化工废水处理技术研究进展
《2024年含磷废水处理技术研究进展》范文

《含磷废水处理技术研究进展》篇一一、引言随着工业化的快速发展,含磷废水的排放已成为环境保护领域的热点问题。
由于磷元素是植物生长不可或缺的营养元素,它的大量排放将导致水体富营养化,影响水质及生态平衡。
因此,如何有效处理含磷废水成为亟待解决的问题。
本文旨在全面介绍含磷废水处理技术的研究进展,分析当前存在的问题,并提出未来的发展方向。
二、含磷废水来源及危害含磷废水主要来源于工业生产、农业活动及生活污水等。
其中,工业生产中的化工、冶金、电镀等行业是主要的磷污染源。
磷的大量排放会导致水体富营养化,引发藻类大量繁殖,消耗水中氧气,影响水生生物的生存,严重破坏水生态平衡。
此外,磷还是一种重要的环境污染物,可能对人体健康造成潜在威胁。
三、含磷废水处理技术研究进展针对含磷废水的处理,国内外学者进行了大量的研究,提出了一系列处理方法,包括生物法、化学法、物理法等。
1. 生物法生物法是利用微生物的新陈代谢作用将磷从废水中去除。
该方法具有成本低、操作简单等优点。
近年来,学者们对生物除磷技术进行了深入研究,发现通过调控微生物的代谢途径和种群结构,可以显著提高除磷效率。
此外,生物法还可以与其他技术相结合,如生物滤池、生物膜法等,以进一步提高除磷效果。
2. 化学法化学法主要包括沉淀法、结晶法等。
沉淀法是通过向废水中投加化学药剂,使磷以沉淀物的形式从水中分离出来。
常用的化学药剂有铁盐、铝盐等。
结晶法则是通过调节废水的pH值和离子浓度,使磷以磷酸盐的形式结晶析出。
化学法的优点是处理效果好、速度快,但可能产生二次污染。
3. 物理法物理法主要包括吸附法、膜分离法等。
吸附法是利用吸附剂(如活性炭、膨润土等)的吸附作用将废水中的磷去除。
膜分离法则是通过膜的选择性透过性将废水中的磷与其他物质分离。
物理法的优点是处理效率高、无二次污染,但成本较高。
四、存在的问题及未来发展方向尽管含磷废水处理技术取得了一定的研究成果,但仍存在一些问题。
首先,现有技术的成本仍较高,难以满足大规模应用的需求;其次,部分处理方法可能产生二次污染;最后,不同行业、不同地区的水质条件差异较大,缺乏通用的处理方法。
化工厂废水处理与资源化利用技术研究

化工厂废水处理与资源化利用技术研究化工厂废水处理与资源化利用技术的研究,在保护环境、减少资源浪费、提高经济效益等方面具有重要意义。
本文将从化工废水的特点、常见处理技术以及资源化利用的潜力等方面探讨化工厂废水处理与资源化利用技术的研究。
一、化工废水的特点化工废水是指在化工生产过程中产生的废水,其特点主要包括以下几个方面:1. 复杂组分:化工生产过程中使用的各种化学试剂和原料,使得废水中存在多种有机物、无机盐和重金属等复杂组分。
2. 高浓度:化工生产过程中,由于反应催化剂的浓度要求和化学反应速率的要求等因素,使得废水中有机物和无机物的浓度往往较高。
3. 酸碱度极性强:由于化学反应过程中的酸碱催化作用,导致废水的酸碱度往往较强,且难以处理。
4. 毒性较大:部分化工废水中存在毒性较大的有机物和重金属离子等物质,对环境和生态系统造成较大影响。
综上所述,化工废水的特点使得其处理过程具有较高的技术难度和复杂性。
二、常见的化工废水处理技术针对化工废水的特点,当前已经研发出了多种有效的废水处理技术。
以下将介绍其中几种常见的处理技术:1. 生物处理技术:通过利用特定的微生物菌群分解废水中的有机物,将其转化为无害物质。
