立体几何中的折叠问题(微专题)

合集下载

微专题16 立体几何中的折叠、探究问题

微专题16 立体几何中的折叠、探究问题
索引
1
真题演练 感悟高考
索引
1.(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面 图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与 BF重合,连接DG,如图②. (1)证明:图②中的A,C,G,D四点共面,且平 面ABC⊥平面BCGE; 证明 由已知得AD∥BE,CG∥BE,所以AD∥CG, 所以AD,CG确定一个平面,从而A,C,G,D四点共面. 由已知得AB⊥BE,AB⊥BC,且BE∩BC=B,BE,BC⊂平面BCGE, 所以AB⊥平面BCGE. 又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.
索引
(2)若直线 AC 与平面 ABFE 所成角的正切值为 36,求平面 CEB 与平面 EBF 夹
角的余弦值. 解 如图过点 C 作 CG⊥EF,交 EF 于点 G,连接 AG,
因为平面ABFE⊥平面 EFCD,且平面ABFE∩平面EFCD=EF,
所以CG⊥平面ABFE, 故直线AC与平面ABFE所成的角为∠CAG, 设DE=h,则在Rt△CAG中 ,CG=DE=h, AG= EG2+EA2= h2+4, 所以 tan∠CAG=CAGG= hh2+4= 36, 解得 h=2 2,
索引
考向1 折叠后的位置关系及空间角 例1 (2022·重庆诊断)在直角梯形ABCD中,AB∥CD,
AB⊥AD,AB=2CD=4,E,F分别为AD,BC的中 点,沿EF将四边形EFCD折起,使得DE⊥BF(如图2). (1)求证:平面ABFE⊥平面EFCD; 证明 由题设条件,得EF∥AB∥CD,AB⊥AD,则DE⊥EF, 又DE⊥BF且BF∩EF=F,BF,EF⊂平面ABFE, 则DE⊥平面ABFE, 又DE⊂平面EFCD, 故平面ABFE⊥平面EFCD.

立体几何中“折叠问题”解题策略(含详细解析)

立体几何中“折叠问题”解题策略(含详细解析)

