铝合金车轮设计及结构分析
概述铝合金轮毂的造型设计与结构

概述铝合金轮毂的造型设计与结构铝材具有矿藏资源丰富、易加工、回收利用方便、密度小、强度高、耐蚀性好、导电导热性好等优点。
并且随着科学技术的不断发展,铝合金有着越来越丰富的应用空间。
在汽车制造业中,铝合金材料的运用可以使汽车自身重量大大降低,并且能够提升汽车性能,提高行驶速度,所以铝合金已经越来越多地运用到汽车制造业中。
本文就铝合金在汽车轮毂中的应用做简要探讨。
1 汽车轮毂的结构轮毂是介于汽车半轴和轮胎之间的用于承受汽车自重及外界载荷的旋转部件,轮毂的结构包括胎圈座、胎斗、轮缘、中心孔、安装凸台、中心线、通风口等。
但是组成轮毂最主要的两个部件还是轮辋和轮辐。
轮毂通过轮辋与轮胎配合的同时还通过轮辐与车桥连接,从而实现轮毂承载、行驶、转向、驱动和制动等作用。
1.1 轮辋轮辋,俗称轮圈,是车轮周边安装轮胎的部件,轮辋的规格很重要,因为它直接决定汽车可以用哪些轮胎。
常见的轮辋形式主要有深槽轮辋、平底轮辋、对开式轮辋、半深槽轮辋、整体式轮辋、平底宽式轮辋等。
此外,还可以根据组成轮辋的零件的数量,将轮辋分为一件式轮辋、两件式轮辋和三件式轮辋甚至四件式、五件式轮辋。
轮辋的设计和制造都有相应的标准,这关系着设计制造出来的轮辋是否能够与轮胎的使用相配合。
就目前而言,我国的轮辋在生产时都是按照按国家标准GB/T 3487-2005来生产。
1.2 轮辐轮辐介于轮辋和车轴之间,在轮毂中主要功能是支撑作用。
轮辐的构造是决定轮毂分类的基础,根据轮辐结构的差异,可以将轮毂分为辐板式轮毂和辐条式轮毂。
辐条式轮毂主要靠众多钢丝辐条来达到支撑重力。
辐条式轮毂的优点是通风散热优良,但是由于制作成本高,做工复杂不便于安装和维修,所以应用多见于高级轿车和赛车,很少应用在普通汽车上。
在普通的汽车中应用最广泛的还是辐板式轮毂,辐板的作用是连接轮辋和安装凸台。
轮辐的作用主要是起到重量支撑的作用,所以轮辐的形状在设计和制造的时候可以多种多样,并没有统一的要求。
基于有限元分析的轿车铝合金车轮设计

本科学生毕业设计基于有限元分析的轿车铝合金车轮设计院系名称:汽车与交通工程学院专业班级:车辆工程07-1班学生姓名:沈维梁指导教师:石美玉职称:教授黑龙江工程学院二○一一年六月The Graduation Design for Bachelor's DegreeBased on Finite Element Analysis Design of Car Alloy WheelsCandidate:Shen WeiliangSpecialty:Vehicle EngineeringClass:B07-1Supervisor:Prof. Shi MeiyuHeilongjiang Institute of Technology2011-06·Harbin摘要轻量化是世界汽车工业发展的主要趋势,轻质材料铝及其合金等的使用是一种有效的途径。
目前,大部分汽车车轮已使用铝及其合金做作为材料,利用现代设计方法,在此基础上进一步实现车轮的轻量化则是本文的研究所在。
在研究了CAD软件Pro /E以及有限元分析软件ANSYS的功能及其主要特点后,着重进行了了应用ANSYS对铝合金车轮进行结构强度分析的具体过程。
首先使用Pro/E软件,按照轮辋的国家标准,建构车轮的实体模型;然后把模型导入ANSYS,按2005年中国汽车行业标准中的汽车轻合金车轮的性能要求和实验方法所规定的疲劳实验要求施加荷载;然后进行强度分析和模态分析,分析结果表明,车轮的最大应力远小于铝合金的许用应力,车轮的固有频率满足要求,存在进一步改进的可能和必要。
最后,改进车轮模型,改进结果表明,车轮的重量有了显著的减少。
利用CAE分析技术有助于提高汽车车轮的设计水平、缩短设计周期、减少开发成本。