常见的生物处理技术包括活性污泥法、固定化生物膜法等。
2. 氧化还原技术:将废水中的有机物或无机物通过氧化还原反应转化为无害物质。
常见的氧化还原技术包括高级氧化技术、电化学氧化技术等。
3. 膜分离技术:通过使用特殊的半透膜,将废水中的溶质和溶剂进行分离,以实现废水的净化和浓缩处理。
常见的膜分离技术包括微滤、超滤、纳滤和反渗透等。
4. 吸附技术:利用吸附剂将废水中的有机物和重金属等物质吸附并固定在吸附剂表面。
常见的吸附技术包括活性炭吸附、杂化材料吸附等。
以上仅仅是常见的废水处理技术,根据具体情况和废水特性的不同,还可以采用其他适用的技术进行处理。
三、废水处理与资源化利用的潜力传统的废水处理方式主要是将废水进行简单的处理后排放,这种方式浪费了废水中的可回收物质并对环境造成了污染。
煤化工废水处理工艺研究现状及发展前景

煤化工废水处理工艺研究现状及发展前景1. 引言1.1 煤化工废水处理的重要性煤化工废水是指在煤化工生产过程中产生的含有大量有机物、重金属离子以及悬浮固体颗粒的废水。
这类废水如果未经处理直接排放,将会对环境造成严重的污染和危害。
煤化工废水中的有机物和重金属离子会对水体造成污染,降低水质,对水生生物和生态环境产生危害。
废水中的悬浮固体颗粒会影响水体的透明度和氧气溶解能力,影响水生生物的生存。
煤化工废水中还可能含有致癌物质和毒性物质,对人类健康构成潜在威胁。
对煤化工废水进行有效处理是十分必要和紧迫的。
通过科学合理的废水处理工艺,可以将废水中的有害物质去除或转化,并达到排放标准,保护水环境,减少对生态环境的破坏。
废水处理还可以实现资源化利用,回收废水中有用的物质,减少生产成本,具有经济效益。
煤化工废水处理的重要性不言而喻,对于环境保护、人类健康和产业可持续发展都具有重要意义。
1.2 研究背景煤化工废水是煤化工生产过程中产生的含有有机物、重金属等污染物的废水。
随着煤炭化工产业的快速发展,煤化工废水排放量逐渐增加,污染物浓度和种类也不断增多,给环境带来了严重的影响。
煤化工废水中的有机物和重金属等污染物不仅对水体生态系统造成严重危害,还可能对人类健康产生潜在影响。
研究煤化工废水处理工艺的背景主要包括以下几个方面:煤化工废水处理是环境保护和资源利用的重要环节,其处理效果直接关系到煤化工产业的可持续发展。
目前国内外煤化工废水处理工艺存在着技术水平不够先进、处理成本过高、资源回收率较低等问题,急需开展更深入的研究和技术创新。
煤化工产业对废水排放达标要求越来越严格,对废水处理技术的要求也日益增加,因此有必要开展针对煤化工废水的更为深入和全面的研究工作。
1.3 研究意义煤化工废水处理的研究意义主要体现在以下几个方面:煤化工废水处理是解决环境污染和资源浪费的重要手段。
煤化工生产过程中产生的废水中含有大量的有机物和重金属物质,如果直接排放到环境中会对水体造成严重污染,影响生态平衡和人类健康。
《2024年膜技术在工业废水处理中的应用研究进展》范文

《膜技术在工业废水处理中的应用研究进展》篇一一、引言随着工业化的快速发展,工业废水处理成为环境保护和可持续发展的关键问题。
传统的废水处理方法在处理复杂、高浓度的工业废水时,往往存在效率低、效果差等问题。
近年来,膜技术作为一种新型的分离技术,在工业废水处理领域得到了广泛应用。
本文旨在研究膜技术在工业废水处理中的应用及其进展。
二、膜技术概述膜技术是一种基于物理、化学或机械手段,利用半透膜实现物质分离的技术。
