哈法
塞纳河的左岸和右岸

塞纳河的左岸和右岸塞纳河的左岸和右岸左岸右岸,好像已经不仅是一个地域上的区别,而更多的是理念和象征意义的不同。
在法国,左岸,是一个特别“小资”的词。
法国人一般爱把河岸分左右称呼,就像中国人爱把山坡分阴阳一样。
“巴黎的左岸”,这个让人容易浮想联翩、让人觉得是充满异国风情的地方,广义上说,指的是流经巴黎、把“艺术之都”一分两半的塞纳河以南的这部分;狭义上说,就是靠近河南岸圣・米歇尔大街和圣・日耳曼大街交汇的方圆几公里的地方。
好像提起“左岸”,就提到了这样一些气氛或背景:诗歌、哲学、贵族化、咖啡馆、艺术、清谈……当然,还有文化。
不错,巴黎的左岸非常文化。
几乎所有的大媒体、大多数研究机构和政府机关都在左岸,还有数不清的画廊、放映老片子的小电影院。
更不用说靠近塞纳河边星星点点的大学教学楼了。
即使是气定神闲、对贸然推门进来的生客爱搭不理的古董店老板,和浓妆淡抹、虽然永远带着职业微笑、但空洞的眼神总是拒人于千里之外的高级时装店营业小姐,也能让你体会到文化。
左岸当然也非常知识分子化。
据好事者考证,就连“知识分子”(INTELLECTUEL)这个词最早都是从法语来的,而且和左岸有关。
据说在政教合一的中世纪法国,两个来自左岸、学富五车的读书人向宗教统治势力发动挑战,靠他们渊博的学识、严密的逻辑舌战群儒,竟然纠正了当局对一个宗教迫害案的错判。
从此,人们把用知识改变人类命运的这些读书人称作“知识分子”。
巴黎人说笑话,在左岸散步,从你身边匆匆而过的不是教授就是大学生;而在右岸,走路时注意不要踩别人的脚――那十有八九是一双蹬着高级皮鞋的银行家的脚!左岸右岸,好像已经不仅是一个地域上的区别,而更多的是理念和象征意义的不同。
一条几十米宽的大河,在人心浮动、灵活机巧的今天,能阻断多少思想或行为的交流、融合和碰撞呢?但是,的确如此:左岸的环境是叛逆的,左岸的心灵是极端的;左岸的眼神是激情的,左岸的语言是感性的。
左岸那些放荡不羁、真实自然的灵魂,成就了法国“思想大国”的国际地位。
伊拉克哈法亚油田古近系海相三角洲沉积特征及成藏主控因素

第28卷第3期油气地质与采收率Vol.28,No.32021年5月Petroleum Geology and Recovery EfficiencyMay 2021—————————————收稿日期:2020-10-13。
作者简介:秦国省(1988—),男,山东济宁人,工程师,博士,从事油气田开发地质及三维建模研究。
E-mail :******************。
文章编号:1009-9603(2021)03-0025-10DOI :10.13673/37-1359/te.2021.03.003伊拉克哈法亚油田古近系海相三角洲沉积特征及成藏主控因素秦国省1,王友净1,刘辉1,兰宇坤1,洪亮2(1.中国石油勘探开发研究院,北京100083;2.中国石油勘探开发研究院西北分院,甘肃兰州730020)摘要:综合岩心、测井及分析化验资料对伊拉克哈法亚油田Upper Kirkuk 大型海相三角洲油藏进行了地质特征剖析和主控因素探究,研究结果表明:Upper Kirkuk 油藏为大型海相三角洲沉积,对应海平面先上升后下降的完整旋回,由近连片分流河道演化为最大海泛面时期的条带状分流河道,最终随海平面下降演化为连片分流河道,河道宽度为5~15km ;分流河道以纯砂岩为主,为该油藏最为优质的储层类型,溢岸及席状砂较薄,展布有限且颗粒内部多充填岩屑及黏土等杂基,储集能力较差;前三角洲泥岩及分流间湾粉砂质泥岩多为非储层,构成主要的隔夹层;Upper Kirkuk 油藏由沉积作用控制的分流河道为主要储层,呈连续分布,最大海泛面时期发育稳定泥岩隔层,同时,成岩作用控制顶底临近碳酸盐岩层段易白云岩化,形成稳定隔夹层,沉积及成岩作用共同决定了该油藏的内幕分层结构特征。
关键词:海相三角洲;Upper Kirkuk 组;沉积特征;隔夹层;哈法亚油田中图分类号:TE122.1文献标识码:ASedimentary characteristics and main controlling factors ofPaleogene marine delta reservoir in Halfaya Oilfield ,IraqQIN Guosheng 1,WANG Youjing 1,LIU Hui 1,LAN Yukun 1,HONG Liang 2(1.Research Institute of Petroleum Exploration &Development ,PetroChina ,Beijing City ,100083,China ;2.Northwest Branch ,Research Institute of Petroleum Exploration &Development ,PetroChina ,Lanzhou City ,Gansu Province ,730020,China )Abstract :With integrated data from core ,well logging and laboratory analysis ,the geological characteristics and main con⁃trolling factors of a giant marine delta of the Upper Kirkuk reservoir in the Halfaya Oilfield were studied.The results dem⁃onstrate that the Upper Kirkuk reservoir was developed under the background of giant marine delta ,which underwent a complete cycle of sea level rising first and then declining from bottom to top.Near stretched distributary channels evolved into banded ones during the period of the maximum flooding surface (MFS ),and finally into a stretch of distributary chan⁃nels with width of 5-15km as the sea level declined.Besides ,the lithology of distributary channels is dominated by puresandstone ,which forms the best reservoir in the Upper Kirkuk reservoir.The overbank and sand sheets are thin ,with limit⁃ed lateral continuity ,and particles are filled with debris and clay ,indicating a poor storage capacity.The mudstone in the front delta and the silty mudstone in the interdistributary bay are mostly non-reservoirs ,serving as the main barriers.More⁃over ,the distributary channels controlled by sedimentation are the main reservoirs distributing continuously in the Upper Kirkuk reservoir ,and a stable mudstone barrier was developed during the MFS.The top and bottom are prone to dolomitiza⁃tion due to the contact with the near carbonate rock formation ,leading to the stable barriers in the reservoir.Sedimentation and diagenesis jointly determine the layered structure in the Upper Kirkuk reservoir.Key words :marine delta ;Upper Kirkuk Formation ;sedimentary characteristics ;barrier ;Halfaya Oilfield中东地区油气资源丰富,石油探明储量占全球的48.3%,产量占全球的33.5%,是全球油气勘探开·26·油气地质与采收率2021年5月发的热点和重点地区,伊拉克作为中东地区第三大产油国,石油探明储量占全球的8.5%,产量占全球的4.0%[1-4]。
大连小耗子岛钓鱼攻略

大连小耗子岛钓鱼攻略一、传统立漂沉底钓鲫鱼:这是比较普谝的钓法,我国南北东西都有不少钓友采用此种方法。
即用立漂或散漂,铅坠沉底,鱼钩距铅坠的脑线大约25毫米。
垂钓时鱼漂调整到直立,露出部分,便于判断鱼讯即可(散漂则没入水中两三粒,浮在水面三四粒)。
哈法的优点是调整方便,钩坠漂配比要求不严格,便干堂握。
但不很灵敏,有经验的鱼常常触动一下鱼饵,发觉较重,即警觉逃走。
同时,此法鱼饵沉底不动,如不勒动一下角竿,常不为鲫鱼发现。
二、台钓鲫鱼:目前较为盛行。
其最大优点是灵敏度强,上鱼率高。
鱼钩下沉慢,易为鱼发现。
坠悬于水中,钩轻轻触底,鱼在其旁游弋,鱼钩即轻轻摇动,对鱼吸引力极大。
为摘钩方便,使用无倒刺钩,摘钩迅速。
漂坠饵配比要求严格,鱼汛反映极为灵敏。
缺点是漂坠调整较费事各种鱼类混养水域,使用钓鲫鱼的钩线,遇到大鱼容易跑鱼损失工具;初学时不易堂握,常有人半途而废。
但只要树立信心,勤于实践,堂握也不是很难,而一旦堂握,即会发现其优点大大过于一般传统钓法。
三、戳拱钓鲫鱼:是一种传统钓法。
常用在天气炎热的夏季,有浮萍或水草从生的水域中。
一般采用长竿、硬调、短线。
无坠。
热季水中缺氧,鱼常在水面浮萍下吸空气、拱食、乘凉。