立体几何中“折叠问题”的解题策略[例题]如图1,在直角梯形ABCD中,AD∥BC,AB∥BC,BD∥DC,点E是BC边的中点,将∥ABD沿BD折起,使平面ABD∥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(1)求证:AB∥平面ADC;(2)若AD=1,二面角C­AB­D的平面角的正切值为6,求二面角B­AD­E的余弦值.[解](1)证明:因为平面ABD∥平面BCD,平面ABD∩平面BCD=BD,BD∥DC,DC∥平面BCD,所以DC∥平面ABD.因为AB∥平面ABD,所以DC∥AB.又因为折叠前后均有AD∥AB,DC∩AD=D,所以AB∥平面ADC.(2)由(1)知AB∥平面ADC,所以二面角C­AB­D的平面角为∥CAD.又DC∥平面ABD,AD∥平面ABD,所以DC∥AD.依题意tan∥CAD =CDAD = 6. 因为AD =1,所以CD = 6. 设AB =x (x >0),则BD =x 2+1. 依题意∥ABD ∥∥DCB ,所以AB AD =CDBD , 即x 1=6x 2+1,解得x =2,故AB =2,BD =3,BC =BD 2+CD 2=3.以D 为坐标原点,射线DB ,DC 分别为x 轴,y 轴的正半轴,建立如图所示的空间直角坐标系D ­xyz ,则D (0,0,0), B (3,0,0), C (0,6,0), E (23,26,0), A (33,0,36), 所以DE ―→=(23,26,0),DA ―→=(33,0,36).由(1)知平面BAD 的一个法向量n =(0,1,0). 设平面ADE 的法向量为m =(x ,y ,z ),由⎩⎨⎧m·DE ―→=0,m·DA ―→=0,得⎩⎨⎧32x +62y =0,33x +63z =0.令x =6,得y =-3,z =-3,所以m =(6,-3,-3)为平面ADE 的一个法向量. 所以cos<n ,m>=n ·m |n |·|m |=-12.由图可知二面角B ­AD ­E 的平面角为锐角, 所以二面角B ­AD ­E 的余弦值为12. 解题策略:1.确定翻折前后变与不变的关系画好翻折前后的平面图形与立体图形,分清翻折前后图形的位置和数量关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决.2.确定翻折后关键点的位置所谓的关键点,是指翻折过程中运动变化的点.因为这些点的位置移动,会带动与其相关的其他的点、线、面的关系变化,以及其他点、线、面之间位置关系与数量关系的变化.只有分析清楚关键点的准确位置,才能以此为参照点,确定其他点、线、面的位置,进而进行有关的证明与计算.变式练习:1.如图1,在四边形ABCD 中,AD ∥BC ,∥BAD =90°, AB =23,BC =4,AD =6,E 是AD 上的点,AE =13AD , P 为BE 的中点,将∥ABE 沿BE 折起到∥A 1BE 的位置, 使得A 1C =4,如图2.(1)求证:平面A1CP∥平面A1BE;(2)求二面角B­A1P­D的余弦值.解:(1)证明:如图3,连接AP,PC.∥在四边形ABCD中,AD∥BC,∥BAD=90°,AB=23,BC=4,AD=6,E是AD上的点,AE=13AD,P为BE的中点,∥BE=4,∥ABE=30°,∥EBC=60°,BP=2,∥PC=23,∥BP2+PC2=BC2,∥BP∥PC.∥A1P=AP=2,A1C=4,∥A1P2+PC2=A1C2,∥PC∥A1P.∥BP∩A1P=P,∥PC∥平面A1BE.∥PC∥平面A1CP,∥平面A1CP∥平面A1BE.(2)如图4,以P 为坐标原点,PB 所在直线为x 轴,PC 所在直线为y 轴,过P 作平面BCDE 的垂线为z 轴,建立空间直角坐标系,则A 1(-1,0,3),P (0,0,0),D (-4,23,0), ∥P A 1―→=(-1,0,3), PD ―→=(-4,23,0), 设平面A 1PD 的法向量为m =(x ,y ,z ),则⎩⎨⎧m·P A 1―→=0,m·PD ―→=0,即⎩⎪⎨⎪⎧-x +3z =0,-4x +23y =0,取x =3,得m =(3,2,1).易知平面A 1PB 的一个法向量n =(0,1,0), 则cos 〈m ,n 〉=m ·n |m||n|=22. 由图可知二面角B ­A 1P ­D 是钝角, ∥二面角B ­A 1P ­D 的余弦值为-22.2.如图1,在高为2的梯形ABCD 中,AB ∥CD ,AB =2,CD =5,过A ,B 分别作AE ∥CD ,BF ∥CD ,垂足分别为E ,F .已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE ­BCF ,如图2.(1)若AF ∥BD ,证明:DE ∥BE ;(2)若DE ∥CF ,CD =3,在线段AB 上是否存在点P ,使得CP 与平面ACD 所成角的正弦值为3535?并说明理由.解:(1)证明:由已知得四边形ABFE 是正方形,且边长为2, ∥AF ∥BE .∥AF ∥BD ,BE ∩BD =B ,∥AF ∥平面BDE . 又DE ∥平面BDE ,∥AF ∥DE .∥AE ∥DE ,AE ∩AF =A ,∥DE ∥平面ABFE . 又BE ∥平面ABFE ,∥DE ∥BE .(2)当P 为AB 的中点时满足条件.理由如下: ∥AE ∥DE ,AE ∥EF ,DE ∩EF =E ,∥AE ∥平面DEFC . 如图,过E 作EG ∥EF 交DC 于点G ,可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA ―→,EF ―→,EG ―→分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,1,3),D (0,21-,23), AC ―→=(-2,1,3),AD ―→=(-2,21-,23).设平面ACD 的法向量为n =(x ,y ,z ),则⎩⎨⎧ n ·AC ―→=0,n ·AD ―→=0,即⎩⎨⎧-2x +y +3z =0,-2x -12y +32z =0,令x =1,得n =(1,-1,3).设AP ―→=λPB ―→,则P (2,λλ+12,0),λ∥(0,+∞),可得CP ―→=(2,λλ+-11,-3).设CP 与平面ACD 所成的角为θ,则sin θ=|cos<CP ,n>|=52)11(7111⨯+-++---λλλλ=3535,解得λ=1或λ=-25(舍去),∥P 为AB 的中点时,满足条件.。

