焓和熵,你必须掌握的知识
高中物理热力学问题中的焓和熵的概念及计算

高中物理热力学问题中的焓和熵的概念及计算热力学是物理学中的一个重要分支,它研究的是物质的热现象和能量转化。
在高中物理课程中,热力学是一个重要的内容,其中焓和熵是两个基本概念。
本文将重点介绍焓和熵的概念及计算方法,并通过具体题目的分析和解答来帮助高中学生更好地理解和应用这些概念。
一、焓的概念及计算焓是热力学中的一个重要物理量,它表示系统在恒压条件下的内能和对外做功的总和。
在化学反应和热力学过程中,焓的变化可以帮助我们判断反应的放热或吸热性质。
焓的计算公式为:H = U + PV其中,H表示焓,U表示内能,P表示压强,V表示体积。
焓的单位是焦耳(J)。
例如,某个系统的内能为1000J,压强为2Pa,体积为0.5m³。
那么这个系统的焓为多少?根据焓的计算公式,我们可以得到:H = U + PV = 1000J + 2Pa × 0.5m³ = 1000J+ 1J = 1001J因此,这个系统的焓为1001焦耳。
二、熵的概念及计算熵是热力学中描述系统无序程度的物理量,也是一个衡量系统混乱程度的指标。
熵的增加表示系统的无序程度增加,熵的减少表示系统的有序程度增加。
熵的计算公式为:ΔS = Q/T其中,ΔS表示熵的变化量,Q表示系统吸收或释放的热量,T表示温度。
熵的单位是焦耳/开尔文(J/K)。
例如,某个系统吸收了500J的热量,温度为300K。
那么这个系统的熵变是多少?根据熵的计算公式,我们可以得到:ΔS = Q/T = 500J / 300K = 1.67 J/K因此,这个系统的熵变为1.67焦耳/开尔文。
三、题目分析与解答下面我们通过具体的题目来进一步说明焓和熵的应用。
题目一:某个物体的焓变为300J,压强为1Pa,体积为0.2m³。
求该物体的内能变化量。
解答:根据焓的计算公式,我们可以得到:H = U + PV将已知数据代入公式,可得:300J = U + 1Pa × 0.2m³解方程,可得:U = 300J - 0.2J = 299.8J因此,该物体的内能变化量为299.8焦耳。
初中化学知识点归纳化学反应的焓变与熵变

初中化学知识点归纳化学反应的焓变与熵变初中化学知识点归纳:化学反应的焓变与熵变化学反应是物质之间发生的变化过程,它涉及到能量的转化。
在化学反应中,我们常常关注焓变和熵变这两个重要的热力学量,它们对于反应的进行和方向有着关键的影响。
本文将对初中化学学习中涉及到的化学反应的焓变和熵变进行归纳总结,以帮助同学们更好地理解和掌握这一知识点。
一、焓变焓变是指在化学反应过程中,反应物到产品之间的焓差。
它可以表示为ΔH,其中Δ表示反应物与产物之间的差值。
1. 异化反应的焓变异化反应是指在化学反应中,反应物中的原子或离子在结构上发生了变化。
在异化反应中,焓变可以是吸热反应(ΔH>0)或放热反应(ΔH<0)。
例如,氧化反应是一种放热反应,它产生的焓变为负值。
2. 同化反应的焓变同化反应是指在化学反应中,反应物中的原子或离子在结构上没有发生变化。
在同化反应中,焓变通常是吸热反应(ΔH>0)。
例如,融化、蒸发等变态反应就是一种吸热反应。
3. 反应热的计算化学反应的焓变可以通过反应热(q)来计算。
反应热是指化学反应在等压条件下吸收或释放的热量。
反应热的计算公式为q=mcΔT,其中m代表反应物的质量,c代表物质的比热容,ΔT 表示温度变化。
二、熵变熵是描述体系混乱程度的物理量,熵变是指化学反应中,反应物与产物之间的熵差。
它通常用ΔS表示。
1. 熵的增加与减少当物质的分子或离子的排列方式发生改变时,熵会发生变化。
经验上,混乱的程度越高,熵的值越大。
简单来说,熵的增加意味着混乱度的增加,熵的减少意味着混乱度的减少。
2. 熵变的判断在化学反应中,如果反应物的混乱度大于产物的混乱度,那么反应的熵变为负值(ΔS<0)。
反之,如果反应物的混乱度小于产物的混乱度,那么反应的熵变为正值(ΔS>0)。
3. 熵变与反应进行方向的关系根据熵变与反应进行方向的关系,我们可以得出以下结论:- 当焓变为负(放热反应)且熵变为正时,反应的进行是自发的,方向是向前进行的;- 当焓变为正(吸热反应)且熵变为负时,反应的进行是不自发的,方向是反向进行的;- 当焓变为正(吸热反应)且熵变为正时,反应的进行需要考虑其他因素。