从而咬草出声或拱得浮萍形成一个小包。
因而应采用听、看办法,寻觅鱼踪。
听主要是听鱼觅食发出的嚓嚓声响看是看水草显动和浮萍的鼓包,,判断鱼情,发觉有鱼直指该外将钩垂入。
一般轻轻将钩放到拱处,看到水面线向水中拽入,或线牵动竿梢即知有鱼咬饵,适时抖竿提起鱼来。
戳拱一般选安静处,动作要轻,鱼出水时尽量避免惊扰其它鱼儿,若有惊扰,鱼不再拱,可用嘴模仿鱼咬草的嚓嚓声,起到催鱼起拱的作用。
四、戳孔钓鲫鱼:一般用于有荷叶、水草多、苇茬多的水域。
观察荷叶边、水草孔、苇茬间的鱼泡、荷叶、苇子晃动的情况,判断鱼情。
工具一般采用硬调长竿、较竿短的鱼线,小坠,先观察鱼情。
发现后针对有鱼动静的地方,垂竿下钩,使钩沉底,同时不断微微提动鱼竿,引鱼鱼池饵,凭手感觉察鱼儿咬钩,适时提竿。
哈法是加拿大哪个省的

哈法是加拿大哪个省的哈利法克斯(Halifax),是加拿大新斯科舍省的省会,世界第二大天然深水港,气候适宜,是加拿大第二温暖的城市。
也是加拿大东部四省的政府服务和商业部门的集中地。
金融,IT,医疗等行业发达。
哈利法克斯所在的Nova Scotia省,资源丰富,人口不多,一直是加拿大最希望引进移民的省份。
2021年以前,NS省具有加拿大最棒的雇主担保移民通道,雅思四个6的申请人,可以12个月内在中国一步到位获取PR省份后登陆。
不过这个绝无仅有的通道在2021年一月暂停。
首先,哈利法克斯的安全绝对是没的说的,反正我性格大大咧咧,出门是不带钥匙的,毕竟这边的人都很nice,有时候出门忘记带零钱也会有人热心的帮忙。
而且这里是个军港,所以不论是心理上还是实际生活中都会让人更有安全感,并且作为着重开发的重心城市,这里将来会还是会有不错的就业前景。
而且这边的人真心非常好脾气,生活节奏慢悠悠的,我们假期去过纽约感觉街上人逛街走路的速度都是在这边的一倍。
还有一次我把手机忘在活动中心了,2个小时之后回去找发现还躺在那,根本没人动,感觉治安真的超级棒!再来说环境,哈利法克斯彻底颠覆了我对加拿大至冷这个概念。
冬天就跟陕西差不多,冬天在那边都没穿过秋裤,牛仔裤+加拿大鹅(羽绒服)就可以过冬,穿太厚坐公交太热,进了教室也热。
下雪天集中在1-2月份,每次下大雪,学校就停课。
通常铲雪车半夜就开始清理路面上的雪,然后接着撒盐防滑。
早上起来挖车比较痛苦,所以最好坐公交。
夏天确实很舒服,最高气温28°,晚上出门还得穿个长袖,去海边喝个咖啡,散散步,半夜去钓鱿鱼。
看韩国人捞上来就吃…..哈利法克斯的气候很宜居,冬暖夏凉,夏天9点才天黑。
有个同学习惯性天黑才吃饭,到了夏天他就9点吃晚饭,正是我们平时吃夜宵的点。
哈法夏天可多活动、夜生活相当丰富,音乐节、猪排节、多元文化节、海鲜节、彩虹节、汉堡节、啤酒节、绿帽子节等等,市中心一直到半夜都很热闹。
常见的英文人名

常的英文人名Abbott 阿博特Abe 阿贝Abraham 的昵称Abraham 亚伯罕Acheson 艾奇逊Ackermann 阿克曼Adam 亚当Adams 亚当斯Addison 艾狄生艾迪生阿狄森Adela 阿德Adelaide 阿德莱德Adolph 阿道夫Agnes 阿格尼丝Albert 亚伯特Alcott 奥尔科特Aldington 奥尔丁顿Aldridge 奥尔德奇Aledk 亚克Alexander 的昵称Alerander 亚山大Alfred 阿尔弗德艾尔弗德Alice 阿丝艾丝Alick 阿克Alexander 的昵称Alsopp 艾尔普Aly 阿Amelia 阿米亚Anderson 安德森Andrew 安德Ann 安Anna 安娜Anne 安妮Anthony 安东尼Antoinette 安朵娜特Antonia 安东尼娅Arabella 阿贝Archibald 阿奇博尔德Armstrong 阿姆斯壮Arnold 阿德Arthur 亚瑟Attlee 阿特Augustine 奥古斯丁Augustus 奥古斯塔斯Austen 奥斯丁Austin 奥斯丁Babbitt 巴比特白壁德巴比Bach 巴赫Bacon 培根Baldwin 鲍德温Barnard 巴纳德Barney 巴尼Barnard 的昵称Barrett 巴特巴特Barrie 巴Bart 巴特Bartholomew 的昵称Bartholomew 巴萨缪Bartlett 巴特特Barton 巴顿Bauer 鲍尔拜耳Beard 比尔德Beaufort 博福特蒲福Becher 比彻Beck 贝克Rebecca 的昵称Becky 贝基Beerbohm 比尔博姆Bell 贝尔Bellamy 贝米Belle 贝尔Arabella 的昵称Belloc 贝克Ben 本Benjamin 的昵称Benedict 本尼迪克特Benjamin 本杰明Bennett 贝内特Benedict 的昵称Benson 本森Bentham 边沁本瑟姆Berkeley 贝克莱伯克Bernal 伯纳尔Bernard 伯纳德伯纳尔德Bert 伯特Albert Herbert 的昵称Bertha 伯莎Bertie 伯蒂Bertram 伯特Bess 贝丝Elizabeth 的昵称Bessemer 贝瑟摩贝色麦Bessie 贝西Elizabeth 的昵称Bethune 白求恩比顿Betsy 贝琪Elizabeth 的昵称Betty 贝蒂Elizabeth 的昵称Bill 比尔William 的昵称Billy 比William 的昵称Birrell 比尔Black 布莱克Blake 布莱克Bloomer 布默Bloomfield 布菲尔德布姆菲尔德Bloor 布布尔Blume 布姆Bob 鲍勃Robert 的昵称Bobby 博比Robert 的昵称Boswell 博斯韦尔Bowen 鲍恩Bowman 鲍曼Boyle 波伊尔波义耳Bradley 布得Bray 布Brewster 布斯特Bridges 布奇斯Bright 布赖特Broad 布德Bronte 勃特白蒂Brooke 布克Brown 布Browne 布Browning 勃白Bruce 布斯Bruno 布Bryan 布赖恩Bryce 布赖斯Buck 巴克Buckle 巴克耳Bulwer 布韦尔布沃Bunyan 布尼安Burke 伯克Burne-Jones 伯恩-钟斯双姓Burns 彭斯伯恩斯Butler 勃特巴特Byron 拜Camilla 卡米Camp 坎普Carey 凯凯Carl 卡尔Carllyle 卡莱尔Carmen 卡门Carnegie 卡内基Caroline 卡琳Carpenter 卡彭特Carrie 嘉卡Carroll 卡尔Carter 卡特Catharine Catherine 凯萨琳Cecillia 西亚Chamberlain 张伯Chaplin 查普英影星卓别Chapman 查普曼Charles 查斯查Charley 查Charles 的昵称Charlotte 夏蒂夏特Charles 查斯查Chaucer 乔叟Chesterton 斯特顿Child 蔡尔德Childe 蔡尔德Christ 克赖斯特Christian 克琴斯Christiana 克斯蒂安娜Christie 克斯蒂Christian 的昵称Christopher 克斯多夫Christy 克斯蒂Christian 的昵称Church 丘奇Churchill 邱吉尔Cissie 锡西Cecillia 的昵称Clapham 克彭Clara 克Clare 克尔ClaraClarissa 的昵称Clarissa 克莎Clarke 克克Clemens 克曼斯克莱门斯Clement 克莱门特Cocker 科克尔Coffey 科菲Colclough 科尔克夫Coleridge 柯治科尔奇Collins 柯斯Commons 康芒斯Conan 科南Congreve 康格夫Connie 康尼Constance 的昵称Connor 康纳Conrad 康德Constance 康斯坦斯Cooke 库克Cooper 库珀Copperfield 科波菲尔Cotton 柯顿Coverdale 科弗代尔Cowper 考珀Craigie 克吉Crane 克Crichton 克赖顿Croft 克夫特Crofts 克夫茨Cromwell 克威尔Cronin 克克Cumberland 坎伯Curme 柯姆Daisy 戴西Dalton 道尔顿Dan Daniell 的昵称Daniel 尼尔Daniell 尼尔聂耳Darwin 达尔文David 大卫Davy 大卫David 的昵称Defoe 狄福Delia 迪莉娅Dennis 邓尼斯DeQuincey 德.昆西Dewar 迪尤尔杜瓦Dewey 杜威Dick 迪克Richard 的昵称Dickens 迪肯斯狄斯Dickey 迪基Dillon 狄Dobbin 多宾Robert 的昵称Dodd 多德Doherty 陶赫蒂道尔蒂Dolly 多Dorthea Dorothy 的昵称Donne 多恩Dora 朵Dorthea Dorothy 的昵称Doris 桃莉丝陶思Dorothea 桃西娅Dorothy 桃西Douglass 道格斯Doyle 多伊尔道尔Dierser 德莱Dryden 屈莱顿德莱登DuBois 杜波依斯Dulles 杜斯Dunbar 邓巴Duncan 邓肯Dunlop 邓普Dupont 杜邦Dutt 达特杜德Eddie 埃迪Edward 的昵称Eden 艾登Edgeworth 埃奇沃思Edie 伊迪Adam 的昵称Edison 爱迪生Edith 伊蒂丝Edmund 艾德蒙Edward 爱德华Effie 埃菲Euphemia 的昵称Eipstein 艾泼斯坦Eisenhower 艾森豪Eleanor 埃埃娜Electra 伊克特Elinor 埃Eliot 艾特爱特伊亚德Elizabeth 伊莉莎白Ella 艾Eleanor Elinor 的昵称Ellen 埃Eleanor Elinor 的昵称Ellis 艾斯Elsie 埃尔西Alice Elizabeth 的昵称Emerson 埃墨森Emily 艾米艾蜜莉Emma 艾玛Emmie Emmy 埃米Emma 的昵称Ernest 欧尼斯特Esther 埃丝特Eugen 尤Eugene 尤Euphemia 尤菲米娅Eva 伊娃Evan 埃文Evans 埃文思Eve 伊夫Evelina 埃维莉娜Eveline Evelyn 伊夫琳Eva Eve 的昵称Ezekiel 伊齐基尔Fanny 范妮Frances 