向量法求立体几何中的折叠探索及最值问题 高三数学一轮复习

向量法求立体几何中的折叠探索及最值问题 高三数学一轮复习

巩固训练2 [2024·河南郑州模拟]在底面ABCD为梯形的多面体中.AB∥CD,
BC⊥CD,AB=2CD=2 2,∠CBD=45°,BC=AE=DE,且四边 形BDEN为矩形.
(1)求证:BD⊥AE; (2)线段EN上是否存在点Q,使得直线BE与平面QAD所成的角为60°? 若不存在,请说明理由.若存在,确定点Q的位置并加以证明.
(1)求证:OP⊥平面ABED;
(2)求二面角B-PE-F的正弦值.
题型二 探索性问题
例2 [2024·河北石家庄模拟]如图,四棱锥S-ABCD中,底面ABCD为
矩形且垂直于侧面SAB,O为AB的中点,SA=SB=AB=2,AD= 2.
(1)证明:BD⊥平面SOC;
(2)侧棱SD上是否存在点E,使得平面ABE与平面SCD夹角的余弦值
为1,若存在,求SE的值;若不存在,说明理由.
5
SD

题后师说
(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当 作条件,据此列方程或方程组,把“是否存在”转化为“点的坐标的 方程是否有解,是否有规定范围内的解”等.
(2)对于位置探究型问题,通常借助向量,引进参数,综合已知条件 和结论列出等式,解出参数.
高考大题研究课七 向量法求立体几何中的折叠、探索及最值问题
会用向量法解决立体几何中的折叠、角的存在条件及最值问题,提 高学生空间想象能力、数学运算能力.
关键能力·题型剖析 题型一 折叠问题 例1 [2024·江西景德镇模拟]如图,等腰梯形ABCD中,AD∥BC,AB=BC =CD=12AD=2,现以AC为折痕把△ABC折起,使点B到达点P的位置,且 PA⊥CD.
题型三 最值问题
例3 [2020·新高考Ⅰ卷]如图,四棱锥P-ABCD的底面为正方形, PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.

微专题6 方法技巧 巧用勾股定理解决折叠问题课件 2024-2025学年 华东师大版数学八年级上册

微专题6 方法技巧 巧用勾股定理解决折叠问题课件 2024-2025学年 华东师大版数学八年级上册
【解析】操作一:(1)由翻折的性质可知:BD=AD,∴AD+DC=BC=7.∴△ACD的周
长为CD+AD+AC=BC+AC=7+5=12(cm).
7.(2024·汉中期末)在数学实验课上,李静同学剪了两张直角三角形纸片,进行了如
图的操作:
操作一:如图1,将Rt△ABC纸片沿某条直线折叠,使斜边两个端点A与B重合,折痕为
AD上的点E处,折痕的一端点G在边BC上.
(2)如图(2),当折痕的另一端F在AD边上且BG=10时,
①求证:EF=EG.
②求HF的长.
【解析】(2)①∵纸片折叠后顶点B落在边AD上的点E处,
∴∠BGF=∠EGF,
∵长方形纸片ABCD的边AD∥BC,
∴∠BGF=∠EFG,
∴∠EGF=∠EFG,
∴EF=EG;
DE.
36°
(2)如果∠CAD∶∠BAD=1∶2,可得∠B的度数为____;
操作二:如图2,李静拿出另一张Rt△ABC纸片,将直角边AC沿直线CD折叠,使点A与
点E重合,若AB=10 cm,BC=8 cm,请求出BE的长.
【解析】(2)设∠CAD=x,则∠BAD=2x.
由翻折的性质可知:∠BAD=∠CBA=2x,
②∵纸片折叠后顶点B落在边AD上的点E处,
∴EG=BG=10,HE=AB=8,FH=AF,
∴EF=EG=10,
在Rt△EFH中,FH= − = − =6.
本课结束
类型一 三角形的折叠问题
1.(2024·天津模拟)如图,在Rt△ABC中,∠B=90°,AB=6,BC=9,将△ABC折叠,使点C与
AB的中点D重合,折痕交AC于点M,交BC于点N,则线段BN的长为