热力学知识:热力学化学反应熵变和焓反应

热力学知识:热力学化学反应熵变和焓反应热力学化学反应熵变和焓反应热力学是研究物质的热现象和能量转换的学科,是自然科学中重要的一个分支。
热力学中的熵是指物质内部的无序程度,是评价物质稳定性和自发过程的一种重要物理量。
同时,热力学中的焓是指物质的热容和化学反应所引起的能量变化之和,也是评价物质转化过程的一个重要参数。
化学反应是一种物质转化的过程,常常伴随着热量的变化。
在热力学中,化学反应可以通过熵变和焓反应来描述和计算。
熵变是指化学反应中产生的熵的变化。
熵的单位是焦耳每开尔文(J/K),其计算公式为:ΔS = S(final state) - S(initial state)其中,ΔS表示熵变,S(final state)表示反应后的状态,S(initial state)表示反应前的状态。
根据热力学第二定律,所有自发过程都会使熵增加,因此熵变亦为正值。
如果熵减少,说明反应是非自发的,需要外界能量的输入。
熵变的值可以通过计算物质在化学反应过程中的自由能ΔG来得到。
自由能计算公式为:ΔG = ΔH - TΔS其中,ΔH和ΔS分别表示焓和熵的变化,T表示温度。
根据热力学第二定律,ΔG的值必须为负,才能保证反应是自发进行的。
如果ΔG的值为正,则反应是不可逆的。
焓反应是指化学反应中产生的焓变化,包括热量的吸收和放出。
焓的单位是焦耳(J),其计算公式为:ΔH = H(products) - H(reactants)其中,H(products)和H(reactants)分别表示反应后和反应前的焓。
如果焓变为正,说明反应是吸热反应,需要外界能量的输入。
如果焓变为负,说明反应是放热反应,会释放能量。
热力学化学反应熵变和焓反应是化学反应过程中重要的热力学参数。
通过计算熵变和焓反应可以判断化学反应是否会自发进行,以及反应过程中释放或者吸收的能量大小。
了解热力学化学反应熵变和焓反应能够帮助我们更好地理解化学反应的本质和真实含义,同时也为我们设计和优化化学反应提供了科学的方法和手段。
焓与熵的定义

焓与熵的定义引言焓和熵是热力学中两个重要的概念。
它们描述了物质在热力学过程中的性质和变化。
本文将对焓和熵的定义进行全面详细、完整且深入的阐述,以便更好地理解和应用这些概念。
焓的定义焓(enthalpy)是热力学中一个重要的状态函数,通常用符号H表示。
焓可以理解为系统的内能和对外界做功之间的关系。
焓的定义如下:H = U + PV其中,H表示焓,U表示系统的内能,P表示系统的压强,V表示系统的体积。
焓的单位通常是焦耳(J)或卡路里(cal)。
焓的定义可以通过对焓的微分形式进行推导得到:dH = dU + PdV + VdP根据热力学第一定律,系统的内能变化等于系统所吸收的热量与对外界做的功之和:dU = δQ - δW将上式代入焓的微分形式中,可以得到焓的微分形式表达式:dH = δQ - δW + PdV + VdP根据热力学第二定律,对于可逆过程,系统的熵变可以表示为:δQ = TdS将上式代入焓的微分形式中,可以得到焓的微分形式的另一种表达式:dH = TdS - δW + PdV + VdP通过以上推导,我们可以看出焓的定义与系统的内能、压强、体积和熵之间有着密切的关系。
熵的定义熵(entropy)是热力学中一个重要的状态函数,通常用符号S表示。
熵可以理解为系统的混乱程度或无序程度。
熵的定义如下:S = k ln W其中,S表示熵,k表示玻尔兹曼常数,W表示系统的微观状态数。
熵的单位通常是焦耳/开尔文(J/K)或卡路里/开尔文(cal/K)。
熵的定义可以通过对熵的微分形式进行推导得到:dS = δQ / T其中,dS表示熵的微分,δQ表示系统吸收的热量,T表示系统的温度。
根据热力学第二定律,对于可逆过程,可以得到:dS = dQ / T通过以上推导,我们可以看出熵的定义与系统吸收的热量和温度之间有着密切的关系。
焓与熵的关系焓和熵之间存在着一定的关系。
根据焓和熵的定义,可以得到焓和熵的关系式如下:dH = TdS + VdP上式表明,在恒温恒压条件下,焓的变化等于系统吸收的热量与温度的乘积,再加上系统的体积和压强的乘积。
焓和熵,你必须掌握的知识

焓和熵,你必须掌握的知识焓hán英语为:enthalpy在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。