的昵称Faraday 法第Fast 法斯特Faulkner 福克纳Felix 菲克斯Felton 费尔顿Ferdinand 斐迪南Ferguson 弗格森福开森弗格森Field 菲尔德Fielding 菲尔丁Finn 芬恩FitzGerald 菲茨杰德Flower 弗尔Flynn 弗琳弗Ford 福特Forster 福斯特Foster 福斯特Fowler 福Fox 福克斯Frances 弗西丝Francis 法西斯法西斯Frank 弗克又为Francis Franklin 的昵称Franklin 佛克Fred 弗德Frederick 的昵称Frederick 弗德克Freeman 弗曼Funk 芬克Gabriel 加布埃尔Galbraith 加布思Gallacher 加赫Gallup 盖普Galsworthy 高尔斯沃西Garcia 加西亚Garden 加登Gardiner 加德纳Gaskell 加斯克尔Geoffrey 杰佛瑞Geordie 乔迪George 的昵称George 乔治Gibbon 吉本Gibson 吉布森Gilbert 吉伯特Giles 尔斯詹斯Gill 吉尔Juliana 的昵称Gissing 季星Gladstone 格莱斯顿格德斯通Godwin 葛德文戈德温Gold 高尔德戈尔德Goldsmith 哥尔斯密戈德史密斯Gosse 戈斯Grace 格斯Gracie 格西Grace 的昵称Graham 格厄姆格汉姆格汉Grant 格特Grantham 格瑟姆Gray 格Green 格Gregory 葛格Gresham 格沙姆Grey 格Grote 格特Gunter 冈特Gunther 冈瑟Gus 格斯Augustus 的昵称Guy 盖伊Habakkuk 哈巴卡克Haggai 哈该Hal 哈尔Henry 的昵称Halifax 哈法克斯Hamilton 汉森尔顿哈密尔敦Hamlet 哈姆特Hansen 汉森汉森Hansom 汉萨Hardy 哈代哈迪Harold 哈德Harper 哈珀Harriman 哈曼Harrington哈顿哈顿Harrison 哈森Harrod 哈德Harry 哈Henry 的昵称Hart 哈特Harte 哈特Harvey 哈威Hawthorne 霍恩Haydn 海顿奥地姓Haywood 海伍德Hazlitt 赫士特黑兹特Hearst 赫斯特Helina 赫莉娜Hemingway 海明威Henley 亨Henrietta 亨埃塔Henry 亨Herbert 赫伯特Herty 赫蒂Henrietta 的昵称Hewlett 休特Hicks 希克斯Hill 希尔Hobbes 霍布斯Hobson 霍布森Hodge 霍奇Hodgson 霍奇森Holmes 福尔摩斯霍姆斯Holt 霍尔特Hood 胡德Hoover 胡佛Hope 霍普Hopkins 霍普斯Horace 贺斯贺瑞斯Horatio 霍肖贺斯古马人名贺瑞斯Hornby 霍恩比Hosea 霍齐亚House 豪斯Housman 豪斯曼Houston 休士顿Howard 霍华德Howells 豪厄尔斯Hoyle 霍伊尔Hubbard 哈伯德Hudson 赫德森Huggins 哈斯Hugh 的昵称Hugh 休Hughes 休斯休士Hume 休谟休姆Humphrey 韩弗Huntington 亨廷顿Hutt 赫特Huxley 赫克斯英赫胥Ingersoll 英格尔Irving 欧文Isaac 以撒Isabel 伊莎贝尔Isaiah 艾亚Ivan 伊凡Jack 杰克John 的昵称Jackson 杰克逊Jacob 雅各James 詹姆斯Jane 简Jasper 斯帕Jeames 杰姆斯James 的昵称Jean 琼Jane 的昵称Jefferson 杰弗逊杰弗逊Jenkins詹斯Jennings 詹斯Jenny 珍妮Jane 的昵称Jeremiah 耶米Jeremy 杰瑞米Jerome 杰姆Jerry 杰Jeremiah 的昵称Jessie 杰西Jane Joan 的昵称Jim 吉姆James 的昵称Jimmy 杰米James 的昵称Joan 琼Job 约伯Joe 乔Josepy 的昵称Joel 乔尔John 约翰Johnny 约翰尼John 的昵称Johnson 詹森Johnstone 约翰斯顿Jonah 约拿Jonathan 乔纳森Jones 钟斯Jonson 强生Jordan 乔Joseph 约瑟夫Josh 乔希Joshua 的昵称Joshua 约书亚Joule 焦尔Joyce 乔伊丝Judd 德Judith 裘蒂丝Judson 德森Julia 朱亚Julian 朱安Juliana 朱莉安娜Juliet 茱Julia 的昵称Julius 朱斯Katte 凯特Catharine 的昵称Katharine 凯萨琳Kathleen 凯萨琳Catharine 的昵称Katrine 卡特琳Catharine 的昵称Keats 基茨Kelley 凯Kellogg 凯格Kelsen 凯尔森Kelvin 凯尔文Kennan 肯南Kennedy 甘迺迪Keppel 凯佩尔Keynes 凯恩斯Kingsley 斯Kipling 基卜Kit 基特Catharine 的昵称Kitto 基托Christopher 的昵称Kitty 基蒂Lamb 姆姆Lambert 伯特伯Lancelot 斯特Landon 登Larkin Lawrence 的昵称Lattimore 铁摩尔Laurie Lawrence 的昵称LawLawrence 斯Lawson 森逊Leacock 科克科克LeeLeighLeighton 莱顿Lena 莉娜Helena的昵称Leonard 纳德Leopold 奥波德Lew Lewis 的昵称Lewis 士斯Lily 莉莉Lincoln 肯Lindbergh 德伯格LindsayLizzie 齐Elizabeth 的昵称Lloyd 埃德Locke 克London 敦Longfellow 费Longman 曼Louie Lewis Louisa LouiseLouis 士Louisa 莎Louise 丝Lowell 威尔厄尔Lucas 卡斯Lucia 西亚Lucius 修斯Lucy 西Luke 克LylyLynch 奇Lynd 德Lytton 顿顿MacAdam 麦克亚当MacArthur 麦克亚瑟苏格姓Macaulay 麦考苏格姓MacDonald Macdonald 麦克唐纳苏格姓Mackintosh 麦托MacMillan Macmillan 麦克米苏格姓MacPherson Macpherson 麦克菲尔逊麦克弗森Madge 马奇Margaret 的昵称Maggie 玛姬Margaret 的昵称Malachi 玛基Malan 马Malory 马娄Malthus 马尔萨斯Maltz 玛兹玛茨Mansfield 笔名曼斯费尔德Marcellus 马斯Marcus 的昵称Marcus 马库斯Margaret 玛格塔Margery 马杰Maria 玛亚Marion 马恩Marjory 马乔Margaret 的昵称Mark 马克Marlowe 马娄Marner 马南Marshall 马歇尔Martha 玛莎Martin 马丁Mary 玛Masefield 梅斯菲尔德Mathilda 马蒂尔达Matthew 马修Maud 莫德Mathilda 的昵称Maugham 莫姆Maurice 莫斯Max 马克斯Maxwell 麦斯威尔May 梅Mary 的昵称McCarthy 麦卡锡McDonald 麦克唐纳MacDonaldMeg 梅格Margaret 的昵称Melville 梅尔维尔Meredith 梅瑞狄斯梅迪斯Micah 迈卡Michael 迈克尔Michelson 米尔森迈克尔孙Middleton 密德尔顿Mike 迈克Michael 的昵称Mill 米尔Milne 米尔恩Milton 密尔顿Minnie 明妮Wilhelmina 的昵称Moll 莫尔Mary 的昵称Mond 蒙德Monroe 门Montgomery 蒙哥马Moore 莫尔More 莫尔Morgan 摩根Morley 摩Morris 莫斯Morrison 莫森Morse 莫尔斯Morton 莫尔顿摩顿Moses 摩西Motley 莫特Moulton 莫尔顿Murray 默Nahum 内厄姆Nancy 南茜Ann Anna Anne 的昵称Nathaniei 纳旦尼尔Needham 尼达姆Nehemiah 尼希米Nell 内尔Nelly 内Eleanor Helen 的昵称Nelson 尔孙Newman 曼Newton 牛顿Nicholas 尼古斯Nichols 尼科尔斯Nick 尼克Nicholas 的昵称Nicol 尼科尔Nixon 尼克森Noah 厄Noel 埃尔Nora 娜Eleanor 的昵称Norris 斯North 思Norton 顿Noyes 伊斯Obadiah 奥巴代亚。
通俗易懂的哈法亚项目OCB招标模式

进行投标 。这种不 同于以往方式 的招标行 为 , 简称 “ 线
上 ”招标 ; 在此之前的招标 ,被称 为 “ 线下 ”招标 。
O C B 招标模式
无 论是 “ 线 上 ”招 标还 是 “ 线下 ”招 标 ,无论
P C H的组织机构如何调整 、用户部 门的业务范围如何
划分 ,工程项 目的招标 管理模 式却是万 变不离其 宗 。
项到 授标 ,双方均在 T P M 系统 内完成 。P C H各 用户 部 门、采办部 、法律部等各司其职 ,在系统 中完成招
标策 略 、招标文 件 、技术及 商务评标 报告等 的审核 、
发布 以及授标 函的签署 ; 对投标人而言 ,投标工作始 于注 册信息 ,即只有 那些 在 P C H网站 上注册 ,提交 了相关认证支持文件 ,且通过审核 的投标人才有 资格
清关 、付款节点 、质保期 等。无论采取 哪种方式 ,基
本标 准 中有一项不合格 ,即使通用标准全部接受 ,整
体的技术标 也是不合格 的。
在 商务 评标 阶段 ,商务评标 团队仅对技术 标合格 的投标人进行商务报价 比选 , 通常采用最低报价 比选 、 分标报价 比选 、权重 比选 三种 方式 。商务报价模 型在
第 一 ,招 标前 期准 备 阶段。 由于 P C H是 个联 合 体 ,公 司年度投 资计 划及预算 ( WP & B) 必须 通过联
合管 理委员会 ( J MC)批准后 方可进入 实施 阶段 。各
