焓&熵
焓的百分比表示

焓的百分比表示焓是热力学中一个重要的概念,它是热力学系统的一种重要的状态函数,在物理和化学学科中被广泛运用。
焓的百分比表示在热力学计算中经常应用,本文将从以下几个方面展开。
一、焓概念及计算公式焓是热力学中的一种状态函数,又称为“等焓”,表示系统在一定压力下的总能量。
焓的计算公式为:H = U + PV其中,H表示焓,U表示内能,P表示压力,V表示体积。
在固定压力下,焓的变化量等于热量的变化量,即ΔH = ΔQ。
二、百分比表示焓的百分比表示可以帮助我们更好地理解和处理热力学问题。
假设有一定量的物质,在进入某一过程前的初始状态为H1,进入某一过程后的末状态为H2,则焓的变化量ΔH = H2 - H1。
我们可以通过计算焓的变化百分比来评估进行的过程:ΔH% = ΔH/H1 × 100%其中,ΔH%表示焓的变化百分比,ΔH表示焓的变化量,H1表示初始状态下的焓值。
三、应用实例焓的百分比表示在实际应用中有广泛的应用,下面以蒸汽发电过程为例进行说明:假设在蒸汽发电过程中,1000kg/h的水流经过锅炉,水的初温度为25℃,汽化温度为100℃,蒸汽的最终温度为300℃。
根据热力学原理,水被加热时需要吸收热量,从而使水的焓值增加;水蒸气化时需要吸收潜热,进一步增加水的焓值。
因此,在锅炉中加热水,并将水转化为蒸汽时,焓值的变化为:ΔH = H2 - H1其中,H2为蒸汽的焓值,H1为水的焓值。
根据计算,水的焓值约为104.8kJ/kg,蒸汽的焓值约为2837.6kJ/kg,因此:ΔH = 2837.6 - 104.8 = 2732.8kJ/kg按照百分比表示的公式,焓的变化百分比为:ΔH% = ΔH/H1 × 100%ΔH% = 2732.8/104.8 × 100% ≈ 2601.14%这就意味着,在蒸汽发电过程中,水的焓值增加了2601.14%。
四、注意事项在使用焓的百分比表示时,需要注意以下几点:1. 初始状态下的焓值需要准确测量;2. 某一过程中温度和压力的变化应考虑在内;3. 焓的百分比表示只适用于定压过程,对定容过程不适用。
焓的定义和意义

定义热力学中表示物质系统能量的一个状态函数,常用符号H表示。
数值上等于系统的内能U加上压强p和体积V的乘积,即H=U+pV。
焓的变化是系统在等压可逆过程中所吸收的热量的度量。
英语为:enthalpy在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。
起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的原因不在外界,而在液体内部。
原来花粉在水面运动是受到各个方向水分子的撞击引起的。
于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。
从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。
这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。
正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。
在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子[1]。
既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。
个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,它们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。
分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。
所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。
分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。
分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。
分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。
因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。
焓的定义和意义

定义热力学中表示物质系统能量的一个状态函数,常用符号H表示。
数值上等于系统的内能U加上压强p和体积V的乘积,即H=U+pV。
焓的变化是系统在等压可逆过程中所吸收的热量的度量。
英语为:enthalpy在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。
起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的原因不在外界,而在液体内部。
原来花粉在水面运动是受到各个方向水分子的撞击引起的。
于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。
从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。
这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。
正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。
在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子[1]。
既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。
个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,它们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。
分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。
所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。
分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。
分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。
分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。
因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。
理想气体的焓

理想气体的焓
理想气体的焓
理想气体是指在一定温度和压力下,分子间相互作用力可以忽略不计
的气体。
在热力学中,焓是一个重要的物理量,它表示单位质量物质
的总能量,包括内能和流动能。
对于理想气体,焓的计算可以通过以
下公式得出:
H = U + PV
其中,H表示焓,U表示内能,P表示气体的压强,V表示气体的体积。
对于理想气体,内能只与温度有关,与压强和体积无关。
因此,焓的
变化主要取决于气体的压强和体积的变化。
当气体发生等压过程时,
焓的变化等于气体吸收或放出的热量。
当气体发生等容过程时,焓的
变化为零。
在实际应用中,焓的概念常用于热力学计算和工程设计中。
例如,在
工业生产中,焓的变化可以用于计算热力学效率和能量转换效率。
在
空气动力学中,焓的变化可以用于计算气体的压缩和膨胀过程中的能
量变化。
总之,理想气体的焓是一个重要的热力学量,它可以用于描述气体的能量变化和热力学过程。
在实际应用中,我们需要根据具体情况选择合适的热力学量进行计算和分析,以便更好地理解和掌握气体的热力学性质。
热力学第一定律与焓