起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部.原来花粉在水面运动是受到各个方向水分子的撞击引起的。
于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。
从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。
这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。
正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。
在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。
既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。
个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,它们遵循着一定的统计规律,与热运动有关的宏观量--温度,就是大量分子热运动的统计平均值。
分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。
所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。
分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。
分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。
分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。
因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。
分子势能与弹簧弹性势能的变化相似。
物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有关系。
热力学过程中的焓与熵变分析

热力学过程中的焓与熵变分析热力学是研究能量转换和物质传递的学科,它是理解自然界中能量转移和化学反应的基础。
在热力学的研究中,焓和熵变是两个重要的概念,它们对于分析系统的性质和变化具有重要的意义。
本文将讨论热力学过程中的焓和熵变,并探究它们在实际应用中的意义。
首先,让我们来了解什么是焓(enthalpy)。
焓是热力学中一个非常重要的概念,它可以代表系统所产生的热效应。
在一个恒压系统中,焓变可以用来描述热量的变化。
对于一个恒压系统,焓变等于系统所吸收的热量减去对外界所做的功:ΔH = Q - W其中,ΔH表示焓变,Q表示吸收的热量,W表示对外界所做的功。
焓变可以是正的或者负的,取决于系统吸收热量的多少和对外界所做功的方向。
焓变的单位是焦耳(J)或卡路里(cal)。
了解了焓的概念之后,我们来看看熵变(entropy change)。
熵变是描述系统无序程度变化的物理量。
对于封闭系统,熵的增加可以看作是能量的分散,即系统向更高程度的无序性发展。
熵变可以通过以下公式计算:ΔS = S_final - S_initial其中,ΔS表示熵变,S_final表示系统的最终熵,S_initial表示系统的初始熵。
与焓变一样,熵变也可以是正的或者负的,取决于系统的变化。
熵变的单位是焦耳每开尔文(J/K)。
熵变的概念非常重要,因为它提供了分析系统变化的指标。
根据热力学的第二定律,自然界中的熵总是趋向于增加。
这意味着系统往往会朝着更高程度的无序性发展。
熵变还可以用来描述反应的方向性和反应进行的可行性。
在实际应用中,焓和熵变在化学反应和工程系统的设计中起着重要作用。
焓变可以用于计算反应的热效应,帮助我们预测反应的放热性或吸热性。
这对于工业反应的设计和控制非常有意义。
例如,在燃烧反应中,通过计算焓变,我们可以知道反应是否需要外部加热或冷却。
而熵变则提供了我们分析反应方向性和平衡态的重要线索。
根据热力学原理,当系统自发进行一个反应时,熵变必须是正的。
熵和焓是什么?有什么区别?焓变与熵变又是什么?怎么计算?