快速招标 ( F a s t T r a c k ) 、指定 承包商 或供货商 ( S i n g l e S o u r c e ) 、直接采购 ( D i r e c t P u r c h a s e o公开招标 简称
合成氨的生产方法以及工艺流程研究

合成氨的生产方法以及工艺流程研究
合成氨的生产方法主要有三种:费-哈法(Haber-Bosch)法、电解法和催化剂加氢法。
其中费-哈法法是最为普遍、经济的工业化合成氨的方法。
费-哈法法的工艺流程如下:
1、加压:由于氢气和氮气本身是不易反应的,必须把气体加压,使得它们的分子更密集,增加相互碰撞的几率。
2、加热:将两种气体混合,然后加热到400-500摄氏度,使得它们分子碰撞的能量更大。
3、催化:在反应器中添加石墨、铁、钼等金属的催化剂,使反应更容易进行。
4、压力和温度控制:根据反应条件,控制生成氨气体的压力和温度。
5、分离:将生成的氨气体与未反应的氢气和氮气分离。
此外,合成氨的生产中需要使用大量的氢气和氮气,其中氮气主要是从空气中通过空分机、压缩、冷却等步骤提取得来。
而氢气则主要来自于石油天然气或煤、水的氢气化反应。
总之,费-哈法法是一种高压高温的化学反应,其工艺流程复杂而精细,需要精确的控制条件才能够成功地合成氨。
哈法五步口令

哈法五步口令第一篇:1、起势2、左棚势右捋势左挤势双按势3、右採势左挒势左肘势右靠势4、右棚势左捋势右挤势双按势5、左採势右挒势右肘势左靠势6、进步左右棚势7、退步左右捋势8、左移步左挤势左移步双按势9、右移步右挤势右移步双按势10、退步左右採势11、进步左右挒势12、右移步右肘势右移步右靠势13、左移步左肘势左移步左靠势14、中定左右独立势15、十字手16、收势太极八法五步是国家体育总局为了更好地宣传、推广、普及太极拳,在现有各流派太极拳的基础上,从最为核心的八法五步技术入手,即:掤、捋、挤、按、採、挒、肘、靠八种手法,以及进、退、顾、盼、定五种步法,进行了系统的提炼和整理而成。
它动作结构简单,数量合理,内涵丰富,易学易练,是较为理想的太极拳入门套路。
八法:掤、捋、挤、按、采、挒、肘、靠。
五步:进、退、顾、盼、定。
第二篇:起势:1、身体自然直立,两脚并拢,头颈端正,肩臂松垂,两手轻贴大腿侧;面向南,目向前平视,心情宁静。
2、左脚向左轻轻开步,相距右脚与肩同宽,脚尖向前。
3、两手缓慢向前平举至与肩同高时,手心向下,两臂相距同肩宽,肘微下垂。
4、上体保持正直,两腿缓缓屈膝半蹲,两掌轻轻下按,落于腹前,掌与膝相对。
要点:全身放松,舌顶上腭,呼吸自然。
一、掤1、左转体的同时,左臂上抬屈于胸前,手心向下;右手翻转向左划弧至左腹前,手心向上,与左手相对如同抱球,重心移至左腿,右腿收于左腿内侧,面向西,目视前方。
2、右脚向前轻轻迈出一步,脚跟着地,前移成右弓步;同时右臂向前掤出,臂微曲,掌心向内,高与肩平,左掌向左向下落于左胯旁,掌心向下,目视右前臂。
要点:两手分开要保持弧形,体转要以腰为轴,弓步与分手的速度要一致。
用法:掤,两臂要撑圆,后手五指附在前手腕内,助力外撑。
这是主动进攻的招式。
二、捋1、上体微右转,右脚向右后退一步,脚前掌轻轻落地。
2、上体继续右转,重心后移到右脚,左脚收于右脚内侧,同时右臂外旋,右掌屈肘提至胸前横掌,掌心向外,左臂内旋,举于身体左侧,高与肩乎,掌心向外,面向北,目视前方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Li Conductivity of Nanocrystalline Li Ti O Prepared by a Sol-Gel Method and High-Energy Ball Milling4512W. Iwaniak,J. Fritzsche,M. Zukalová,R. Winter,M. Wilkening and P . Heitjans 1,a 1,234,1,b 1,c1Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover,Callinstr. 3a, 30167 Hannover (Germany)wilkening pci.uni-hannover.de,234b c German Institute of Rubber Technology (DIK), Eupener Str. 33, 30519 Hannover (Germany)J. Heyrovský Institute of Physical Chemistry, v.v.i.,Academy of Sciences of the Czech Republic,CZ-182 23 Prague 8 (Czech Republic)heitjans pci.uni-hannover.de @@Materials Physics, University of Wales,Aberystwyth, Penglais,Aberystwyth SY23 3BZ (UK)a iwaniak pci.uni-hannover.de,@Keywords:battery materials, lithium titanate, impedance spectroscopy, structural disorderAbstract.Spinel-type structured Li 4+x Ti 5O 12(0 x 3)is actually one of the most promising anode materials for Li ion batteries.In its nanostructured form it is already used in some commerci-ally available Li ion batteries.As was recently shown by our group (Wilkening et al.,Phys.Chem.Chem.Phys.9(2007)1239),Li di ffusivity in microcrystalline Li 4+x Ti 5O 12with x =0is rather slow.In the present contribution the Li conductivity in nanocrystalline samples of the electronic insula-tor Li 4Ti 5O 12prepared by di fferent routes is investigated using impedance spectroscopy.The mean crystallite size of the samples is about 20nm.The ionic conductivity of nanocrystalline Li 4Ti 5O 12obtained by mechanical treatment is higher by about two orders of magnitude compared to that found for a material which was prepared following a sol-gel method.The latter resembles the behaviour of the microcrystalline sample with an average particle size in the µm range rather than that of a nano-crystalline ball milled one with a mean crystallite size of about than 20nm.The larger conductivity of the ball milled sample is ascribed to a much higher defect density generated when the particle size is reduced mechanically.IntroductionHigh-energy ball milling serves as a versatile tool to reduce and control the particle size of ion con-ducting ceramics [1].Depending on the milling conditions set and the type of mill used to prepare the nanocrystalline samples,after a few hours of milling the crystallite size usually reaches a value of about 20nm [2].The mechanically treated samples are characterized by a large number fraction of interfacial regions which often provide fast di ffusion pathways for the ions.Quite recently,we have shown how mechanical treatment can be used to increase the room temperature Li conductivity of the poor ionic conductor LiTaO 3by about six orders of magnitude [3].An analogous study on LiNbO 3[4,5]has revealed that this enhancement cannot be traced back solely to a size e ffect.Instead a careful analysis of the microstructure of the materials revealed that structurally perfect,i.e.,less defective nanocrystals,which were