膜技术的核心是利用膜的选透性,通过不同孔径的膜对废水中的物质进行选择性分离和去除。
常见的膜技术包括微滤、超滤、纳滤和反渗透等。
三、膜技术在工业废水处理中的应用1. 微滤在工业废水处理中的应用:微滤主要去除废水中的悬浮物、胶体等大分子物质,如重金属、悬浮颗粒等。
其孔径一般在微米级别,可有效去除废水中的杂质,为后续处理提供便利。
2. 超滤在工业废水处理中的应用:超滤的孔径介于微滤和纳滤之间,可有效去除废水中的有机物、病毒、细菌等。
在染料、制药等行业的废水处理中,超滤技术得到了广泛应用。
3. 纳滤和反渗透在工业废水处理中的应用:纳滤和反渗透的孔径较小,主要用于去除离子态物质、溶解性有机物等。
在电镀、化工等行业的废水处理中,纳滤和反渗透技术发挥着重要作用。
四、膜技术在工业废水处理中的研究进展1. 膜材料的研究:为了提高膜的性能,研究者们开发了各种新型膜材料,如无机膜材料、复合膜材料等。
这些新材料具有更高的抗污染性能、更长的使用寿命和更好的分离效果。
2. 膜工艺的优化:针对不同行业、不同特性的废水,研究者们不断优化膜工艺,如复合膜的组合方式、运行参数等。
这些优化措施提高了处理效率,降低了运行成本。
3. 膜技术的应用研究:随着对膜技术研究的深入,其在工业废水处理中的应用范围不断扩大。
例如,将膜技术与生物反应器结合,形成膜生物反应器(MBR),在污水处理中取得了良好的效果。
五、结论膜技术在工业废水处理中发挥着越来越重要的作用。
化工废水处理工艺技术的研究及应用进展

化工废水处理工艺技术的研究及应用进展摘要:近年来,我国化工行业在发展速度上十分迅速,化工产品种类十分丰富,且成分多种多样,虽然化工产品能够为创作明显的经济价值,但是也会导致一定的环境污染。
目前,我国化工行业高度重视化工废水处理,同时在废水处理工艺技术上也取得了明显的进步,然而,相当一部分企业的废水排放仍难以满足相关标准和要求,更加无法达到零排放。
所以,在今后的化工发展中,必须要进一步推动化工废水处理工艺技术的研究。
关键词:化工废水;处理工艺;技术;应用进展引言:化工行业在日渐发展壮大的同时,化工废水在排放量也呈现出逐日增加的态势,极易导致严重的环境污染。
现阶段,我国对于环保问题十分重视,这使得化工废水的处理工艺技术研究显得更加迫切。
基于此,在接下来的文章中,将围绕化工废水处理工艺技术的研究及应用进展方面展开分析,希望能给相关人士提供参考依据。
一、化工工业废水的特点水资源是人类生存和发展过程中所需要的必要资源,也是人们生活过程中的重要资源,而水质的本身具有一定程度上的复杂性,水中包含有多种副产物,这些副产物对水质具有一定程度上的影响,在人们进行生活用水的时候,其水质问题也是人们关注的重要问题。
在化工工业发展的过程中,其化工相关原料的组成部分主要是由和溶剂相似的化合物所构成的,这些化合物存在一定的复杂性和多样性的特点,使得化合物在处理的时候,其处理难度是相对较大的,并且在化工废水中,其有毒物质的量也呈现出不断增加的现象,包含有硝基化合物和卤素化合物等等有毒物质,这些化工原料在水中进行有效分解之后,其能够形成含有毒性性质的物质,这些物质对人体的健康具有严重威胁,也会对人们所处的生存环境造成一定影响。
化工废水是极其复杂的,废水中的污染物的含量相对较高,化工废水的有毒物质也在不断增加,就会造成水资源被污染之后,出现色度加深的情况。
化工废水中存在的污染物质相对较多,化工废水在处理的时候,如果在化工废水中所含有的有毒物质出现增加的现象,这些化合物可能会出现分解的情况,使得其逐渐形成有毒的物质,对人体健康具有一定威胁,也对人们的生活环境产生负面影响。
