气体辅助成型技术
气体辅助注塑成型技术

气体辅助注塑成型技术第一章: 气体辅助注塑成型简介1、气体辅助注塑成型的发明及发展概述: 多年来,人们一直在研究中空塑料制品的成型加工技术及对塑料产品的质量改善作出研究。
1944年,Opavsky将气体或液体通过注射器注入到树脂中以达到改善产品质量为目的,但未获成功,这是最早的气辅概念研究。
我们今天所知道的气体辅助注塑成型技术是从20世纪70年代中期发展起来的,德国人Ernst Friederich是第一个发明气体辅助注塑成型工艺的人(1975年)(他的原理是将已加压的气体通过喷嘴注射到熔融物料当中,使熔融物料与模具内壁表面充分接触)。
由于当时的技术存在相当的局限性,并没有得到一定的重视。
直到80年代中期,该项技术才开始得到真正的发展及运用。
后来在欧洲出现了包括: Cinpress, Battenfeld, Ferromatik, Stork, Engel 及Johnson Controls 一批设备生产商,并在不断地改良这种技术。
到了90年代后期,气体辅助注塑成型技术得到飞速的发展及运用。
2、气体辅助注塑成型制品的两个主要类型:●封闭式气道(SINGEL GAS CHANNEL) ●开放式气道(GAS CHANNEL) 封闭式气道制品主要由一个厚壁截面和气体穿行的通道组成,如门把手、扶手、管状把手等都属于这种结构。
因为气体的扩散有一条设定好的路线(即胶料较厚,温度较高,流动性较好的部分,亦即是气体流动的方向),制品能达到最佳的节省材料的目的,而且由于制品中空结构使刚性加强而不用增加质量。
开放式气道制品主要是薄壁制品(壁厚不能少于2MM),类似于传统的加强筋结构制品。
气体会从较厚的加强筋向前扩散(及气体流动的方向:胶料相对较厚的部分,形成气道GAS CHANNEL),但气体可能会穿透制品的薄壁部分(有时会出现指形扩散:指纹效应FINGERING),即高压气体往较厚胶料或密度较低的部分渗入。
3、气体辅助注塑成型方法的优点:●制品残余应力降低●翘曲变形较小●减少/消除缩痕●简化模具设计●制品综合性能提高●缩短成型周期●合模力吨位要求降低●射胶压力降低4、气体辅助注塑成型适用材料: ABS、ABS/PC、HIPS、PA、PBT、PC、PS、PVC、PET、PP、PPE等第二章: 气体辅助注塑成型的方法及原理 1、气体辅助注塑成型的原理:通过管道与模具连接,把高压气体(氮气)注入到模腔的塑料熔体中,形成局部的中空,加速产品冷却成型。
气体辅助注射成型技术原理及应用

气体辅助注射成型技术原理及应用
气体辅助注射成型技术的应用
● 管状和棒状零件,如门把手、转椅支座、吊 钩、扶手、导轨、衣架等。这是因为,管状结 构设计使现存的厚截面适于产生气体管道,利 用气体的穿透作用形成中空,从而可消除表面 成型缺陷,节省材料并缩短成型周期。
气体辅助注射成型技术原理及应用
在进行模具设计之前,利用MoldFlow MPI 5.0对设计方案进行了模拟。 分析模型如图8所示,在该分析模型中确定了浇口及进气口位置。在模拟中, 设定预注射量为70%,熔体温度为230℃,注射时间为3s,延迟时间为1.5s, 气体压力为20MPa。
气体辅助注射成型技术原理及应用
● 可通过气体的穿透减轻制品重量,节省原材料 用量,并缩短成型周期,提高生产率。
● 该技术可适用于热塑性塑料、一般工程塑料及 其合金以及其他用于注射成型的材料。
气体辅助注射成型技术原理及应用
气体辅助注射成型技术的缺点是:
●需要增加供气和回收装置及气体压力控制单元, 从而增加了设备投资;对注射机的注射量和注射 压力的精度要求有所提高;制品中接触气体的表 面与贴紧模壁的表面会产生不同的光泽;制品质 量对工艺参数更加敏感,增加了对工艺控制的精 度要求。
气体辅助注射成型CAE分析的主要作用是:
1.分析产品的成型工艺性 2.评价模具的设计是否合理 3.优化成型工艺参数 4.预测制品可能出现的缺陷
气体辅助注射成型技术原理及应用
下面以成型把手为例,介绍气体辅助注射成型 CAE分析的过程。
如图7所示的把手材料为ABS,手柄位置壁厚为14mm。由于是外观件,对 其成型要求很高。
气体辅助注塑成型技术简介.