该方法具有普遍性,适用于指导任何其言型号车轮的设计和分析。
关键词:铝合金车轮;结构设计;有限元分析;强度分析;模态分析ABSTRACTLightweight is the main trends of the world's automotive industry, lightweight materials such as the use of aluminum and its alloys is an effective way. At present, most automotive aluminum and its alloy wheels have been used to do as a material, using modern design methods, based on the further realization of this lightweight wheels is the Institute of this article.In the study of the CAD software Pro / E and ANSYS finite element analysis software functions and the main characteristics, the Emphasis was the application of ANSYS, the structural strength of aluminum alloy wheel analysis of the specific process.First ,uses the Pro / E software, according to the rim of the national standards, building wheel solid model; then the model into ANSYS, by 2005 China's auto industry standard in automotive light-alloy wheels and performance requirements and test methods under the fatigue test requirements defined load and then the strength analysis and the results showed that the wheel is much less than the maximum stress allowable stress of aluminum alloy, there is further improvement possible and necessary. Then, the improved wheel models, improved results show that the weight of the wheels have been significantly reduced.The results show that the use of CAE analysis technology helps improve the design of automobile wheel level, shorten design cycles, reduce development costs. The method is universal, applicable to any of his words and models to guide the design and analysis of the wheel.Key words: Aluminum Alloy Wheels; Structural Design; Finite