煤化工废水难降解有机物的处理技术进展

煤化工废水难降解有机物的处理技术进展目录一、内容综述 (2)1. 煤化工废水的特点与危害 (2)2. 难降解有机物的定义与影响 (4)3. 处理技术的必要性及挑战 (5)二、煤化工废水处理技术现状 (6)1. 物理法 (7)2. 化学法 (8)3. 生物法 (9)3.1 微生物降解 (10)3.2 生物膜法 (12)3.3 活性污泥法 (13)三、难降解有机物处理技术进展 (14)1. 高效预处理技术 (16)1.1 深度氧化 (17)1.2 电化学预处理 (19)2. 创新降解技术 (20)2.1 超临界水氧化 (21)2.2 电化学协同降解 (22)2.3 生物强化技术 (23)3. 多技术联合应用 (24)3.1 物理化学联用 (25)3.2 化学生物联用 (26)3.3 物理生物化学联用 (27)四、技术应用与案例分析 (29)1. 工业应用案例 (30)1.1 烯烃厂废水处理 (32)1.2 煤气化废水处理 (34)2. 学术研究案例 (35)2.1 高效预处理技术研究 (36)2.2 新型降解技术研究 (37)2.3 多技术联合应用研究 (39)五、结论与展望 (40)1. 技术成果总结 (42)2. 存在问题与不足 (43)3. 未来发展趋势与展望 (44)一、内容综述煤化工废水难降解有机物的处理技术进展,是当前环保领域的重要研究方向之一。
随着煤化工产业的迅速发展,产生的废水处理问题日益突出,其中难降解有机物的处理更是技术难点和重点。
本文旨在对煤化工废水难降解有机物的处理技术进展进行全面综述,介绍相关技术的最新研究成果、应用现状及发展趋势。
煤化工废水中的难降解有机物主要包括酚类、芳香烃、多环芳烃等,这些物质具有稳定的高分子结构,难以通过传统的生物处理或物理处理方法实现有效降解。
针对这些难降解有机物的处理技术一直是研究的热点,随着科技的不断进步,新的处理技术不断出现并得以应用,为煤化工废水处理提供了新的解决途径。
我国煤化工废水的特点及其处理技术研究

我国煤化工废水的特点及其处理技术研究1. 引言1.1 我国煤化工废水的现状随着我国煤炭化工产业的快速发展,煤化工废水排放量不断增加,成为环境保护的严重难题。
目前,我国煤化工废水的主要特点包括废水含有高浓度的有机物、高浓度的氨氮和硫化物、大量悬浮固体物质等。
这些特点使煤化工废水的处理难度较大,传统的废水处理技术往往无法完全去除其中的污染物,导致废水排放对环境造成严重影响。
我国煤化工企业的废水处理设施存在着设备老化、技术落后、管理不严等问题,导致废水处理效果不佳。
部分企业为降低成本,采取了不合理的废水处理方法,甚至直接将废水排放到江河中,严重污染了周边水域和土壤环境。
面对这一现状,加强研究煤化工废水处理技术,提高废水处理效率和质量,已成为当务之急。
只有通过科学合理的废水处理技术,才能有效减少煤化工废水对环境的污染,保护生态环境,实现可持续发展。
1.2 研究意义煤化工废水是煤化工生产过程中的重要排放物之一,其含有大量有机物、重金属、氰化物等有害物质,对环境和人类健康造成严重危害。
研究煤化工废水处理技术的意义在于实现废水资源化利用、减少对环境的污染,保护生态环境,维护人类健康,提升煤化工企业的可持续发展能力。
通过对煤化工废水处理技术的研究,可以优化废水处理工艺,提高处理效率,降低处理成本,实现资源的循环利用,减少对环境的负面影响。