一、气体辅助注塑原理:
气体辅助注塑原理是把高压氮气经气辅 主控制器(分段压力控制系统)直接注射入 模腔内塑化塑料里,使塑件内部膨胀而造成 真空,但仍然保持产品表面的外形完整无缺, 减小产品表面的收缩、产品变形和翘曲,从 而达到提高产品的质量,降低成本的目的。
二、采用气体辅助注塑技术的优点:
应用气辅技术的国内公司:康佳、长虹、创维、科龙、 美的、海信等等;上海延锋伟世通、浙江远翅、上海龙贤汽 配、余姚塑料四厂、宁波国雅汽车内饰件厂以及各类注塑厂 都应用了气辅技术。
四、气体辅助注塑整系统的原理图:
A、整套系统
氮气 发生 器
低压 贮气缸
电动 高压 增压机
高压 贮气缸
气辅 主控 制器
单相电源 压缩空气 三相电源
六、气道形式:
• C、全部中空
七、我厂第一副气辅产品-前门拉手 (LZ111-6402101)
八、前门拉手采用气辅方案:
八、前门拉手采用气辅方案:
谢谢!
——END——
B、简易系统
氮气 缸瓶
气动 高压 增压机
压缩空气
单相电源
高压 贮气缸
气辅 主控 制器
单相——以定量塑化塑料充填入模腔内。所需塑料 份量要通过试验找出来,以保证在充氮期间,气体不 会把成品表面冲破及能有一理想的充氮体积。
2、充气期——注塑期中或后,不同时间注入气体,气体 注入的压力必需大于注塑压力,以达至产品成中空状 态。
模具的工作寿命; 7、降低注塑机的锁模压力,可高达50%; 8、提高注塑机的工作寿命和降低耗电量。
三、气体辅助注塑技术的应用:
基本上所有用于注塑的热塑性塑料及一般的工程材料 (如PS、HIPS、PP、ABS…)都适用于气辅技术。
气辅成型工艺

气辅成型工艺气辅成型工艺是一种常见的工艺方法,广泛应用于各个行业中,特别是在塑料加工领域。
这种工艺利用气体的辅助作用,能够有效地改善成型过程中的各种问题,提高产品的制造质量和生产效率。
气辅成型工艺最早应用于塑料吹塑,主要用于制作生活用品和包装材料等。
随着工艺的不断发展和创新,气辅成型工艺在其他领域,如金属、陶瓷等材料的成型和加工中也得到了广泛应用。
气辅成型工艺主要是通过在成型过程中引入气体,使原材料在特定的条件下快速膨胀、充填和成型,从而得到所需的形状和尺寸。
这种工艺的最大特点是成型速度快、制造效率高,同时能够保持较高的产品质量和精度。
气辅成型工艺的基本原理是利用气体的压力和流动性。
在成型过程中,首先将待成型的材料加热到一定温度,使其变得可塑性,并注入成型模具中。
然后,在充填材料的同时,用高压气体将材料膨胀起来,使其充分填充模具的空腔。
当材料冷却固化后,即可取出成型品,完成整个成型过程。
气辅成型工艺具有以下几个主要优点:1.成型速度快:由于气辅成型工艺利用气体的压力和流动性,可以实现材料的快速充填和膨胀,因此成型速度较快。
2.高效节能:相比传统的成型工艺,气辅成型工艺能够在短时间内完成成型过程,从而提高了生产效率。
同时,由于成型时只需加热和膨胀材料,相较于其他加热制造工艺,能够有效地节约能源和材料。
3.产品质量好:气辅成型工艺能够实现材料的快速膨胀和充填,将材料完全填充模具的空腔,因此成型品的表面光洁度好,尺寸精度高,并且能够保持一致性。
4.成型范围广:气辅成型工艺不仅适用于塑料,还可以应用于金属、陶瓷等其他材料的成型和加工。
并且模具的制作相对简单,可以根据需要设计和制造不同形状和尺寸的模具。
气辅成型工艺在各行各业中得到了广泛的应用,例如:1.包装行业:利用气辅成型工艺可以制作出各种塑料包装容器,如瓶子、罐子、盒子等。