Element Analysis; Strength Analysis; Modal Analysis目录摘要 (I)Abstract ............................................................................................................... I I 第1章绪论. (1)1.1课题研究的目的意义 (1)1.2铝合金车轮行业现状及发展趋势 (1)1.2.1铝合金车轮的发展及其现状 (1)1.2.2铝合金车轮的发展趋势 (3)1.3国内外研究方法 (4)1.4主要研究内容 (5)第2章车轮三维模型的建立 (6)2.1 Pro/E软件基础 (6)2.2车轮Pro/E模型的建立 (7)2.2.1车轮构造、种类及装配 (7)2.2.2 车轮三维模型建立过程 (9)2.3 本章小结 (15)第3 章车轮强度静态分析 (16)3.1 ANSYS软件基础 (16)3.2 Pro/E与ANSYS的接口创建 (17)3.3车轮几何模型的简化 (18)3.4 A356的材料特性 (18)3.5边界条件的处理 (18)3.6载荷的处理 (19)3.7车轮弯曲疲劳试验有限元模型 ............................................... 错误!未定义书签。
低压铸造铝合金车轮设计要点

低压铸造铝合金车轮设计要点铝合金车轮具有质量轻、能耗低、散热快、减震性好、安全可靠、外观漂亮、图案丰富以及平衡性好等优点,被整车制造企业和广大车主所青睐。
我国铝合金轮毂的生产大多采用低压铸造工艺。
该工艺是在20世纪80年代后期由中信戴卡公司引进,经过20多年的发展,已经比较成熟。
但真正意义上的开发设计工作是在最近几年,随着我国整车制造水平的提升,才开始与整车开发同步进行设计。
车轮设计要点铝合金车轮的设计包括外观设计和工程设计。
车轮外观要与整车外观相匹配,车轮不仅是外观件,还是重要的安全部件,因此外观设计时就必须考虑工程要求。
一般情况下,在车轮进行外观设计时,工程人员也要参与,与造型设计师共同完成外观设计工作,以缩短车轮的开发周期。
现以大众车轮设计为例,具体分析低压铸造铝合金车轮设计中关注的要点。
大众车轮执行德国大众标准和欧盟的设计规范,主要考虑的方面有整车造型、车轮装配、车轮生产工艺和车轮试验。
1.整车造型车轮是整车的时尚装饰,是对整车外形设计的一种延伸,因此车轮造型作为整车造型的一部分,必须与整车的造型风格协调一致,给人以美感。
2.车轮装配车轮最终要装配到整车上,装配时与之相配合的零部件有轮胎、平衡块、刹车鼓、安装盘、安装螺栓和气门嘴。
铝合金车轮设计时注意的装配要点如下:(1)轮胎与铝合金车轮装配的轮胎一般情况下是无内胎的子午线轮胎,在轮胎与车轮轮辋之间形成一个封闭的空间。
大众车轮的轮辋结构执行欧洲轮辋标准——ETRTO标准,该标准对轮辋各部位的结构、尺寸做出了明确规定,在车轮设计时必须严格遵守。
同时,为防止车辆行驶过程中路肩石划伤车轮表面(路肩石的高度标准为150mm),要求车轮正面不能超出轮胎外侧面,一般要缩进2.5mm以上。
(2)平衡块平衡块的作用是使车轮在高速旋转下保持平衡,避免车辆在行驶过程中抖动和方向盘振动,提高车辆的舒适性。
车轮设计时,要求平衡块与刹车鼓之间的间隙不小于3mm。
(3)刹车鼓在车辆行驶过程中,车轮是旋转的,刹车鼓是静止的,因此在车轮设计时要保证车轮内表面与刹车鼓之间有一定的间隙,一般控制在3mm以上。
《铝合金轮毂的力学性能及有限元分析》范文

《铝合金轮毂的力学性能及有限元分析》篇一一、引言随着汽车工业的快速发展,铝合金轮毂因其轻量化、高强度、耐腐蚀等优点,逐渐成为现代汽车的重要部件。