煤化工废水处理技术的研究还可以促进煤化工行业技术创新,提高企业竞争力,推动煤化工产业的可持续发展。
研究煤化工废水处理技术的意义在于促进环境保护、资源利用和经济发展的有机结合,为我国煤化工行业的可持续发展提供技术支持和保障。
研究所得的成果还可以为其他相关领域的废水处理提供借鉴和参考,具有广泛的应用前景和社会意义。
1.3 研究目的研究目的是为了探究我国煤化工废水的特点及其处理技术,为解决煤化工废水治理中存在的问题提供参考和解决方案。
通过对煤化工废水处理技术的研究,可以有效改善废水处理效率,减少废水对环境的污染,提高资源利用效率,促进煤化工行业的可持续发展。
《2024年石油化工废水处理技术研究进展》范文

《石油化工废水处理技术研究进展》篇一一、引言随着石油化工行业的快速发展,产生的废水问题日益突出,其处理技术的研究与进步显得尤为重要。
石油化工废水含有复杂的有机物、重金属及有害物质,如不经过有效处理直接排放,将对环境造成严重污染,影响生态平衡和人类健康。
因此,石油化工废水处理技术的研究成为了环境保护领域的重要课题。
本文旨在探讨石油化工废水处理技术的最新研究进展。
二、石油化工废水特点及危害石油化工废水具有成分复杂、有机物含量高、毒性大、色度深、难降解等特点。
这些废水若不经过妥善处理,将严重污染水体,影响水资源的可持续利用,同时可能对生态系统和人类健康造成长期危害。
三、石油化工废水处理技术的研究进展(一)物理法物理法主要包括吸附法、膜分离法等。
近年来,研究重点在于寻找高效、环保的吸附材料和膜材料。
例如,活性炭、纳米材料等被广泛应用于吸附法中,能够有效去除废水中的有机物和重金属。
同时,新型的膜材料也在不断提高对油类等污染物的截留率。
(二)化学法化学法包括氧化还原法、混凝沉淀法等。
这些方法主要通过化学反应改变污染物的性质,从而达到去除污染物的目的。
例如,光催化氧化技术近年来发展迅速,能够有效地降解废水中的有机物。
此外,新型的混凝剂和沉淀剂也在不断研发中,以提高对废水中污染物的去除效率。
(三)生物法生物法是利用微生物的新陈代谢作用降解废水中的有机物。
近年来,研究重点在于构建高效、稳定的生物反应器和提高微生物的适应性。
例如,通过基因工程技术改良微生物的遗传特性,提高其对特定污染物的降解能力。
同时,新型的生物反应器如膜生物反应器等也在提高处理效率方面取得了显著成果。
(四)组合技术组合技术是将两种或多种处理方法组合起来,以实现更高效的废水处理。
例如,物理-化学组合法、生物-化学组合法等。
这些方法能够充分发挥各种处理方法的优势,提高对废水中污染物的去除效率。
近年来,随着研究的深入,越来越多的组合技术被应用于石油化工废水的处理中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工废水处理技术研究进展
作者:李晓建
来源:《装备维修技术》2020年第08期
摘要:社会经济不断发展影响下,深度处理、清洁生产等零排放或减排的概念进入到化工企业。
当前,化工产业园区企业数量不断增加,对应化工企业污水排放量也大大增加。
化工污水排放占整体水污染21%,但是,其带澳排放量仅占化工污水排放52%,对水环境造成严重污染。
分析综合化工废水中水回用处理技术迫在眉睫,需重视化学废水处理,确保环境可持续发展,促进经济可持续发展。
关键词:化工废水;处理技术;研究进展
1 化工废水的来源及特点