熵和焓是什么?有什么区别?焓变与熵变又是什么?怎么计算?1.熵与焓是什么?熵是描述物质混乱程度的物理量,用符号S来表示,单位是J/(mol·K)焓也是物质的一种物理量,跟内能有点关系,但又不是内能,是在做一些计算时,人为引入的一个物理量。
用符号H来表示,单位是kJ/mol。
焓值与内能的关系可以用一个公式表示:H=U+pV(U是内能,p是压强,V是体积)但是在高中可以把焓简单认为是物质的内能。
由此可见,熵是对物质混乱程度的描述,而焓是有关“内能”的物理量,区别还是很大的。
2.熵的大小比较与熵变熵值的大小关系:物质越混乱熵值越大,对于同一种物质,熵值大小关系是气态>液态>固态;在一个化学反应中,由固态变成液态或者气态,或者由液态变成气态,以及气态分子数由少变多的等过程熵的值都会增加。
至于熵值是如何得出来的,一般可以根据实验数据、按一定规律计算,也可以按统计力学方法计算,方法较为复杂,这里暂时不做探讨。
如果想要知道具体某个物质的熵值是多少,如果是常见的物质,可以直接通过查询标准熵值表得到,这些熵值是科学家们通过实验和计算得到的,可以自行搜索。
在一个化学反应中,从反应物变为生成物的过程中,熵的值是会发生变化的,这个变化的值我们称为“熵变”,用生成物的熵减去反应物的熵来得到,公式如下:熵变这个公式既是熵变的定义,也能直接用于计算熵变的具体值,只要查询熵值表找到生成物与反应物的熵值就能进行计算。
注意,熵值增大,熵变为正值,熵值减小,熵变为负值。
3.焓的大小比较与焓变焓值的大小关系:一般内能越高,焓值越大,但是一种物质的内能是无法直接测定的,也就无法得到焓值的具体数值。
但是我们可以通过实验或者计算比较一个化学变化中生成物与反应物的焓值的差值,这样的差值我们称作“焓变”,公式如下:焓变注意,这个公式是焓变的定义公式,但是无法用它计算焓变的具体值,因为反应物和生成物的焓值是无法得到的。
那么如何得到某个反应焓变的具体值呢,一个方法就是在恒压的环境中,实验测定该化学反应释放或吸收的热量(注意要求释放出的能量只做体积功,不做非体积功),而这个热量就是焓变的绝对值。
焓和熵的介绍

焓(enthalpy),符号H,是一个系统的热力学参数。
定义一个系统内: H = U + pV 式子中"H"为焓,U为系统内能,p为其压强,V则为体积。
焓不是能量,仅具有能量的量纲,它没有明确的物理意义。
焓有下述一些特性: 焓的绝对值无法求得,使用配分函数求出的焓值也不是绝对值。
焓是系统的容量性质,与系统内物质的数量成正比。
焓是一个状态函数,也就是说,系统的状态一定,焓是值就定了。
单位质量的物质所含有的热量叫作焓. "系统的状态一定,焓值也确定了。
" 焓是代表流动工质沿着流动方向往前方传递的总能量(内能、推动功、动能、势能)中,直接取决于热力状态的那部分能量。
举例:单位时间内锅炉主蒸汽的热焓-(锅炉给水的热焓+排污水的热焓)/单位时间内进炉煤的低位发热值,就是锅炉的效率啊。
引用焓的概念,可使热工计算大为简单,对借助于图解法来研究工质的热力过程更为方便。
熵的说明:热量是工质与外界存在温差时所传递的能量,则温度T是传热的推动力,只要工质与外界有微小的温差就能传热,于是相应地也应有某一状态参数的变化来标志有无传热,这个状态参数定名为熵。
根据熵的变化,可以判断工质在可逆过程中是吸热、放热,还是绝热。
熵的更重要的作用是用以恒量过程的不可逆程度。
如:蒸汽经过节流孔板,喷嘴等处可以理解为等熵绝热过程的。
焓是单位物质所含能量的多少!汽轮机中就是一个焓降的过程,焓降的过程就是对外做功的过程!实际上,哪怕效率非常高的机组,焓降也不会很高,我们为什么不能让焓降更大呢?这就引出了熵,霍金语:“熵是一种新的世界观” 熵的多少代表了我们利用这些能量所需要付出代价的多少。