prepared by a wet-chemical sol-gel method,do not show this co-lossal enhancement [5].In the previous studies,the Li di ffusivity and conductivity,respectively,was investigated complementarily by 7Li nuclear magnetic resonance (NMR)spin-lattice relaxation and lineshape measurements as well as by impedance spectroscopy.In the present contribution,we draw the readers’attention to the question whether the findings for LiNbO 3are also valid for another nanocrystalline material,viz Li 4Ti 5O 12,which can be easily prepa-Li insertion material for anodes in Li ion batteries [6].The host material (x =0)can accommodate up to three Li atoms per unit cell.Quite recently,we have already quantified the rather low Li dif-fusivity in µm-sized polycrystalline Li 4Ti 5O 12by two-time 7Li stimulated echo NMR spectroscopy.The activation energy probed by this NMR technique turned out to be about 0.86eV [7],which is in agreement with that found by dc conductivity measurements at somewhat higher temperatures [7].Whereas Li 4Ti 5O 12is an electronic insulator,the material with x >0is a mixed ion-electron conduc-tor showing a drastically increased Li di ffusivity as compared to the host material with x =0.The latter was quantified recently by recording the di ffusion induced 7Li NMR spin-lattice relaxation rate maximum in the rotating frame of reference [8].ExperimentThe source material Li 4Ti 5O 12used to prepare the ball milled samples was provided by the S¨u d-Chemie AG (Munich,Germany).The material was milled for 0.5,2,4,8,16and 24hours in an Al 2O 3(99.5%)vial set.The ball-to-powder weight ratio used was about 2:1.Mechanical treatment with a SPEX 8000M shaker mill was carried out in Argon atmosphere using an air-tight beaker made of steel into which the alumina vial was placed.Nanocrystalline Li 4Ti 5O 12was also synthesized via a sol-gel route.The corresponding samples,labeled as sg1and sg2,which di ffer in crystallite size only,were synthesized from lithium metal and titanium isopropoxide as precursors.For details of sample preparation and characterization see Ref.[9].The average crystallite size of all nanocrystalline samples was estimated from X-ray di ffraction (XRD)peak broadening utilizing the method introduced by Scherrer.XRD patterns were measured at Bragg-Brentano geometry with CuK αradiation on a Philips PW 1800di ffractometer.Samples for dc conductivity measurements were prepared in the form of pellets of 8mm diameter and thicknesses between 0.5and 2mm.The powders were pressed at room temperature under an uniaxial pressure of 1GPa together with platinum powder (Merck 99.9%)in a sandwich configuration thus forming the electrodes.For the impedance measurements between 5Hz and 13MHz mainly an HP 4192A analyzer was employed which can measure dc conductivities down to about 10−8S.Lower values were probed using a Novocontrol broadband dielectric spectrometer (BDS 40)working between 0.1Hz and 10MHz.In order to get rid of residual water on the surface of the nanoparticles,prior to the conductivity measurements the samples were kept for several hours at a temperature of 140–150◦C.The influence of water was registered by the observed decrease of the dc conductivity until a constant value was reached (usually after some hours).Preliminary static 7Li NMR line shape measurements were performed using an MSL 400spectro-meter and a modified MSL 100console connected to a 9.4T and a field-variable (0–7T)Oxford cryomagnet,respectively.Standard pulse sequences were used to record 7Li NMR spectra between 150and 450K.The pulse length was about 5µs.Results and DiscussionX-ray di ffraction.Fig.1shows the XRD powder patterns of nanocrystalline Li 4Ti 5O 12prepared by the two di fferent routes,viz mechanically via high-energy ball milling and chemically utilizing a sol-gel method.The di ffraction pattern of microcrystalline Li 4Ti 5O 12,which served as source material to prepare the ball milled samples,is shown for comparison,too.The peak positions are in agreement with values reported in the literature [10].No mechanochemical phase transformations take place during the milling process.As can be seen from Fig.1when the peak at 2θ=18.34◦is regarded,after two hours of milling the width of the peak is increased by about 15%.This roughly holds also for the other peaks.Further milling leads to a drastic peak broadening which can be ascribed to a reduction of the crystallite size as well as to strain e ffing the Scherrer equation [3,11],theθ/ °Fig.1:XRD profiles of microcrystalline and mechanically treated Li 4Ti 5O 12high-energy ball milled for 2and 8h (bottom and intermediate).The XRD patterns of the chemically prepared materials (labeled as sg1and sg2,respectively)are shown at the top.Small arrows indicate Al 2O 3due to abrasion from the vial,see Ref.