了解铝合金轮毂的力学性能及其在各种工况下的应力分布,对于提高轮毂的设计水平、保障行车安全具有重要意义。
本文将针对铝合金轮毂的力学性能进行探讨,并运用有限元分析方法对其力学行为进行深入研究。
二、铝合金轮毂的力学性能铝合金轮毂的力学性能主要表现在其抗拉强度、屈服强度、延伸率及硬度等方面。
这些性能参数决定了轮毂在承受外力时的变形程度和抗破坏能力。
1. 抗拉强度与屈服强度:铝合金轮毂的抗拉强度和屈服强度是评价其承载能力的重要指标。
抗拉强度表示轮毂在拉伸过程中能够承受的最大力,而屈服强度则反映了轮毂在应力作用下的塑性变形能力。
2. 延伸率:延伸率是衡量铝合金轮毂塑性变形能力的重要参数。
高延伸率的轮毂在受到冲击时能够更好地吸收能量,降低破坏风险。
3. 硬度:铝合金轮毂的硬度与其耐磨性、抗冲击性密切相关。
适当的硬度可以保证轮毂在使用过程中不易磨损、不易变形。
三、有限元分析方法在铝合金轮毂中的应用有限元分析是一种有效的数值模拟方法,可用于研究铝合金轮毂在各种工况下的应力分布、变形及破坏模式。
通过建立轮毂的有限元模型,可以对其进行分析和优化。
1. 建立有限元模型:根据铝合金轮毂的实际结构,建立精确的有限元模型。
模型中应包括轮毂的各部分结构、材料属性及边界条件等。
2. 施加载荷及约束:根据轮毂在实际使用中可能承受的载荷,如重力、刹车力、侧向力等,在有限元模型上施加相应的载荷及约束。
3. 求解及后处理:通过有限元软件进行求解,得到轮毂在各种工况下的应力分布、变形及破坏模式。
对结果进行后处理,提取所需的数据及图表。
四、铝合金轮毂的力学行为分析通过有限元分析,可以深入了解铝合金轮毂在各种工况下的力学行为。
例如,在高速行驶过程中,轮毂所受的应力分布情况;在刹车过程中,轮毂的变形及应力集中情况等。
铝合金车轮的制造工艺技术(PPT 42页)

提纲
一、铝合金车轮概述 二、铝合金车轮的结构和分类 三、铝合金车轮的设计 四、铝合金车轮使用的材料 五、铝合金车轮的制造工艺 六、铝合金车轮的相关标准
一、铝合金车轮的概述
铝合金车轮是基于“轻量化”的设计目标,首先使用在赛车上。 20世纪初,使用砂模制造铝合金车轮,并应用于赛车 20世纪50年代,使用钢模铸造整体式铝合金车轮,并应用于轿车 20世纪70年代,得到快速发展,被广泛应用 21世纪初,极其迅猛发展,进入国内外OEM配套体系
二
轮辋
主要由两部分组成
轮辐
1、铝合金车轮按结构形式分: 1片式(整体式)
2片式 3片式
2、铝合金车轮按生产方式分:
1)铸造:重力铸造、低压铸造、液态挤压、反压铸造、离心铸造、
真空压铸、半凝固铸造等
2)锻造
优缺点: 锻造车轮简单说有以下优点:1.强度高,2.重量轻,3.相对铸
本工序控制要点:前处理槽液参数、调漆参数和固化参数。
全涂装车轮的工艺流程: 上料——预处理——烘干——喷粉——固化——喷漆——固化——下料
预处理:通常指在涂装前在工件上进行的除油、除锈、磷化这三个工序的通称。
较典型的铝合金车轮涂装预处理的工艺流程如下: 表面活性剂水溶液除油→水洗(二道) →中和出光→水洗→转化膜处理→水
轮辋名义 直径
轮辋轮 廓代号
安装孔 个数
轮辋名 义宽度
偏距
螺栓孔分 度圆直径
2、铝合金车轮构造图
3、铝合金车轮各部位命名示意图
4、铝合金的设计流程图
新开发产品流程:
外观造型效 果图
轮辐造型A 面三维数模
车轮工程结 构设计
提供供应商工 艺分析
提交客户转供应商 开发模具、试制
《铝合金轮毂的力学性能及有限元分析》

《铝合金轮毂的力学性能及有限元分析》篇一一、引言铝合金轮毂以其轻量化、高强度和良好的抗腐蚀性等特点,在现代汽车工业中得到了广泛应用。
了解铝合金轮毂的力学性能和通过有限元分析(FEA)进行结构优化,对于提升汽车性能、保障行车安全具有重要意义。
本文将探讨铝合金轮毂的力学性能及其有限元分析方法。