高中数学立体几何折叠问题大题精选

高中数学立体几何折叠问题大题精选

立体几何折叠问题大题精选1.如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF平面EFDC.(Ⅰ)当,是否在折叠后的AD上存在一点,且,使得CP∥平面ABEF?若存在,求出的值;若不存在,说明理由;(Ⅱ)设BE=x,问当x为何值时,三棱锥A CDF的体积有最大值?并求出这个最大值.2.如图1,A,D分别是矩形A1BCD1上的点,AB=2AA1=2AD=2,DC=2DD1,把四边形A1ADD1沿AD折叠,使其与平面ABCD垂直,如图2所示,连接A1B,D1C得几何体ABA1DCD1.(1)当点E在棱AB上移动时,证明:D1E⊥A1D;(2)在棱AB上是否存在点E,使二面角D1ECD的平面角为?若存在,求出AE的长;若不存在,请说明理由.3.如图,已知四棱锥S-A BCD是由直角梯形沿着CD折叠而成,其中SD≥DA≥AB≥BC≥l,AS∥BC,A⊥AD,且二面角S-CD-A的大小为120o.(Ⅰ)求证:平面ASD⊥平面ABCD;(Ⅱ)设侧棱SC和底面ABCD所成角为,求的正弦值.4.如图1所示,在边长为24的正方形中,点在边上,且,,作分别交于点,作分别交于点,将该正方形沿折叠,使得与重合,构成如图2所示的三棱柱.(1)求证:平面;(2)求多面体的体积.5.如图所示,在边长为的正方形中,点在线段上,且,,作//,分别交,于点,,作//,分别交,于点,,将该正方形沿,折叠,使得与重合,构成如图所示的三棱柱.(1)求证:平面;(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为,求|BE|的最小值.6.已知平面五边形关于直线对称(如图(1)),,,将此图形沿折叠成直二面角,连接、得到几何体(如图(2))(1)证明:平面;(2)求平面与平面的所成角的正切值.7.已知中,角,,所对的边分别为,,,若,.(1)判断的形状;(2)在的边,上分别取,两点,使沿线段折叠三角形时,顶点正好落在边上的点处,设,当最小时,求的值.8.如图1,四边形中,,,将四边形沿着折叠,得到图2所示的三棱锥,其中.(1)证明:平面平面;(2)若为中点,求二面角的余弦值.9.如图,是等边三角形,,,将沿折叠到的位置,使得.(1)求证:;(2)若,分别是,的中点,求二面角的余弦值.10.一张半径为4的圆形纸片的圆心为,是圆内一个定点,且,是圆上一个动点,把纸片折叠使得与重合,然后抹平纸片,折痕为,设与半径的交点为,当在圆上运动时,则点的轨迹为曲线,以所在直线为轴,的中垂线为轴建立平面直角坐标系,如图.(1)求曲线的方程;(2)曲线与轴的交点为,(在左侧),与轴不重合的动直线过点且与交于、两点(其中在轴上方),设直线、交于点,求证:动点恒在定直线上,并求的方程.11.图甲是一个几何体的表面展开图,图乙是棱长为的正方体。

折叠几何综合专题---16道题目(含答案)