焓降的过程伴随着熵增,当焓降到一定程度,熵会增到一定程度,也就说我们利用这些能所需要的代价越来越高,熵增到一定程度,需要付出的代价已经不划算利用这些能源了!熵是一种代价,它决定了我们不能靠能量守恒定律而尽情挥霍能源。
举例,同样参数的汽轮机,背压机组能发电20-30MW,凝气机组能发电100MW,因为我们建立了真空,付出了循环水的“代价”熵描述热力学系统的重要态函数之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焓和熵,你必须掌握的知识焓hán英语为:enthalpy在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。
起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。
原来花粉在水面运动是受到各个方向水分子的撞击引起的。
于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。
从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。
这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。
正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。
在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。
既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。
个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,它们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。
分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。
所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。
分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。
分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。
分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。
因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。
分子势能与弹簧弹性势能的变化相似。
物体的体积发生变化时,分子间距也发生变化,所以分子势能同物体的体积有关系。
物体中所有分子做热运动的动能和分子势能的总和叫做物体的热力学能,也叫做内能。
热力学能与动能、势能一样,是物体的一个状态量。
初中我们学过,改变物体内能的方式有两个:做功和热传递。
一个物体,如果它跟外界不发生热交换,也就是它既没有吸收热量也没有放出热量,则外界对其做功等于其热力学能的增量:ΔU1=W如果物体对外界做功,则W为负值,热力学能增加量ΔU1也为负值,表示热力学能减少。
如果外界既没有对物体做功,物体也没有对外界做功,那么物体吸收的热量等于其热力学能的增量:ΔU2=Q如果物体放热,则Q为负值,热力学能增加量ΔU2也为负值,表示热力学能减少。
一般情况下,如果物体跟外界同时发生做功和热传递的过程,那么物体热力学能的增量等于外界对物体做功加上物体从外界吸收的热量,即:ΔU=ΔU1+ΔU2=Q+W因为热力学能U是状态量,所以:ΔU=ΔU末态-ΔU初态=Q+W上式即热力学第一定律的表达式。
化学反应都是在一定条件下进行的,其中以恒容与恒压最为普遍和重要。