这些容器具有良好的密封性和防潮性能,能够有效保护包装物的品质。
2.汽车制造业:汽车零部件的成型通常采用气辅成型工艺,如车灯、车身、内饰等。
气体辅助注塑成型技术

1气体辅助注塑成型是通过把高压气体引入到制件的厚壁部位,在注塑件内部产生中空截面,完全充填过程、实现气体保压、消除制品缩痕的一项新颖的塑料成型技术。
传统注塑工艺不能将厚壁和薄壁结合在一起成型,而且制件残余应力大,易翘曲变形,表面时有缩痕。
新发展的气辅技术通过把厚壁的内部掏空,成功地生产出厚壁、偏壁制品,而且制品外观表面性质优异,内应力低。
轻质高强。
现已开发成功气辅产品结构和模具设计包括浇注系统、进气方式和气道分布设计技术,气辅注塑工艺设计技术,气辅注塑工艺设计技术,气辅注塑过程计算机仿真技术,气辅注塑产品缺陷诊断与排除技术,气辅工艺专用料技术。
电视机、家电、汽车、家具、日常用品、办公用品、玩具等为塑料成型开辟了全新的应用领域,气辅注塑技术特别适用于管道状制品、厚壁、偏壁(不同厚度截面组成的制件)和大型扁平结构零件。
气体辅助装置:包括氮气发生和增压系统,压力控制单元和进气元件。
投资约40--200万元(视规模和对设备要求的档次不同而不同)。
气辅工艺能完全与传统注塑工艺(注塑成型机)衔接。
减轻制品重量(省料)可高40%,缩短成型周期(省时达30%,消除缩痕,提高成品率;降低注塑压力达60%,可用小吨位注塑机生产大制件,降低操作成本;模具寿命延长、制造成本降低,还可采用如粗根、厚筋、连接板等更稳固的结构,增加了模具设计自由度。
通常6-18个月可收回增加的设备成本(具体经济效益随制件而议)。
2气体辅助注塑系统,这个先进的系统和技术,是把氮气经由分段压力控制系统直接注射入模腔内的塑化塑料裹,使塑件内部膨胀而造成中空,但仍然保持产品表面的外形完整无缺。
应用气体辅助注塑技术,有以下优点:1)节省塑胶原料,节省率可高达50%。
2)缩短产品生产周期时间。
3)降低注塑机的锁模压力,可高达60%。
4)提高注塑机的工作寿命。
5)降低模腔内的压力,使模具的损耗减少和提高模具的工作寿命。
6)对某些塑胶产品,模具可采用铝质金属材料。
气体辅助成型综述

注射成型产品及模具设计综述引言:人们很早就开始研究如何彻底消除裂痕而又能节省材料的有效方法。
曾经研究过的方法有低压注塑、气体补压注塑、混合注塑、气体发泡成型等,但效果都不很理想。
气体辅助注塑工艺是将气体直接注入熔胶中,气体内的压力抵消了塑料在冷却过程中的体积收缩。
用这种方式注塑出来的制品,不仅没有裂痕,而且还有许多其他的优越性。
气体辅助注射成型技术(简称:气辅成型)是20世纪80年代在结构发泡成型工艺基础上发展起来的一项新兴的塑料注射成型技术,是塑料注射成型工艺技术中的一项革命。
气辅成型应用在最近一、二年来有强劲的增长趋势,它具有多种优点,但因为经验不足和气体不易控制,增加了气辅成型产品开发上的困难。
简要介绍:气辅注射模塑,又称气体注射模塑是一种创新的注射成型工艺。
它是自住复式螺杆注射机问世以来.注射成型工业上最重要的发展之一,它能用于生产无内应力、表面光滑且无凹陷的大型制件.在生产较厚的制件时,气辅注射模塑还可以通过减少所需的夹紧吨位、用材量和循环时间来降低制件成本.气辅注射模塑的工艺过程如图1所示。
首先把部分熔融的塑料注射到模具中.我们称此为“欠料注射”。
紧接着再注入一定体积或一定压力的惰性气体(通常为氮气)到熔融塑料流中。
由于靠近模具表面部分的塑料温度低、表面张力高.而处在制件较厚部分中心的塑料熔融体的温度高、粘度低,致使气体易于在制件较厚的部位(如加强筋)形成空腔.而被气体所取代的熔融塑料被推向模具的末端,形成所要成型的制件。