热力学第一定律与焓热力学是研究物质内部能量变化和能量传递的学科。
在热力学中,有一个重要的基本定律,即热力学第一定律。
热力学第一定律是能量守恒定律的具体表述,它指出了能量在系统中的转化和传递过程。
热力学第一定律的原理可以通过焓的概念来解释。
焓是一个在热力学中非常重要的物理量,表示了系统的能量和对外做功的能力。
它的符号是H,单位是焦耳(J)。
焓的定义是H=U+PV其中,U是系统的内能,P是压强,V是体积。
内能是系统中分子的平均能量,由分子的热运动引起。
压强和体积则是系统外部条件对系统做功的结果。
根据焓的定义,我们可以推导出焓的变化与内能、压强和体积的关系。
当一定量的物质吸收了热量Q,且对外做了功W时,其焓的变化∆H可以表示为∆H=Q-W焓的增加意味着系统吸收了热量,而焓的减少则意味着系统释放了热量。
热力学第一定律指出了能量在系统中的转化和传递过程,即能量既不能创造也不能消失,只能转化为不同形式的能量。
换言之,系统内的能量增加必定是由于吸收了热量或者对外做了功。
热力学第一定律的数学表达式是∆U=Q-W其中,∆U是系统的内能变化,Q是系统吸收或释放的热量,W是系统对外做的功。
这个方程表明了内能的变化可以由吸热和做功引起。
根据热力学第一定律,我们可以对实际过程进行热力学分析。
例如,当一定量的物质在定压条件下发生化学反应时,系统的焓变等于吸释的热量;当物质在定容条件下发生化学反应时,系统的内能变化等于吸释的热量。
焓在实际应用中有广泛的用途,特别是在化学工程和热力学计算中。
焓的变化可以用于衡量化学反应和相变过程的能量变化,从而帮助我们理解和优化实际过程。
总结一下,热力学第一定律和焓是热力学中的重要概念。
热力学第一定律指出了能量在系统中的转化和传递过程,而焓作为能量和对外做功的能力的度量,帮助我们理解和分析热力学过程。
了解热力学第一定律和焓的原理和应用,对于研究和应用热力学具有重要意义。
焓在生物中的名词解释

焓在生物中的名词解释焓是热力学中的一个重要概念,它在生物学中也发挥着重要的作用。
本文将从生物学的角度出发,对焓在生物中的含义和应用进行解释。
焓(Enthalpy)是热力学中的一个物理量,表示系统的总能量和对外做功的能力之和。
在生物学中,焓是描述生物体内化学反应发生过程中能量变化的重要指标。
生物体内的化学反应是生命活动的基础,而能量在其中起着至关重要的作用。
焓的概念正是用来描述这些能量变化的。
生物体内的能量变化通常表现为热量的释放或吸收,而焓正是用来描述这种热量能量变化的。
对于生物体内的化学反应而言,焓的变化可用来判断反应的方向和速率。
在这里,我们需要引入一个相关的概念——焓变(ΔH)。
焓变是指化学反应中,反应物和生成物之间的焓差,即焓的变化量。
焓变正值表示反应吸热,反应过程中吸收了外界的热量;焓变负值表示反应放热,反应过程中释放了热量。
生物体内的化学反应往往伴随着焓变的发生,而焓变的大小与反应的能量变化密切相关。
举个例子来说明,在人体的呼吸过程中,氧气和葡萄糖发生反应生成二氧化碳和水。
这个反应对应的化学方程式如下:C6H12O6 + 6O2 → 6CO2 + 6H2O这个反应是放热反应,焓变为负值。
在这个反应过程中,葡萄糖和氧气中的化学键断裂,形成了氧化产物二氧化碳和水,并释放出能量。
这些能量以热量的形式释放出来,并用于维持人体的正常生理功能、运动等等。
生物体内的许多其他重要反应也伴随着焓变,比如蛋白质的合成、核酸的复制等。
生物体内这些重要的化学反应往往能够通过测量焓变的大小来判断反应的进行状况。
焓变的大小取决于反应物的能量状态和反应过程中的能量转化,因此焓变能够为生物学家提供反应热力学数据,帮助他们更好地理解生命活动的基本原理。
总之,焓在生物学中是一个重要的物理量,用来描述生物体内化学反应的能量变化。
通过测量焓变的大小,我们可以了解生物体内的反应热力学性质,并对生命活动进行更深入的研究。
这为生物学家提供了更全面的理论基础,进一步推动了生物科学的发展和进步。
焓