随着我国工业生产的迅速崛起,环境污染也日益严重,工业领域中的化工产业既是我国用水大户,同时也是污水排放大户。
我国各大湖泊河流港口的水质污染与化工废水的排放脱不了干系,它每年的排放量约占我国废水污染量一半以上。
通过对各种化工厂化工废水调查研究,发现其主要来源有下面种途径:(1)原料和产品的流失。
在开釆、运输、生产等各种过程中,会有一部分物料、产品流失,通过大风、雨水、大雪冲刷,形成化工污染废水。
(2)管道及设备的泄露。
由于管道或设备操作不当或者密封不良,在化工生产和物料运送过程中,往往形成泄露。
(3)生产设备的清洗。
化工生产的容器、设备、管道在实际生产过程中需要经常清洗,而其残留的物料可能会随着清洗水一并排出,最终形成废水。
(4)未反应完的原料。
(5)副产品的生成。
(6)特定生产过程生成废水。
这类化工废水一般是由蒸汽蒸馆、气提、酸洗、堿洗的排放水。
化工废水种类繁多,有毒有害,不易净化,不仅在生物体内有一定的积累作用,且在水体中有耗氧性质,易使水质恶化。
2 化工废水处理技术概述
2.1 化学方法
在处理化工废水的过程中采用化学方法能够对废水中的无机物、有机物进行清除,提高废水处理效率,具体包括化学氧化法、催化氧化法、混凝法、斜管沉淀法等。
化学混凝法即将相应的化学物质加入废水中,其与无机有机物建立化学反应关系,出现凝聚与沉淀效应,这一方法在实际处理过程中,具有很大的应用优势,不容易受到干扰因素的影响,但是也存在一定的缺陷,例如水量、水温会对清除效果产生影响。
化学氧化法即将相应的氧化剂加入废水中,实现清除废水中的有机物,在这一过程中,氧化剂结合废水中的金属杂质建立氧化还原反应关系,形成固结与沉淀,达到水与有毒物质分离的目的。
这些方法虽然可以取得良好的处理效果,然而耗费的资源、成本较多,对于废水量大及废水浓度较低的废水处理不太适用。
电化学
氧化即将有机物的溶液或悬浮液加入电解槽,利用直流电,在阳极上夺取电子使有机物氧化或是先使低价金属氧化为高价金属离子,进而再进行有机物氧化的处理过程。
废水处理的氧化还原法国内外研究都比较多,它主要是利用废水中的有毒有害物质,通过氧化还原作用能够被氧化或被还原的性质,在废水处理时,使其转化为无毒无害的新物质或者容易与水分离的形态。
一般比较常见的是臭氧氧化法,空气氧化法,光化学氧化法,硫酸亚铁还原法,亚硫酸盐还原法,及水合肼还原法等。
氧化还原法处理废水时,效果明显,工艺简单,且一般没有污泥等附加负担,但是能量消耗多,经济成本高,且对安全性要求高,不适合处理水量大和浓度低的化工废水。
2.2 物理方法
物理法对降解、清除废水中的砂、悬浮固体、油等物质能够发挥很大作用。
现阶段,化工废水处理中采用的较为普遍的物理方法主要有三种,重力沉淀、过滤和气浮。
重力沉淀即借助重力磁场作用对化工废水进行沉淀,达到固液隔离的效果;过滤处理即通过过滤层使难溶解的杂质得到清除,悬浮物处理的具体过程中,通常会采用微孔管及其过滤设备;气浮处理即将空气注入废水中,微小气泡在水中作为载体,气泡吸附废水中的乳化油、微小悬浮颗粒等污染物,然后浮到水面上,形成泡沫-气、水、颗粒(油)三相混合体,进而对浮渣、泡沫进行收集,最终实现杂质分离、废水净化。
当前化工废水处理过程中多采用的技术是分离膜和磁分离两种,据相关统计分析,磁分离方法可以促使污泥沉降,具体采用过程中应当合理调节污水中的磁铁粉末,促进磁分离技术充分发挥磁性作用,从而更有效的污水中的磁化泥进行吸附,确保实现物质回收再利用。
2.3 生物处理法