二、铝合金轮毂的力学性能1. 轻量化与高强度铝合金轮毂的主要优点之一是其轻量化与高强度。
铝合金材料具有较低的密度,能够有效降低汽车整车的重量,从而提高燃油经济性。
同时,其高强度保证了轮毂在承受重载和冲击时能够保持结构的完整性。
2. 抗腐蚀性铝合金具有良好的抗腐蚀性,能够抵抗潮湿、盐雾等恶劣环境的侵蚀,延长了轮毂的使用寿命。
此外,铝合金轮毂的表面处理技术如喷涂、电镀等也能进一步提高其抗腐蚀性能。
三、铝合金轮毂的有限元分析有限元分析是一种有效的工程分析方法,可以用于研究铝合金轮毂的力学性能和结构优化。
通过建立轮毂的三维模型,并利用有限元软件进行网格划分、材料属性定义、边界条件设定等步骤,可以对轮毂进行详细的力学分析。
1. 网格划分与材料属性定义在有限元分析中,首先需要对轮毂进行网格划分,将轮毂划分为若干个小的有限元单元。
然后根据铝合金的材料属性,如弹性模量、泊松比、屈服强度等,为每个单元赋予相应的材料属性。
2. 边界条件设定与加载在有限元分析中,需要设定边界条件,如约束、载荷等。
约束条件通常根据轮毂在实际使用中的固定方式来设定。
载荷则包括轮毂承受的重力、离心力、风阻等。
通过施加这些边界条件,可以模拟轮毂在实际使用中的受力情况。
3. 力学性能分析通过对轮毂进行有限元分析,可以得到其在各种工况下的应力、应变、位移等力学性能参数。
这些参数可以帮助我们了解轮毂的承载能力、刚度、抗疲劳性能等,为结构优化提供依据。
四、结构优化与改进通过有限元分析得到的力学性能参数,可以对铝合金轮毂的结构进行优化和改进。
例如,可以通过调整轮毂的厚度、形状、加强筋的位置和数量等,来提高其承载能力和抗疲劳性能。
铝合金车轮结构设计有限元分析与实验研究

铝合金车轮结构设计有限元分析与实验研究铝合金车轮结构设计有限元分析与实验研究摘要:随着汽车工业的发展,轻量化设计成为将来汽车工程的一个重要方向。
车轮作为汽车的重要组成部分之一,其结构设计直接关系到汽车的性能和安全。
本文旨在通过有限元分析与实验研究的方法,探索铝合金车轮结构设计的优化方案,以达到轻量化和高强度的目标。
关键词:铝合金车轮、有限元分析、实验研究、结构设计 1. 引言随着汽车工业的不断发展,节能减排、环境友好以及安全性能成为汽车设计的重要关注点。
由于铝合金材料具有轻质、高强度、抗腐蚀等优势,因此在汽车制造领域得到广泛应用。
车轮作为汽车的关键组成部分之一,其结构设计对车辆的操控性能、燃油经济性以及乘坐舒适性等方面有着重要影响。
2. 有限元分析有限元分析是一种通过将实际结构离散化为有限个单元,采用数值计算方法对结构进行力学分析的方法。
本文选择ANSYS软件进行有限元分析,模拟铝合金车轮在不同载荷情况下的应力、应变分布。
3. 实验研究为了验证有限元分析的结果,本文进行了一系列的实验研究。
首先,通过采用合适的材料与工艺条件,制备出铝合金车轮样品。
然后,在实验室环境下,模拟真实道路条件进行加载实验,测量并记录车轮在不同载荷情况下的应力、应变数据。
最后,将实验结果与有限元分析的结果进行对比,验证有限元分析的准确性。
4. 结果与讨论基于有限元分析和实验研究的结果,发现在铝合金车轮的结构设计中,提高轮辐与轮毂的连接方式对车轮的强度和刚度具有重要影响。
通过优化连接方式,可以提高车轮的整体强度和刚度,提高其承载能力和抗疲劳性能。
此外,选用合适的铝合金材料以及适当的加工工艺,也能够有效地提高车轮的强度和刚度。
5. 结论本研究通过有限元分析和实验研究的方法,探索了铝合金车轮结构设计的优化方案。
结果表明,在设计铝合金车轮时,合理选择轮辐与轮毂的连接方式、选用适当的铝合金材料以及优化加工工艺等因素都对车轮的强度和刚度具有重要影响。
《铝合金轮毂的力学性能及有限元分析》

《铝合金轮毂的力学性能及有限元分析》篇一一、引言随着汽车工业的快速发展,铝合金轮毂因其轻量化、耐腐蚀性以及良好的成形性能等优势,已经成为了现代汽车制造业的标配。