焓[编辑本段]简介焓是一个热力学系统中的能量参数。
规定由字母H(单位:焦耳,J)表示,H来自于英语Heat Capacity(热容)一词。
此外在化学和技术文献中,摩尔焓Hm(单位:千焦/摩尔KJ/mol)和特别焓h(单位:千焦/千克KJ/Kg)也非常重要,它们描述了焓在物质的量n 和物质质量m 上的定义。
焓是内能和体积的勒让德变换。
它是SpN总合的热势能。
[编辑本段]详细内容英语为:enthalpy在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。
起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。
原来花粉在水面运动是受到各个方向水分子的撞击引起的。
于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。
从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。
这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。
正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。
在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子[1]。
既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。
个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,它们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。
分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。
所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。
分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。
分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。
热力学中的焓

热力学中的焓一、引言热力学是研究能量转化和传递的学科,焓是热力学中一个重要的物理量。
本文将从定义、计算、应用等方面全面介绍焓在热力学中的作用。
二、定义焓(Enthalpy)是热力学中一个重要的物理量,表示系统内部能量与外界做功之和。
它通常用符号H表示,单位为焦耳(J)或卡路里(cal)。
三、计算1. 焓的计算公式根据焓的定义,可以得到以下计算公式:H = U + PV其中,U表示系统内部能量,P表示压强,V表示体积。
2. 焓变的计算公式在化学反应中,通常需要计算化学反应前后系统的焓变。
对于恒压条件下的理想气体来说,可以使用以下公式进行计算:ΔH = ΔU + PΔV四、应用1. 焓在化学反应中的应用在化学反应中,焓变可以帮助我们判断反应是否放热或吸热,并且可以根据焓变大小预测反应速率。
例如,在制备硫酸时,通过计算反应前后系统的焓变可以判断该反应是否放热,以及放热的程度。
2. 焓在工程中的应用在工程中,焓可以用来计算能量转化和传递的效率。
例如,在蒸汽动力机中,可以通过计算蒸汽进入和离开机器的焓值来确定机器的效率。
3. 焓在生物学中的应用在生物学中,焓可以用来计算生物体内化学反应的能量转化。
例如,在人体内,食物被消化吸收后会产生能量,并且这些能量可以通过计算食物前后系统的焓变来确定。
五、总结焓是热力学中一个重要的物理量,它表示系统内部能量与外界做功之和。
通过计算焓变可以判断化学反应是否放热或吸热,并且可以预测反应速率。
在工程和生物学中也有广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焓enthalpy
为了引出焓这个概念,我们先讨论恒容和恒压过程的热效应。
对于一个封闭体系,△U=Q-W,封闭体系,恒容变化(不做体积功),且不做非体积功时,△U=Q,即封闭系、恒容、W'=0时,△U=Q v(Q v为恒容热效应),dU=δQ v。
上式是热力学中常用的一个公式,使用此公式时,一定要满足前面的条件,请大家注意,在热力学中用公式必须满足条件。
在化学中,我们更关心恒压过程,因为化学效应一般是在恒压条件下进行的。
封闭体系、恒压时,△U=Q p-W,若W'=0,则Q p=△U+W=△U+P e△V=U2-U1+