微生物具有良好的新陈代谢特性,在化工废水处理中正是有效利用了这一优势,从而达到分解、去除有机污染物的目的。
在采用生物处理工艺的过程中主要有两个方案,一是好氧技术,二是厌氧技术。
好氧技术包括活性污泥法和生物膜法,有研究资料表明,针对含有高浓度有机物质的废水处理,好氧生物吸附处理工艺的效果显著,可以大大提高废水中COD去除率。
厌氧技术在应用中发挥了厌氧微生物的高效降解优势,生物膜高效吸附与氧化废水中的有机物,从而实现相应的净化处理;或利用微生物降解废水中的有机物。
例如印染厂的废水处理工作中,采用生物法进行COD去除,去除效果较为理想。
2.4其他处理强氧化及去除技术
2.4.1固定性生物处理
该技术属于新兴化工废水处理技术,其将物理、化学理论知识结合起来,将细胞、酶固定在限制空间,确保其自身活性,实现重复利用。
固定性生物处理可获取高效菌种,获取高浓度、纯度菌种,可处理高浓度污染物。
例如,可以以木屑、聚乙烯醇为原材料,固定红球菌,以此处理石油废水,经2-3周后,可实现对正构烷烃的高效去除,可达70%-100%。
2.4.2湿氧法及超临界水氧法
湿氧法需高温高压支持,在废水中制造有机物氧化反应,以制造催化剂使废水污染物在较低温度压力下,有机物氧化。
湿氧法可溶解高难度和浓度废水,可实现对染料及有机磷废水处理。
化工产业不断发展,使人们重视湿氧法的应用。
当下,湿氧法主要应研究温和条件下,对高浓度、难降解的化工废水预处理。
临界水氧法属湿氧法延伸技术,其在水临界点(22.1MPa、374℃)以上,快速将有机物氧化,无二次污染产生。
2.5 磁分离技术
作为一种新兴的废水处理技术,近几年磁分离技术越来越受到人们的关注。
该技术是在废水处理过程中投加磁种和混凝剂,进而利用二者的共同作用,使反应生成的颗粒迅速聚结加大密度差,从而加速悬浮物的分离。
基本原理是通过外加磁场对含有磁性物质的悬浮物吸引从而实现悬浮物和与废水的分离效果。
采用磁分离技术改善了活性污泥法中的污泥沉降问题,在废水处理过程中加入磁铁(Fe3O4)粉末使由于细菌簇团效应产生的活性污泥具有磁性,从而实现磁化泥吸附在转鼓上,进而对其进行回收利用。
将磁分离技术应用于炼油厂高浓度废水的处理,效果显著。
2.6 膜分离技术
膜分离技术是一项应用面宽,适应性强的高效分离浓缩技术,该技术是在选择透过性膜在化学位差或外力的作用下,对混合物中粒径不同的组分进行分离和提纯。
成功地将纳滤膜用来提取麻黄素,经过纳滤工艺处理后废水中的COD含量接近100mg/L,此时的麻黄素溶液可以直接进行回收。
研究人员采用膜生物反应器(MBR)对采油污水进行了研究,在MBR中投放粉末活性炭可提高MBR的出水水质。
3 结束语
综上所述,当下废水得到一定处理,但是其还存在一定问题,比如因盐度、毒性等导致生物中毒、水循环平衡的损耗补充等,还需要进一步解决。
为确保群众饮水安全、生活用水安全,应优化各个处理技术,将不同技术组合起来,开展高效废水处理技术,促进化工产业可持续发展。
参考文献:
[1]刘建国.精细化工废水处理技术及控制对策分析[J].化工管理,2019(33):103-104.
[2]孔令瑞.石油化工废水处理技术研究进展[J].化工设计通讯,2019,45(07):116+118.
[3]宣逸安.化工废水处理技术与环境发展研究[J].工程建设与设计,2019(10):125-126.
[4]唐海龙,李倩倩.煤化工废水处理技术研究及应用分析[J].云南化工,2019,46(02):66-68.。