[14].milling the microcrystalline material for 8h in the shaker ling times longer than 8h do not lead to significantly smaller values.Prior to this evaluation the K α1and K α2contributions of the XRD peaks were separated by means of the Rachinger procedure [12].To what extent strain contributes to the observed increase particularly at large di ffraction angles can be estimated following the method introduced by Williamson and Hall [13].Such an analysis,for which the harmonic peaks (111)and (444)were taken,yields mean crystallite sizes being somewhat larger than those via the Scherrer equation,viz 77and 33nm compared to 44and 20nm for milling times of 4h and 8h,respectively.The XRD patterns of the nanocrystalline samples prepared following the sol-gel route are also included in Fig.1.For the sample labeled as sg1an average crystallite size of 37nm (Scherrer)and 42nm (Williamson-Hall),respectively,is obtained.The analysis of the corresponding XRD pattern of the other sample (sg2)shows a much smaller crystallite size.Both methods yield 12-13nm for the mean crystallite size.Impedance Measurements and 7Li NMR spectra.The impedance spectra of ball milled Li 4Ti 5O 12consist of a typical dc plateau in the low-frequency regime and a dispersive part at higher frequencies.As an example,the corresponding spectra of ball milled Li 4Ti 5O 12are shown in Fig.2a).Up to a frequency ν=ω/2πof about 1MHz the real part of the conductivity σ′(ν)can be fitted roughly with Jonscher’s empirical power law σ′(ν)=σdc +A ωs with s ranging between 0.5and 0.7.In Fig.2b)σdc T of all nanocrystalline samples is plotted vs reciprocal temperature according to the Arrhenius relation σdc T ∝exp(−E a /(k B T ))where E a denotes the activation energy and k B Planck’s constant.Interestingly,the ionic conductivities of the nanocrystalline samples obtained by the sol-gel method (sg1and sg2)resemble that of microcrystalline Li 4Ti 5O 12rather than those of the ball milled samples.Li transport in samples sg1and sg2is characterized by an activation energy of 0.84(1)eV which is identical to that obtained for microcrystalline Li 4Ti 5O 12serving as a reference material,here.It is reasonable that sample sg2,havingthe smallest mean crystallite size (12nm,see above)of the materials studied here,shows a slightly higher ionic conductivity than sample sg1(42nm).This10101010σ' /S · c m –110101010frequency / Hz log 1(σdc T·(S K )–1c m )1000/T /K –1a)b)Fig.2:a)Impedance spectra of nanocrystalline Li 4Ti 5O 12prepared by high-energy ball milling of the microcrystalline source material in a shaker mill for 2h.b)Temperature dependence of the dc conductivity of ball milled Li 4Ti 5O 12in comparison with that of nanocrystalline Li 4Ti 5O 12prepared chemically using a sol-gel (sg)method.For comparison,the dashed line indicates the corresponding dc conducivity values of the µm-sized material which served as starting material to prepare the milled samples.increase might be explained in terms of space charge regions similar to the situation in Ref.[15],where the anion conductivity of nanocrystalline CaF 2prepared by inert-gas condensation was inve-stigated.However,for the ball milled materials the influence of structural disorder introduced during mechanical treatment has to be considered when interpreting the results of the conductivity measure-ments.The samples prepared by ball milling for 2h and longer yield identical conductivity values,which are by about two orders of magnitude larger than those of microcrystalline and sol-gel prepared nanocrystalline Li 4Ti 5O 12.Consistently,the corresponding activation energy is reduced to 0.70(1)eV ,see Fig.2b).Thus,although the crystallite size (and the interfacial area)of a sample prepared by ball milling for 2h is comparable with that of a sol-gel prepared one,the transport parameters di ffer significantly.This is in agreement with the recently published 7Li NMR and impedance spectrosco-py studies on LiNbO 3[5,16]and LiTaO 3[3].In the latter case,a colossal enhancement of the ionic