(P e V2-P e V1),因恒压P e=P1=P2,则Q p=(U2+P2V2)-(U1+P1V1),为了数学表达的方便,引进一个物理量,焓:H=U+PV,这里要说明一下,焓在这里无明确的物理意义,可以理解为,为了表达方便,专门设为一个符号,H即U+PV,之所以要提出焓这一物理量,是因为U+PV经常会用到,所以专门用一个符号来代替它。
则上式 Qp=H2-H1=△H。
∴封闭体系、恒压、W'=0时, Qp=△H,dH=δQ p。
这里要特别说明的是,H是状态系数,因为U、P、V都是状态系数,状态确定,U、P、V都是一定值,当然H也是确定值,也就是说从始态→终态,所有途径的△H都是的一样的,也就是说,在计算△H时,可以设计一条方便计算得途径。
焓是热力学的基本概念之一,以后经常要用到。
总的来说,封闭体系不做非体积功时的过程,内能变化可以通过测定恒容热效应来求,焓变可以通过测恒压热效应求得。
焓
焓(enthalpy),符号H,是一个系统的热力学参数。
物理意义:⑴H=U+pV 焓=流动内能+推动功
⑵焓表示流动工质所具有的能量中,取决于热力状态的那部分能量
定义一个系统内:
H = U + pV
式子中"H"为焓,U为系统内能,p为其压强,V则为体积。
对于在大气内进行的化学反应,压强一般保持常值,则有
ΔH = ΔU + pΔV
规定放热反应的焓取负值。
如:
SO3(g)+H2O(l)==H2SO4(l);ΔH= -130.3 kJ/mol
表示每生成1 mol H2SO4 放出130.3 kJ 的热。
严格的标准热化学方程式格式: H2(g)+1/2O2(g)==H2O(l) ΔrHθm=-286kJ·mol-1 (θ表示标
准态,r表示反应,m表示1mol反应.含义为标准态下进行一摩尔反应的焓变)
现在我们设想在同一温度下发生同上的1mol反应:2H2(g)+O2(g)=2H2O(g),但不是在等温等容条件下,而是在等温等压条件下,或者说发生的不是等温等容反应,而使等温等压反应,若反应发生时同样没有做其他功,反应的热效应多大?这种热效应的符号通常用Qp表示,下标p表明等压,成为等压热效应。
Qp=△U+p△V=△U+RT∑vB(g)
式中△U≡U终态-U始态≡U反应产物-U反应物,式中∑vB(g)=△n(g)/mol,即发生1mol 反应,产物气体分子总数与反应物气体分子总数之差。
由该式可见,对于一个具体的化学反应,等压热效应与等容热效应是否相等,取决于反应前后气体分子总数是否发生变化,若总数不变,系统与环境之间不会发生功交换,于是,Qp=QV;若总数减小,对于放热反应∣Qp∣〉∣QV∣,等压过程放出热多于等容过程放出热,;若反应前后气体分子总数增加,对于放热反应,∣Qp∣〈∣QV∣,反应前后内能减少释放的一部分能量将以做功的形式向环境传递,放出的热少于等容热效应。
同样的,对于吸热反应也可以类推得到。
将上式展开又可得到:
Qp=△U+p△V=(U终态-U始态)+p(U终态-U始态)
=(U终态+pU始态)-(U终态+pU始态)
由于U、p、V都是状态函数,因此U+pV也是状态函数,为此,我们定义一个新的状态函数,称为焓,符号为H,定义式为H≡U+pV,于是:
△H≡H终态-H始态= Qp
此式表明,化学反应在等温等压下发生,不做其他功时,反应的热效应等于系统的状态函数焓的变化量。
请特别关注上句中的“不做其他功时”,若做其它功(如电池放电做功)反应的热效应决不会等于系统的状态函数H的变化量△H。
我们之所以要定义焓这个函数,其原因是由于其变化量是可以测定的(等于等温等压过程不做其它公式的热效应),具有实际应用的价值。
这样处理,包含着热力学的一个重要思想方法:在一定条件下发生一个热力学过程显现的物理量,可以用某个状态函数的的变化量来度量。
QV=△U、Qp,都是这种思想方法的具体体现。
在随后的讨论中,这种思想方法还将体现。
应当指出,焓变在数值上等于等温等压热效应,这只是焓变的度量方法,并不是说反应不在等压下发生,或者同一反应被做成燃料电池放出电能,焓变就不存在了,因为焓变是状态函数,只要发生反应,同样多的反应物在同一温度和压力下反应生成同样多的产物,用同一化学方程式表达时,焓变的数值是不变的。
另外,我们在反应含的符号否面加上反应的温度条件,是因为温度不同,焓变数值不同。
但实验事实告诉我们,反映焓变随温度的变化并不太大,当温度相差不大时,可近似地看作反应含不随温度变,以下内容只作这种近似处理,不考虑焓变随温度的变化。
实验和热力学理论都可以证明:反应在不同压力下发生,焓变不同!但当压力改变不大时,不作精确计算时,这种差异可忽略,可借用标准态数据。
以下内容均作这种近似处理。