在气辅注射模塑中.由于气体的压力始终使塑料紧贴着模具的表面.制件较厚部分的外表面不能形成“凹陷”.大大提高了制件的质量。
此工艺不但简化了模具设计,降低了模具成本.还增加了制件设计的灵活性。
在合理的设计下,可使制件的重量比传统注射模塑减少10--50%,且使制件得到较高的强度与重量比。
另外。
氮气充满制件的气体压力与传统注射模塑所需的压力柑比要小得多.因此所需的模具夹紧力也较小。
气体辅助注塑工艺简介

气体辅助注塑工艺简介1.气体辅助注塑目前所指的气体辅助注塑:是指将氮气注射入产品内,使产品内部形成中空。
模具打开前,控制器会将塑胶工件内的氮气释放回大气中。
2.气辅注塑成形工艺的优势1)低射胶、低锁模力;2)压力分布均匀、收缩均匀、残余应力低、不易翘曲,尺寸稳定;3)消除凹陷,型面再现性高;4)省塑料,可用强度及价格更低的塑料;5)可用强度和价格更低的模具金属;6)厚薄件一体成型,减少模具及装配线数目;7)可用较厚的筋,角板等补强件,提高制品刚性,使得制件公称厚度得以变薄。
8)增强设计自由度。
3.气辅射胶控制工艺1)短射工艺,即胶料未完全充满型腔时,继之以氮气注射;2)满射工艺,塑胶熔体充满型腔之后,停止注射,继之以氮气注射。
短射工艺的特点:在气辅注塑中,塑胶注射取决于胶件形状及胶料性能,在以下条件才可进行短射。
1)胶件必须有独立完整的气体通道,即气流在穿透胶件时,无分支气道可走。
2)气体通道中多余胶料有足够的溢流空间。
3)胶料流动性优良,粘度不可太低,尽量避免使用含破坏高分子键的填充物的胶料。
4)胶料导热度较低,有可较长时间保持熔融状态的能力。
满射工艺特点:胶件射胶完成,通过气体代替啤机,防止胶件收缩。
其优点在于,啤机保压是以射胶量及压力来防止胶件收缩,气辅保压,则以气体穿透塑胶收缩后的空间,防止胶件表层埸陷。
4.气辅压力分析:现我们看以下气辅压力与啤机压力的对比:1)气辅压力a)低气压800psi=56.34kg/cm2b)中气压1500psi=105.63 kg/cm2c)高气压2500psi=176.06kg/cm22)啤机压力a)100 TON注塑最大压力188Mpa=1917 kg/cm2b)280 TON注塑最大压力150Mpa=1530 kg/cm2c)650TON注塑最大压力153Mpa=1560 kg/cm2从以上压力对比可知,氮气压力只相当于普通啤机注塑压力的十分之一,甚至更少。
注塑成型过程中气体辅助成型技术的应用前景探讨

注塑成型过程中气体辅助成型技术的应用前景探讨气体辅助成型技术是注塑成型过程中的一种新型辅助成型技术。
通过气体辅助,可以在注塑成型过程中形成中空结构或内腔结构,从而实现更加复杂的产品设计和制造。
本文将就气体辅助成型技术的应用前景进行探讨。
一、气体辅助成型技术的原理和优势气体辅助成型技术是在注塑成型过程中通过注入气体来形成产品内部空洞或内腔结构的一种技术。
其原理是在注塑过程中,先在产品的一部分或全部空腔中注入压缩空气或氮气等气体,然后在注塑过程中根据产品设计的需要控制气体的压力和流动,使气体膨胀,从而形成所需的空洞或内腔。
相对于传统的注塑成型技术,气体辅助成型技术具有以下优势:1. 实现产品轻量化:通过气体辅助成型,可以在产品内部形成空洞或内腔结构,减少产品的材料用量,从而实现产品轻量化,降低物料成本,并且可以降低产品重量,提高产品的使用性能。