在密闭容器内的化学反应就是恒容过程。
因为系统体积不变,而且只做体积功(即通过改变物体体积来对物体做功,使物体内能改变,如在针管中放置火柴头,堵住针头并压缩活塞,火柴头会燃烧),所以W=0,代入热一定律表达式得:ΔU=Q它表明恒容过程的热等于系统热力学能的变化,也就是说,只要确定了过程恒容和只做体积功的特点,Q就只决定于系统的初末状态。
在敞口容器中进行的化学反应就是恒压过程。
所谓横压是制系统的压强p等于环境压强p外,并保持恒定不变,即p=p外=常数。
由于过程恒压和只做体积功,所以:W=W体积=-p外(V2-V1)=-(p2V2-p1V1)其中W为外界对系统做的功,所以系统对外做功为负。
压强乘以体积的改变量是系统对外做的功,可以按照p=F/S,V=Sh,∴Fh=pV来理解。
将其代入热一定律表达式得:Q=ΔU-W=U2-U1+(p2V2-p1V1)=(U2+p2V2)-(U1+p1V1)因为U+pV是状态函数(即状态量)的组合(即一个状态只有一个热力学能U,外界压强p和体积V),所以将它定义为一个新的状态函数——焓,并用符号H表示,所以上式可变为:Q=H2-H1=ΔH它表明恒压过程中的热等于系统焓的变化,也就是说,只要确定了过程恒压和只做体积功的特点,Q就只决定于系统的初末状态。
焓的物理意义可以理解为恒压和只做体积功的特殊条件下,Q=ΔH,即反应的热量变化。
因为只有在此条件下,焓才表现出它的特性。
例如恒压下对物质加热,则物质吸热后温度升高,ΔH>0,所以物质在高温时的焓大于它在低温时的焓。
又如对于恒压下的放热化学反应,ΔH<0,所以生成物的焓小于反应物的焓。
在化学反应中,因为H是状态函数,所以只有当产物和反应物的状态确定后,ΔH才有定值。
为把物质的热性质数据汇集起来,以便人们查用,所以很有必要对物质的状态有一个统一的规定,只有这样才不致引起混乱。
基于这种需要,科学家们提出了热力学标准状态的概念。
热力学标准状态也称热化学标准状态,具体规定为:气体——在pθ(100kPa,上标θ指标准状态)压力下处于理想气体(我们周围的气体可以近似看作理想气体)状态的气态纯物质。
液体和固体——在pθ压力下的液态和固态纯物质。
对于一个任意的化学反应:eE+fF——→gG+rR其中e、f、g、r为化学计量系数。
若各物质的温度相同,且均处于热化学标准状态,则g mol G和r mol R的焓与e mol E和f mol F的焓之差,即为该反应在该温度下的标准摩尔反应焓或标准摩尔反应热,符号为ΔrH(T),其中下标“r”指反应,“T”指反应时的热力学温度,“m”指ξ=1mol,ΔrH的单位为kJ·mol-1。
ξ读作“可赛”,为反应进度,对于反应eE+fF——→gG+rR,可以写成:0=gG+rR-eE-fF=∑vBBB式中,B代表反应物或产物,vB为相应的化学计量系数,对反应物取负值,对产物取正值。
根据相关计量标准,对于化学反应0=∑vBB,若任一物质B物质的量,初始状态时为nB0,某一程度时为nB,则反应进度ξ的定义为:Bξ=(nB-nB0)/vB=ΔnB/vB由此可以概括出如下几点:对于指定的化学计量方程式,vB为定值,ξ随B物质的量的变化而变化,所以可用ξ度量反应进行的深度。
由于vB的量纲为1,ΔnB的单位为mol,所以ξ的单位也为mol。
对于反应eE+fF——→gG+rR,可以写出:ξ=ΔnE/vE=ΔnF/vF=ΔnG/vG=ΔnR/vR对于指定的化学计量方程式,当ΔnB的数值等于vB时,则ξ=1mol。
熵熵entropy[编辑本段]简介物理名词,用热量除温度所得的商,标志热量转化为功的程度物理意义:物质微观热运动时,混乱程度的标志。
热力学中表征物质状态的参量之一,通常用符号S表示。
在经典热力学中,可用增量定义为dS=(dQ/T),式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量。