为了更全面地理解铝合金轮毂的力学性能和其在各种条件下的应力分布,有限元分析(FEA)已成为不可或缺的辅助手段。
本文旨在研究铝合金轮毂的力学性能及其在有限元分析中的应用。
二、铝合金轮毂的力学性能铝合金轮毂的力学性能主要体现在其抗拉强度、屈服强度、冲击韧性以及疲劳强度等方面。
这些性能的优劣直接决定了轮毂的安全性和使用寿命。
1. 抗拉强度和屈服强度:铝合金的抗拉强度和屈服强度是衡量其抵抗外力破坏能力的关键指标。
铝合金轮毂通常需要具备较高的抗拉和屈服强度,以保证在高速行驶和复杂路况下不会发生断裂或变形。
2. 冲击韧性:冲击韧性是指材料在受到冲击载荷时吸收能量并保持其完整性的能力。
铝合金轮毂需要具备良好的冲击韧性,以应对突发情况如碰撞等。
3. 疲劳强度:由于轮毂需要长期承受车辆重力和路面反作用力等循环载荷,因此其疲劳强度也是一项重要的力学性能指标。
优质的铝合金轮毂应具备较高的疲劳强度,以延长其使用寿命。
三、有限元分析在铝合金轮毂中的应用有限元分析(FEA)是一种通过数值计算方法对实际物理系统进行模拟的技术。
在铝合金轮毂的设计和优化过程中,有限元分析具有重要的应用价值。
1. 模型建立:首先,根据铝合金轮毂的实际尺寸和结构,建立精确的有限元模型。
模型中需要考虑轮毂的材料属性、边界条件以及载荷情况等因素。
2. 材料属性定义:在有限元模型中,需要定义铝合金的材料属性,如弹性模量、泊松比、密度、抗拉强度、屈服强度等。
这些属性将直接影响有限元分析的结果。
3. 载荷和边界条件设置:根据实际工作情况,设置轮毂所受的载荷和边界条件。
如车辆重力、路面反作用力、轮胎与轮毂之间的摩擦力等。
4. 求解和分析:通过求解有限元方程,得到轮毂在各种工况下的应力、应变、位移等结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
失 效
热 处 理
I 产品规 格l 试验弯矩 l 实 验转速 l 螺纹扭矩l 要求寿命 l 在有 限元模型中,载荷是加在加载轴端 , L 为加载轴长度 :
M = LX F v
施加载荷 :
机 加 工
F:
三
( 2 )
实验
…… … 善 格
● 一 批 — —1 最生 r — ’ 产 f - 一 - - -
f
… . . . , .
( 2 ) 螺栓预紧力 在试验 过程 中车轮通过轮毅 的五个螺栓 固 定在 安装盘 上 ,螺 纹规格 为M 1 2 x 1 . 5 ,试验 要 参考文献 求 螺栓扭矩 达到 1 1 0 N m ,根据机 械设计 原理 , 【 1 ] 赵 玉涛编 铝合金车轮制造技术【 M ] . 北京: 机械 工业出 普通螺纹力矩 :
…
…
…
…
…
…
…
…
…
…
.
室 一 -
铝 合 金 车 轮 设 计 及 结 构 分 析
德 州学院汽车工程学院 王 豪楠
【 摘要 】车轮是汽车行驶 系统 中重要的安全部件,汽车前进的驱动力通过车轮传递 ,车轮的结构性 能对整车的安全性和可靠性有着重要的影响。另外,车轮还是汽车外观 的重要组成部分 。传统 车轮设计 多凭借经验展开,存在着设计盲 目性大、设计制造周 期长、成本高等诸 多弊端。面对 日益激烈的市场竞争,企业迫切需要采用科学的手段 改善设计 方法,本文所采用 C A D 技 术和有限元分析方法是解决上述 问题的理想方法。本文运用 工业设计理论 ,将造 型设计构思表现的方法与技能应用于车轮设计中,结 合车轮结构尺寸优 化和形状优化 ,使工程技术与形式美密切结合,综合表现 了车轮 的性 能、结构和外观美。 【 关键词 】铝 合金车轮;有 限元分析 ;结构设计;强度分析;疲劳分析