2. 提高产品的强度和刚度:通过气体辅助成型,可以在产品内部形成加强筋和骨架结构,提高产品的强度和刚度,使产品更加坚固耐用。
3. 实现产品设计的更大自由度:通过气体辅助成型,可以在产品设计上实现更大的自由度,灵活性更高,可以制造出更为复杂、精密的产品。
4. 提高生产效率:由于气体辅助成型可以一次性实现多个镶嵌件的成型,因此可以提高生产效率,降低生产成本。
5. 减少废品率:气体辅助成型能够减少由于变形、翘曲等问题导致的废品率,提高产品的成形质量。
二、气体辅助成型技术的应用前景随着工业自动化水平的提高和人们对产品质量和性能要求的提高,气体辅助成型技术在注塑成型中的应用前景越来越广阔。
以下是其应用前景的具体探讨:1. 制造电子产品组件在电子产品制造过程中,一些组件需要在内部形成空洞或内腔结构,以容纳电路板和电子元器件。
传统注塑成型很难实现这种内部空洞的制造,而气体辅助成型技术能够轻松地实现这种需求。
因此,气体辅助成型技术在制造电子产品组件方面有着广阔的应用前景。
2. 制造汽车零部件汽车行业是注塑成型的重要应用领域之一,而气体辅助成型技术正好满足了汽车零部件制造上的一些需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三.進氣嘴
1.根據進氣位置的不同可分為兩類: (1) 一類是特殊結構的注塑機噴嘴,氣體與熔體都通過
這個噴嘴進行注射. (2) 另一類是有獨特氣體通道的專用氣嘴.
2.進氣嘴結構
進氣嘴結構可分為彈簧復位型和間隙出氣型兩類.
5. 技術關鍵
1. 模具及制品設計
* 氣體入口位置及氣道設計是氣輔注射成型模具和制品設計的關鍵. 入口位置設計時應注意:入口位置應盡可能靠近澆口部位,不能形成 氣體環流狀態;注氣口注入氣體流動方向應與樹脂流動方向一致.
(2) 轉換時間 當注射結束時,合理選擇氣體的轉換時間,可以避免流動前沿停止流 動和在制件表面出現可見的滯留痕或形不成氣道.因為注入氣體過 早,熔體外表無充分冷卻,氣體易穿破熔體;過晚,熔體冷卻,氣體不 能形成氣道或在制件表面形成滯流痕.
(3) 氣體壓力 注氣開始時較高的壓力和以后稍低的壓力為氣體通道成型和定型所需.
1.壓力生成設備. 它必須保證注氣系統可得到高壓氣體.一般使用氮氣,氮氣提供方式 有三種:瓶裝氮氣,液體氮氣和氮氣發生器.氣體壓力一般為5~32MPa, 最高可達100MPa.
2.氣體注射控制單元 新工藝參數:氣體起射時間,氣體注射延遲時間,氣體注射壓力或流 量,氣體射入時間. 其中氣體起射時間由螺杆位置觸發. 所有工藝參數中,氣體充填,保壓過程中氣體壓力控制的精度對產品 質量的影響最大.
* 連續壓力產生法 利用專門壓縮裝置來產生高壓氣體,包括壓縮機和儲壓罐,壓縮機的運 轉保證了儲壓罐的壓力恆定,壓力一般為30MPa .
優點: 1. 壓力分布可以用壓力控制裝置來自由選擇. 2. 具有不同壓力需求的幾個註射點或幾台氣體輔助注 射成型機可用同一套注氣系統.
二.注氣系統
注氣系統包括壓力生成設備用氣體注射控制單元.
(4) 保壓時間 排氣過早,達不到該技ቤተ መጻሕፍቲ ባይዱ優點,排氣過晚,會延長周期,降低設備使用率.
6. 材料及應用
1.材料
氣輔成型可用於絕大多數熱塑性塑膠及部份熱固性塑膠.
2.典型應用
(1) 管形和棒形如衣服架,扶手,椅背,刷棒,方向盤,主 要是利用氣體穿透形成氣道來節省材料和縮短成 成型周期.
(2) 板狀制件如汽車儀表板,辦公家俱,主要是減小翹 曲變形和對注塑機的吨位要求,以及提高制件的剛 性,強度及表面質量.