conductivity was found even when the material was mechanically treated for only 30min.Let us note for comparison that ball milled LiNbO 3represents a structurally highly disordered ma-terial whereas a nanocrystalline LiNbO 3sample prepared by a sol-gel method shows a high degree of crystallinity as probed by high-resolution transmission electron microscopy (TEM)and extended X-ray absorption fine structure (EXAFS)spectroscopy [5].In particular,such structural di fferences can be enlightened by recording 7Li NMR spectra taking advantage of quadrupole interactions between the quadrupole moment of the spin-3/2nucleus with a non-vanishing electric field gradient (EFG)being present at the nuclear site [3,5].Significant local distortions of the site symmetry are directly reflected,e.g,in a pronounced broadening or even a disappearance of the NMR quadrupole powder pattern.In Fig.3the 7Li NMR spectra of micro-and nanocrystalline Li 4Ti 5O 12recorded at 173K are shown.At this temperature motional narrowing of the central line width has not started yet.The mean Li jump rate at this temperature in both microcrystalline and nanocrystalline Li 4Ti 5O 12(irre-spective of the preparation method)is estimated to have a value much less than 103s −1.Therefore,at 173K the shape of the NMR spectrum is definitely not influenced by Li motions.The spectra of the microcrystalline and the sol-gel prepared samples are partically identical (Fig.3a)).They are botha)microcrystalline sg2Fig.3:a)Rigid lattice 7Li NMR spectra of micro-and chemically prepared nanocrystalline Li 4Ti 5O 12(sample sg2,see above)recorded at a resonance frequency of 155.4MHz.At 173K the spectrum of sg2is a superposition of a Gaussian shaped central line and a quadrupole foot.b)Rigid lattice 7Li NMR spectra of microcrystalline and ball milled Li 4Ti 5O 12(77.7MHz).In the case of the latter one the quadrupole part (see arrow)is hardly detected indicating the presence of a very broad distribution of electrically di fferent Li sites.composed each of an intense central line and a less intense but broad and Gaussian shaped quadru-pole part (Fig.3a)).The shape of the latter reflects a broad distribution of EFGs present in Li 4Ti 5O 12.In fact,in the spinel structure of Li 4Ti 5O 12the Ti 4+cations are randomly distributed over the 16d positions leading,according to quantum chemical calculations of the EFGs [17],to a large number of electrically di fferent Li sites.In contrast to the 7Li NMR spectrum of the microcrystalline source material,in the case of the mechanically treated samples this quadrupole contribution is smeared out,i.e.,largely broadened,and therefore di fficult to detect even when a solid echo experiment is carried out.Thus,in the case of the mechanically treated samples the quadrupole foot is additionally a ffected by extrinsically introduced structural disorder leading to a still broader distribution of EFGs.This is also corroborated by a slightly larger line width ∆(full width at half maximum)of the central line (∆ball milled =5.7kHz)of the milled samples as compared to those observed for the microcrystalline as well as the sol-gel prepared samples (∆micro =5.0kHz),respectively (see Fig.3b)).Presumably,this observation can be attributed to a broader distribution of 7Li chemical shifts in the mechanically treated samples.Summary and ConclusionLithium transport properties in the nanocrystalline host material Li 4Ti 5O 12,prepared either chemical-ly or mechanically,was investigated by impedance spectroscopy.Li conductivity of nanocrystalline Li 4Ti 5O 12,which was synthesized following a sol-gel route,strongly resembles that of the correspon-ding microcrystalline material.However,high-energy ball milling of microcrystalline Li 4Ti 5O 12for 2h in a SPEX shaker mill leads to a highly defective material with a large number of interfacial re-gions and grain boundaries.The material features a Li conductivity which is by about two orders of magnitude higher than that of the source ling times longer than 2h do not cause further conductivity increase.Obviously,nanocrystalline Li 4Ti 5O 12obtained by a sol-gel process is structu-rally strongly related to the microcrystalline material providing no additional fast di ffusion pathways for the Li cations which is,on the contrary,definitely the case for the ball milled material.It might be expected that an anode made of high-energy ball-milled Li 4Ti 5O 12increases the rate (power)capabi-lity of anLi ion battery significantly.Acknowledgment.We thank G.Nuspl of the S¨u d Chemie AG (Munich,Germany)for supplying mi-crocrystalline Li 4Ti 5O 12and the Deutsche Forschungsgemeinschaft as well as the Czech Ministry of Education (COST D35grant)for financial support.W.I.acknowledges a grant from the Center of Solid State Chemistry and New Materials established by the State of Lower Saxony at the Leibniz University of Hannover.References[1]P.Heitjans,S.Indris,J.Phys.:Condens.Matter 15,R1257(2003).