折叠几何综合专题---16道题目(含答案)

01如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG,GF,AF之间的数量关系,并说明理由;(3)若AG=6,EG=25,求BE的长.(1)证明:由折叠性质可得,EF =FD ,∠AEF =∠ADF =90°,∠EFA =∠DFA ,EG =GD ,∵EG ∥DC ,∴∠DFA =∠EGF ,∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形;(2)解:EG 2=12GF ·AF .理由如下: 如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE , ∵∠FEH =90°-∠EFA =∠FAE ,∠FHE =∠AEF =90°,∴Rt △FEH ∽Rt △FAE ,∴EF AF =FH EF,即EF 2=FH ·AF , 又∵FH =12GF ,EG =EF ,∴EG 2=12GF ·AF ; (3)解:∵AG =6,EG =25,EG 2=12AF ·GF ,∴(25)2=12(6+GF )·GF , 解得GF =4或GF =-10(舍),∴GF =4,∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8,∵∠CDE+∠DFA=90°,∠DAF+∠DFA=90°,∴∠CDE=∠DAF,∵∠DCE=∠ADF=90°,∴Rt△DCE∽Rt△ADF,∴ECDF=DEAF,即EC25=810,∴EC=855,∴BE=BC-EC=1255.02如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F,若DE=4,BD=8.(1)求证:AF=EF;(2)求证:BF平分∠ABD.证明:(1)在矩形ABCD中,AB=CD,∠A=∠C=90°,∵△BED是△BCD对折得到的,∴ED=CD,∠E=∠C,∴ED=AB,∠E=∠A,(2分)又∵∠AFB=∠EFD,∴△ABF≌△EDF(AAS),∴AF=EF;(4分)(2)在Rt△BCD中,∵DC=DE=4,BD=8,∴sin∠CBD=DCBD=12,∴∠CBD=30°,(5分)∴∠EBD=∠CBD=30°,∴∠ABF=90°-30°×2=30°,(7分)∴∠ABF=∠EBD,∴BF平分∠ABD.(8分)03把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG。

微专题四 勾股定理与折叠问题

微专题四 勾股定理与折叠问题
A
△ABC折叠,使点A与BC的中点D重合,折痕为MN,则BN的长是(
A.4
B.3
C.6
D.5
)
3.(2022济宁)如图所示,在三角形纸片ABC中
,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸片折叠,使点B落在边
A
BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,
则AE的长是(
A.


B.


)
C.


D.


四边形折叠与勾股定理
4.(2024莱州期中)如图所示,在四边形ABCD中,∠A=90°,AB=4 cm,
AD=2 cm,BC=CD,E是AB上的一点.如果沿CE折叠,使B,D两点重合,



△AED的面积为
cm
2
.

5.如图所示,在长方形ABCD中,AB=4,BC=5,F为CD上一点,将长方形
2
2
2
在 Rt△EFC 中,CF +CE#43;2 =(4-x) ,解得 x= ,








所以 CF= ,所以△CFE 的面积 S= CE·CF= ×2× = .

6.如图所示,在长方形ABCD中,P为边AD上一点,沿直线BP将△ABP翻
折至△EBP(点A的对应点为点E),PE与CD相交于点O,且OE=OD,BE与
微专题四 勾股定理与折叠问题
三角形折叠与勾股定理
1.如图所示,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B
恰好落在边AC上的点B′处,AE为折痕,则EC长为(

(完整版)立体几何中的折叠问题

(完整版)立体几何中的折叠问题

立体几何中的折叠问题1.概念:将平面图形沿某直线翻折成立体图形,再对折叠后的立体图形的线面位置关系和某几何量进行论证和计算,就是折叠问题.2.折叠问题分析求解原则:(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变。

(最值问题)1、把正方形ABCD 沿对角线AC 折起,当以A 、B 、C 、D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成角的大小为_______.(两点间距离,全品83页)2、把长宽分别为2的长方形ABCD 沿对角线AC 折成60o 的二面角,求顶点B 和D 的距离。