下标“可逆”表示加热过程所引起的变化过程是可逆的。
若过程是不可逆的,则dS>(dQ/T)不可逆。
单位质量物质的熵称为比熵,记为s。
熵最初是根据热力学第二定律引出的一个反映自发过程不可逆性的物质状态参量。
热力学第二定律是根据大量观察结果总结出来的规律,有下述表述方式:①热量总是从高温物体传到低温物体,不可能作相反的传递而不引起其他的变化;②功可以全部转化为热,但任何热机不能全部地、连续不断地把所接受的热量转变为功(即无法制造第二类永动机);③在孤立系统中,实际发生的过程总使整个系统的熵值增大,此即熵增原理。
摩擦使一部分机械能不可逆地转变为热,使熵增加。
热量dQ由高温(T1)物体传至低温(T2)物体,高温物体的熵减少dS1=dQ/T1,低温物体的熵增加dS2=dQ/T2,把两个物体合起来当成一个系统来看,熵的变化是dS=dS2-dS1>0,即熵是增加的。
◎物理学上指热能除以温度所得的商,标志热量转化为功的程度。
◎科学技术上泛指某些物质系统状态的一种量(liàng)度,某些物质系统状态可能出现的程度。
亦被社会科学用以借喻人类社会某些状态的程度。
◎在信息论中,熵表示的是不确定性的量度。
只有当你所使用的那个特定系统中的能量密度参差不齐的时候,能量才能够转化为功,这时,能量倾向于从密度较高的地方流向密度较低的地方,直到一切都达到均匀为止。
正是依靠能量的这种流动,你才能从能量得到功。
江河发源地的水位比较高,那里的水的势能也比河口的水的势能来得大。
由于这个原因,水就沿着江河向下流入海洋。
要不是下雨的话,大陆上所有的水就会全部流入海洋,而海平面将稍稍升高。
总势能这时保持不变。
但分布得比较均匀。
正是在水往下流的时候,可以使水轮转动起来,因而水就能够做功。
处在同一个水平面上的水是无法做功的,即使这些水是处在很高的高原上,因而具有异常高的势能,同样做不了功。
在这里起决定性作用的是能量密度的差异和朝着均匀化方向的流动。
熵是混乱和无序的度量。
熵值越大,混乱无序的程度越大。
我们这个宇宙是熵增的宇宙。
热力学第二定律体现的就是这个特征。
生命是高度的有序,智慧是高度的有序,在一个熵增的宇宙为什么会出现生命?会进化出智慧?(负熵)。
热力学第二定律还揭示了:局部的有序是可能的,但必须以其他地方的更大无序为代价。
人生存,就要能量,要食物,要以动植物的死亡(熵增)为代价。
万物生长靠太阳。
动植物的有序又是以太阳核反应的衰竭(熵增)或其他形式的熵增为代价的。
人关在完全封闭的铅盒子里,无法以其他地方的熵增维持自己的负熵。
在这个相对封闭的系统中,熵增的法则破坏了生命的有序。
熵是时间的箭头,在这个宇宙中是不可逆的。
熵与时间密切相关。
如果时间停止“流动”,熵增也就无从谈起。
“任何我们已知的物质能关住”的东西,不是别的,就是“时间”。
低温关住的也是“时间”。
生命是物质的有序“结构”。
“结构”与具体的物质不是同一个层次的概念。
就像大厦的建筑材料和大厦的式样不是同一个层次的概念一样。
生物学已经证明,凡是上了岁数的人,身体中的原子,已经没有一个是刚出生时候的了。
但是,你还是你,我还是我,生命还在延续。
倒是死了的人,没有了新陈代谢,身体中的分子可以保留很长时间。
意识是比生命更高层次的有序,可以在生命之间传递。
说到这里,我想物质与意识的层次关系应该比较清楚了。
(摘自人民网BBS论坛)不管对哪一种能量来说,情况都是如此。
在蒸汽机中,有一个热库把水变成蒸汽,还有一个冷库把蒸汽冷凝成水。
起决定性作用的正是这个温度差。
在任何单一的、毫无差别的温度下——不管这个温度有多高——是不可能得到任何功的。
“熵”(entropy)是德国物理学家克劳修斯(Rudolf Clausius, 1822 –1888)在1850年创造的一个术语,他用它来表示任何一种能量在空间中分布的均匀程度。