim

x f x du

u f x dt

t f x

x

x +?

?

→=

.2

1)0()0()0(=+f f f

7.用对数恒等式求)()(lim x g x f 极限

例11:极限x

x x 20

)]1ln(1[lim ++→

【解】 x

x x 20

)]1ln(1[lim ++→=)]1ln(1ln[2

lim x x

x e

++→=.2)

1ln(2lim

)]1ln(1ln[2lim

00e e

e x x x x x x ==+++→→

【注】对于∞1型未定式)()(lim x g x f 的极限,也可用公式

)()(lim x g x f )1(∞=)()1)(lim(x g x f e -

因为

===-+)1)(1ln()(lim ))(ln()(lim )()(lim x f x g x f x g x g e e x f )()1)(lim(x g x f e -

例12:求极限3

01

2cos lim 13x x x x

→??+??-?? ???????

.

【解1】 原式2cos ln 33

1lim

x x x e

x +??

???

→-=2

02cos ln 3lim x x x →+?? ???= 20ln 2cos ln 3lim x x x →+-=()01

sin 2cos lim 2x x x x →?-+=()

011sin 1

lim 22cos 6

x x x x →=-?=-+

【解2】 原式2cos ln 33

1lim

x x x e

x +??

???

→-=202cos ln 3lim x x x

→+?? ???= 2

cos 1ln 3lim

x x x →-+

=(1)

20cos 11lim 36x x x →-==-

8.利用Taylor 公式求极限

例13 求极限 ) 0 ( ,2

lim 20>-+-→a x

a a x x x . 【解】 ) (ln 2

ln 122

2ln x a x a x e

a a

x x +++==,

) (ln 2

ln 122

2x a x a x a

x

++-=-;

). (ln 2222x a x a a x x +=-+-

∴ a x x a x x a a x x x x 2

2

222020ln ) (ln lim 2lim

=+=-+→-→ . 例14 求极限011

lim (cot )x x x x

→-.

相关主题
相关文档
最新文档