3、(全品70页)给出一边长为2的正三角形纸片,把它折成一个侧棱长与底面边长都相等的三棱锥,并使它的全面积与原三角形面积相等,设计一种折叠方法,并用虚线标在图中,并求该三棱锥的体积。

4、(2005江西文)矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B —AC —D ,则四面体ABCD 的外接球的体积为 ( ) A .π12125B .π9125C .π6125D .π3125A BCEMN解决折叠问题的关键是弄清折叠前后哪些量没有变化,折叠后位置关系怎样变化,通过空间想象折叠成的几何体的形状来分析已知和待求,是培养空间想象能力的很好的题型。

高考题中的折叠问题1、在正方形SG 1G 2G 3中E 、F 分别是G 1G 2及G 2G 3的中点,D 是EF 的中点,现在沿SE 、SF 及EF 把这个正方形折成一个四面体,使G 1、G2、G 3三点重合,重合后的点记为G.那么,在四面体S —EFG 中必有(A)SG ⊥△EFG 所在平面 (B)SD ⊥△EFG 所在平面 (C)GF ⊥△SEF 所在平面 (D)GD ⊥△SEF 所在平面 2、如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点, G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点.将△ABC 沿DE , EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为( ) A .90° B .60° C .45° D .0°3、(2005浙江理科)12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如下图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_____.4、(2006山东)如图,在等腰梯形ABCD 中,AB=2DC=2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P ,则P -DCE 三棱锥的外接球的体积为(A)2734π (B)26π (C)86π (D)246π5、(2009浙江)如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .6.(2010上海)在边长为4的正方形纸片ABCD 中,AC 与BD 相交于O,剪去AOB V ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以A 、(B )、C 、D 、O 为顶点的四面体的体积为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( 12 浙江)10.已知矩形 ABCD,AB= 1,BC= 2 .将 ABD 沿矩形的对角线 BD 所在的直线进行翻折,在翻折着过程中, A.存在某个位置,使得直线 AC 与直线 BD 垂直 B.存在某个位置,使得直线 AB 与直线 CD 垂直 C.存在某个位置,使得直线 AD 与直线 BC 垂直 D.对任意位置,三直线“ AC 与 BD” , “ AB 与 CD” , “ AD 与 BC”均不垂直
(05
浙江) 设 M、 N 是直角梯形 ABCD 两腰的中点, DE⊥AB 于 E(如
图 ).现将△ADE 沿 DE 折起,使二面角 A- DE-B 为 45° ,此时点 A 在平面 BCDE 内的射影恰为点 B,则 M、 N 的连线与 AE 所成角的 大小等于_________.
D
C
N
M
A
E
B
(09 浙江) 17.如图,在长方形 ABCD 中,AB 2 ,BC 1 ,E 为 DC 的 中点, F 为线段 EC (端点除外)上一动点.现将 AFD 沿 AF 折起, 使平面 ABD 平面 ABC .在平面 ABD 内过点 D 作 DK AB , K 为垂 足.设 AK t ,则 t 的取值范围是 .
立体几何中的翻折问题
灵溪二高:刘勇
把一个平面图形按某种要求折起,转化 为空间图形,进而研究图形在位置关系和数 量关系上的变化,这就是翻折问题。