氣體輔助成型技術
Polymer Technology Application Center
CONTENTS
1. 氣輔成型簡介 2. 氣輔成型工藝 3. 氣輔成型分類 4. 氣輔成型設備 5. 氣輔成型技術關鍵 6. 適用材料及應用
1. 氣輔成型簡介
1.氣體輔助成型技術(Gas-Assisted Injection Molding)是在傳統的注射 成型基礎上發展起來的一種新型的成型工藝。
氣輔成型機由注塑機,注氣系統,進氣嘴組成.
一.注塑機
1.氣輔成型機分類
(1) 根據進氣位置不同分類 * 氣體通過噴嘴注射法 優點:成本便宜. 缺點:注點單一,可控因素少,不可用於熱流道.
* 氣體通過流道或模腔注射法 優點:注點可選,可用於熱流道.每一注射口可 有獨立的注射時間和壓力分布. 缺點:費用較高.
* 氣道設計原則為: 氣道相對於澆口的布置應對稱或單一方向;氣道必 須連續,但不應該自已形成回路;一般情況下,氣道體積應小於制品體 積的10%,氣道應盡可能延伸到最后被充填的區域,氣道管网布置要使 氣體能充填到型腔的盡頭.
2.工藝參數設置
(1) 熔體填充量 如果氣體僅穿過塑膠熔體而未在熔體內形成氣囊,說明熔體注射量 處於臨界熔體注射量.如填充量遠大於臨界注射量,則不能得到理想 的中空制品;反之,則會導致氣體穿透.
2.氣輔成型的研究最早始于70年代﹐80年代商品化﹐90年代開始進入實用 階段。
3.GAIM技術源於德國,但技術成熟於英國,目前世界上有30多家公司生產各 種各樣的氣輔成型機,主要有: [德] Krauss-Maffei, Gasinnedruck-Verfahren(GTD,氣體內壓法) [德] Bayer,Gasinjections-Technik(GIT,氣體注射技術) [奧] Engel,Gasmelt(氣溶法) [德] Klockner Ferromatic,Airpress(氣壓法) [英] Cinpres,Gas-assisted Injection Molding(GAIM,氣輔注射成型) [日] 旭化成(株),Asahi Gas Injection(AGI,旭氣體注射法) [德] Battenfeld,Airmold(氣體模型)
2. 氣輔成型工藝
第一階段 : 熔體注射. 將熔融的塑膠熔體注射到模具型中.
第二階段 : 氣體注射. 可於注射期的前,中,后不同時間段注氣體.
第三階段 : 氣體保壓. 在冷卻過程中,氣體由內向外施壓,使制品外 表面緊貼模壁,補充冷卻帶來的體積收縮.
第四階段 : 制件脫模. 隨著冷卻周期的完成,排出氣體,塑件由模腔 取出.
(2) “全料注射”成型
2.表面氣體輔助成型技術
應用: 用於薄壁塑件的成型或較長流程的塑件 要求,如電視機外殼,音像器材外殼,辦公 家具及電腦用品,汽車零件等.
優點: 防止產品表面出現縮痕,凹痕,制品內應力 減少,脫模后變形低,鎖模力低,模具磨損小, 設計自由度高,並可以多點注氣.
4. 氣輔成型設備
(2) 根據氣體壓力生成設備的不同分類
* 不連續壓力產生法 又稱體積控制法.汽缸首先充滿氮氣,然后氣體被液壓裝置壓縮,當氣 體壓力達到設定的壓力時,氣體才開始注射.這種方法的特征是在氣體 壓縮前的“體積控制”即壓縮前進入汽缸內氣體的體積是一定的.
缺點: 由於可能的氣體泄漏,在熔體冷卻階段並不能保持 恆定的高壓.
3. 氣輔成型分類
1.內置氣輔成型技術
應用: 適合於該技術成型的制件主要為棒狀,板狀, 帶有較厚截面的板狀制件以及難於用普通注 注射成型的塑膠制件.
優點: 減少制件質量,縮短循環周期,消除凹痕及縮 痕,減小鎖模吨位,簡化澆口系統,縮小制品 成型內應力和翹曲,提高制品的剛度與強度.
(1) “欠料注射”成型