车荷的处理 试验 中车轮 所受到应力有弯 曲疲劳试验 工 况 下产生 的结构应 力和 车轮在制 造过程 ( 如铸 造 、机加 工、热 处理等 ) 中产生 的残余 应力 。 车轮铸造 中往往会产生疏 松、针孔等缺陷 ,它 们在 一定程度上影响 了材料 的属性及其疲劳 强 度 ,机加 工过程 的进刀量 和进 刀速度等工 艺也 会在车轮 上留下残余应力 ,热处理过程有着 消 除残余应 力的作用 ,但是这 些残余应力受众 多 因素影 响 J ,难 以在有限元仿真 中进行定量 分 析 ,因此 我们只考虑试验 _ T 况下车轮结构应 力 的作用 。 在动 态弯曲疲劳试验工况下 ,车轮承受 载 荷来源有 三个 ,轮毅紧 固螺栓产生的预紧力 、 车 轮 高速 旋转 时产 生 的离 心力 和试 验 弯矩 载 荷 。表 1 和 表2 分别为车轮 的设计参数及试验 参
1 . 引 言
普遍意义 的车轮包括轮 胎和金属轮辆一轮 辐一轮毅两部 分,本文所研 究的车轮 只限于金 属轮惘一轮辐 一轮 毅部分 ,不包括 轮胎 。车轮 是介于轮胎和 车桥 之间承受 负荷 的旋转 件,它 不仅承受着静 态时车辆本身垂直方 向的 自重载 荷, 同时也经 受着 车轮行驶过程 中来 自各个方 向因起动 、制 动、转弯、物体冲击 、路面凹凸 不半等各种动 态载 荷所产生不规 则力的作用 , 是车辆行驶 系统中重要的安全结构 部件 ,其结 构性能是车 轮设计 中主要 因素…。另外 ,车轮 作为整车外观 的主要元素之一 ,象征着整车的 档次 ,多变 的铝合金车轮轮辐形态 和明亮的色 泽越来越为 人们所关注 ,因此车轮 的外观设计 也因此变得越发的重要。 2 . 铝合金车轮的设计 方法 车轮制造企业 的设计 手段依然采用传统的 设计方法,其设计及生产流程如图l 所示
一
式 ,代入相 关数据即可得作 用在 轮毅上螺栓 预 紧力。 4 . 设计载荷的变化对结构应力的影响 为 了检测车轮 的疲劳性能,改变车轮 的设 计载荷 ,对不 同的设计载荷分别 进行车轮 的弯 曲疲 劳寿命 试验 。表 3 — 7 是设计 载荷及 其相应 的试验弯矩 。本 节利用有 限元静 力学分析法 , 计算车轮在各 试验弯矩作用 下,结构危险 点的 应力值状况,分析结果如表3 所 示。
版社, 2 0 0 4
由于螺栓预紧力仅对 螺栓孔附近 区域产生 影响 ,对车轮 结构其他部位影 响近 乎为零 ,因 此有限元分析 时仅考虑离心 力及 试验弯矩作用 ( 以下分析相同) 。 由分析结果可见 ,随着设计载荷 、试验弯 矩 的增大 ,车轮 结构的应力 也随之线性增大 。 应力最大 点在 四种试验弯矩 下,结构应力值均 低于材料 的屈服 极限 ,处于线弹 性状态 ,因此 采用线弹性分析是可行的。 5 . 结论 车轮是介于轮胎 和车 桥之间承受负荷 的旋 转件 ,是车辆 行驶系统 中重要 的安全部件 ,同 时也是汽车外观 重要组成部分 ,车轮的造 型设 计 、结构强度 和疲劳强度是车轮 设计的关键 。 传统的车轮设 计主要进行造 型设 计,结构强度 和疲劳强度通 过试样的试验验证 。该方法对经 验有很强 的依赖 性,存在设计盲 目性大 、周期 长、成本高等弊端。 结合有 限元方法对 车轮进行结构优化 、强 度分析和疲 劳分析,在设计 阶段 预测车轮 的结 构强度和疲 劳寿命,并实现优化 设计。保证产 品质量 的前提 下,缩短 了产 品的设计周期 ,降 低了 产 品的设计和制造成本。
表3设计载荷及其 相应的试验弯矩
数。
表1车轮设计参数
l [ 产品 堕 规 格l 设 计载 荷 l 静 载 荷 半 径l 偏 距l 安 全 系 数I Ⅱ g[ I 【 ]
:
模 其实 验
1 |
式样 铸造
( 1 ) 试验弯距 试 验弯矩 可通过 式 ( 1 ) 求 得 。最 小循环 次 数也可根据车轮的尺寸及安全系数 查S A E J 2 5 3 0 得 出,车轮试验参数如表2 所示。