图形的翻折问题在历年高考中时常出现, 浙江省近几年就出现了四次,因为它是一个由直 观到抽象的过程,所以每次的出现的题号都偏后, 同学们的答题情况也不太理想。
A D
A
D B
B
C
C
2014温一模(16题)
如图,矩形 ABCD 中,E 为边 AB 的中点,将△ADE 沿直线 DE 翻 转成△A1DE.若 M 为线段 A1C 的中点,则在△ADE 翻转过程 中,正确的命题是 . ① |BM|是定值; ② 点 M 在圆上运动; ③ 一定存在某个位置,使 DE⊥A1C; ④ 一定存在某个位置,使 MB∥平面 A1DE.
(1)AD与BC所成的角固定吗?
D
它们会垂直吗?
(2)AC与BD所成的角固定吗?
A
M
C
(3)AD与面BDM所成的角固定吗?(M为AC中点) (4)二面角A-DB-C固定吗? 你能不用求解看出它的范围吗? 考向二:通过翻折得到一个不确定的几何体, 研究其点线面的位置关系 策略:明确不变量、紧抓关键量
B
课本中翻折:
如图:边长为2的正方形ABCD中, (1)点E、F分别是边BC和CD的中点,将△ABE, △AFD分别沿AE,AF折起,使两点重合于P点, 求证:AP⊥EF 1 (2)当CE=CF= 4 BC时,求三棱锥P-AEF的体积; A P(B,D)
F
E C
链接高考:
( 12 浙江第 10 题)已知矩形 ABCD, AB= 1, BC= 2 .将 ABD 沿矩形的对 角线 BD 所在的直线进行翻折,在翻折着过程中, A.存在某个位置,使得直线 AC 与直线 BD 垂直 B.存在某个位置,使得直线 AB 与直线 CD 垂直 C.存在某个位置,使得直线 AD 与直线 BC 垂直 D.对任意位置,三直线“ AC 与 BD” , “ AB 与 CD” , “ AD 与 BC”均不垂直
典型例题
如图:边长为2的正方形ABCD中,将 △ACD沿对角线AC折起,连接BD,得 到一个新的三棱锥D-ABC 尝试作图
在翻折的过程中,三棱锥与原来的正方形对比,哪些量没有变化?哪些量发生 了变化?(长度、角度、图形)
D C
D
A
为 2 的正方形 ABCD 中,将△ACD沿对角线AC折起,连 接BD,得到一个新的三棱锥DABC,当三棱锥的体积最大时。
问题1、求AC与BD所成的角? 问题2、AD与BC会垂直吗? 问题3、角DAB固定吗? 它的范围为? 问题4、AD与平面ABC所成的线面角固定吗?
A C D
它有最大值吗?
M
问题 5 、 AD 与面 BDM 所成的角固定吗? (M 为 AC 中 点)
问题6、二面角D-AC-B固定吗?范围为?
B
问题7、二面角A-DB-C的范围能求吗?
(1)求AD与BC所成的角 (2)求AD与面DBC所成角的正弦值 (3)求二面角D-AB-C的正切值
D
A
C
考向一:通过翻折得到一个确定的几何体, 研究其点线面的位置关系。 策略:建系、模型、传统方法
B
变式、 如图:边长为 2 的正方形 ABCD 中,将△ ACD 沿 对角线 AC 折起,连接 BD ,得到一个新的三棱锥 DABC,(平面DAC与平面BAC不重叠)
( 10 浙江)如图, 在矩形 ABCD 中,点 E, F 分别在线段 AB, AD 上,
,沿直线 EF 将△ AEF 翻 折成△ A′ EF,使平面 A′ EF⊥平面 BEF。 (Ⅰ)求二面角 的余弦值;
(Ⅱ)点 M, N 分别在线段 FD,BC 上,若沿 直线 MN 将四边形 MNCD 向上翻折, 使 C与 重合,求线段 FM 的长。
【总结规律】
求解翻折问题的基本方法:
(1)根据题中条件画出立体图形 (2)比较翻折前后的图形,弄清哪些量和位置关 系在翻折过程中不变,哪些已发生变化. (3)将不变的条件集中到几何体图形中,将问题 归结为一个条件与结论明朗化的立几问题。
链接高考:
(09 浙江) 17.如图,在长方形 ABCD 中,AB 2 ,BC 1 ,E 为 DC 的 中点, F 为线段 EC (端点除外)上一动点.现将 AFD 沿 AF 折起, 使平面 ABD 平面 ABC .在平面 ABD 内过点 D 作 DK AB , K 为垂 足.设 AK t ,则 t 的取值范围是 .
相关文档
最新文档