[2]S.Indris,D.Bork,P.Heitjans,J.Mater.Synth.Process.8,245(2000).[3]M.Wilkening,V .Epp,A.Feldho ff,P.Heitjans,J.Phys.Chem.C 112,9291(2008).[4]M.Masoud,P.Heitjans,Defect Di ffus.Forum 237-240,1016(2005).[5]P.Heitjans,M.Masoud,A.Feldho ff,M.Wilkening,Faraday Discuss.134,67(2007).[6]M.Wagemaker,D.R.Simon,E.M.Kelder,J.Schoonman,C.Ringpfeil,U.Haake,D.L¨u tzenkirchen-Hecht,R.Frahm and F.M.Mulder,Adv.Mater.18,3169(2006).[7]M.Wilkening,R.Amade,W.Iwaniak and P.Heitjans,Phys.Chem.Chem.Phys.9,1239(2007).[8]M.Wilkening,W.Iwaniak,J.Heine,V .Epp,A.Kleinert,M.Behrens,G.Nuspl,W.Bensch and P.Heitjans,Phys.Chem.Chem.Phys.9,6199(2007).[9]L.Kavan,J.Proch´a zka,T.M.Spitler,M.Kalb´a ˇc ,M.Zukalov´a ,T.Drezen and M.Gr¨a tzel,J.Electrochem.Soc.150,A1000(2003).[10]A.Deschanvres,B.Raveau,Z.Sekkal,Mat.Res.Bull.6,699(1971).[11]P.Scherrer,G¨o ttinger Nachrichten 2,98(1918);H.P.Klug and L.E.Alexander,X-Ray Di ffractionProcedures ,Wiley,New York,1974.[12]W.Rachinger,J.Sci.Instrum.25,254(1948).[13]G.K.Williamson,W.H.Hall,Acta Metall.1,22(1953).[14]Abrasion of Al 2O 3of at most 5wt%is unavoidable during the milling process but turned out to haveno sizeable e ffect on the ionic conductivity.Nanocrystalline composites (1−x )Li 4Ti 5O 12:x Al 2O 3with 0.1 x <1show a decrease with increasing insulator content x rather than an enhancement of the dc conductivity.[15]W.Puin,S.Rodewald,R.Ramlau,P.Heitjans and J.Maier,Solid State Ionics 131,159(2000).[16]A.V .Chadwick,M.J.Pooley and S.L.P.Savin,Phys.Status Solidi C 2,302(2005).[17]T.Bredow,M.Wilkening,unpublished results.Diffusion in Materials - DIMAT2008doi:10.4028//DDF.289-292Li Conductivity of Nanocrystalline Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>Prepared by a Sol-Gel Method and High-Energy Ball Millingdoi:10.4028//DDF.289-292.565References[1] P. Heitjans, S. Indris, J. Phys.: Condens. Matter 15, R1257 (2003).doi:10.1088/0953-8984/15/30/202[2] S. Indris, D. Bork, P. Heitjans, J. Mater. Synth. Process. 8, 245 (2000).doi:10.1023/A:1011324429011[3] M. Wilkening, V. Epp, A. Feldhoff, P. Heitjans, J. Phys. Chem. C 112, 9291 (2008).doi:10.1021/jp801537s[4] M. Masoud, P. Heitjans, Defect Diffus. Forum 237-240, 1016 (2005).[5] P. Heitjans, M. Masoud, A. Feldhoff, M. Wilkening, Faraday Discuss. 134, 67 (2007).doi:10.1039/b602887jPMid:17326563[6] M. Wagemaker, D. R. Simon, E. M. Kelder, J. Schoonman, C. Ringpfeil, U. Haake, D.L¨utzenkirchen-Hecht, R. Frahm and F. M. Mulder, Adv. Mater. 18, 3169 (2006).doi:10.1002/adma.200601636[7] M. Wilkening, R. Amade, W. Iwaniak and P. Heitjans, Phys. Chem. Chem. Phys. 9,1239 (2007).doi:10.1039/b616269jPMid:17325770[8] M. Wilkening, W. Iwaniak, J. Heine, V. Epp, A. Kleinert, M. Behrens, G. Nuspl, W.Bensch and P. Heitjans, Phys. Chem. Chem. Phys. 9, 6199 (2007).doi:10.1039/b713311aPMid:18046468[9] L. Kavan, J. Proch’azka, T.M. Spitler, M. Kalb’ac, M. Zukalov’a, T. Drezen andM.Gr¨atzel, J. Electrochem. Soc. 150, A1000 (2003).[10] A. Deschanvres, B. Raveau, Z. Sekkal, Mat. Res. Bull. 6, 699 (1971).doi:10.1016/0025-5408(71)90103-6P. Scherrer, G¨ottinger Nachrichten 2, 98 (1918);[12] W. Rachinger, J. Sci. Instrum. 25, 254 (1948).doi:10.1088/0950-7671/25/7/125[13] G. K. Williamson, W. H. Hall, Acta Metall. 1, 22 (1953).doi:10.1016/0001-6160(53)90006-6[14] Abrasion of Al2O3 of at most 5 wt% is unavoidable during the milling process but turned out to have no sizeable effect on the ionic conductivity. Nanocrystalline composites (1 x) Li4Ti5O12:xAl2O3 with 0.1 6 x < 1 show a decrease with increasing insulator content x rather than an enhancement of the dc conductivity.[15] W. Puin, S. Rodewald, R. Ramlau, P. Heitjans and J. Maier, Solid State Ionics 131, 159 (2000).doi:10.1016/S0167-2738(00)00630-5[16] A. V. Chadwick, M. J. Pooley and S. L. P. Savin, Phys. Status Solidi C 2, 302 (2005). doi:10.1002/pssc.200460170[17] T. Bredow, M. Wilkening, unpublished results.。