同济大学普通物理活页作业答案
最新大学物理活页作业答案及解析((全套))

1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x tot oω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2Rg o μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdvmmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+= 7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ① mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+=mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。
大学物理活页作业答案(全套)

1 1 m( u V ) 2 MV 2 mgR 2 2
解得:
V m
2 gR ;u M ( M m)
2( M m ) gR M
(2) 当 m 到达 B 点时,M 以 V 运动,且对地加速度为零,可看成惯性系,以 M 为参考系
N mg mu 2 / R
N mg mu 2 / R mg 2( M m )mg / M
6.解: (1) FT cos FN sin ma
FT sin FN cos mg
FT mg sin ma cos ;
(2)F N=0 时;a=gcotθ
FN mg cos ma sin
7.解: o m 2 R mg 8.解:由牛顿运动定律可得
N
Mmg 2( M m )mg 3 M 2m mg M M
2 质点运动学单元练习二答案—10
6. 刚体转动单元练习(一)答案
1.B 2.C 3.C 4.C 5.v = 1.23 m/s ;an = 9.6 m/s 2 ;α = –0.545 rad/ s 2 ;N = 9.73 转。 6.
dv ( SI ) ; a 2i dt
( SI )
(2)由切向加速度和法向加速度的定义
at
d 2t 4t 2 4 dt t2 1 2 t2 1
( SI )
a n a 2 a t2 v2 2 t2 1 an
( SI )
(3)
3/2
( SI )
1 1 1 2 mv 12 m2v 2 (m1 m2 )v 2 2 2 2 1 m1 m2 (v 1 v 2 ) 2 /(m1 m2 ) 2
大学物理活页作业答案(全套)马文蔚

⼤学物理活页作业答案(全套)马⽂蔚1.质点运动学单元练习(⼀)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提⽰:⾸先分析质点的运动规律,在t <2.0s 时质点沿x 轴正⽅向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反⽅向运动;由位移和路程的定义可以求得答案。
)6.135m (提⽰:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动⽅程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=?)/(32s m ji t r v -=??=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==sin cos 2t A tdt A A vdt A x totoω=ωω-=+=??cos sin9.解:(1)设太阳光线对地转动的⾓速度为ωs rad /1027.73600*62/5-?=π=ωs m th dt ds v /1094.1cos 32-?=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=?=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(⼆)答案1.D 2.A 3.B 4.C5.14-?==s m t dt ds v ;24-?==s m dtdva t ;2228-?==s m t Rv a n ;2284-?+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:⽕箭竖直向上的速度为gt v v o y -?=45sin ⽕箭达到最⾼点时垂直⽅向速度为零,解得s m gtv o /8345sin =?=3.⽜顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωµ2Rg o µ≥ω 8.解:由⽜顿运动定律可得dtdv t 1040120=+ 分离变量积分()??+=tovdt t dv 4120.6 )/(6462s m t t v ++=()++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由⽜顿运动定律可得dtdv mmg kv =+- 分离变量积分-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=+ln+=???? ??+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对⼩珠可列⽅程 a v m f mg 2 cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代⼊初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(⼀)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +?=;2212m t F v v ?+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=?J x F W 800=?=(2)s N Fdt I ?==40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解:物体m 落下h 后的速度为 gh v 2=当绳⼦完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,⼈、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+??totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(⼆)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦⼒mg f µ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=µ.8.解:根据⽜顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球⾯时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两⼩球间距离最⼩ v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两⼩球间距离最⼩,形变最⼤,最⼤形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=②联⽴①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统⽔平⽅向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ① mgR MV V u m =+-2221)(21 ②解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2 =-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(⼀)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。
同济大学大学物理答案

同济大学大学物理答案【篇一:大学物理复习题答案(同济大学课件)】>1、①r?rcos?ti?rsin?tj?htdxdyk;②vx???r?sin?t,vy??r?cos?t,2?dtdtvz?dvydvdvdzh2???r?2sin?t,az?z?0 ;③ax?x??r?cos?t,ay?dt2?dtdtdt2、在运动函数中消去t,可得轨道方程为y?x2?8 由r?2ti?(4t2?8)j,得v?drdv?2i?8tj,a??8j dtdt可得在t?1时r1?2i?4j,v1?2i?8j,a1?8j 在t?2时r2?2i?8j,v2?2i?16j,a1?8jf3?4t3?4?3???1.5m/s2, m1010v3v33?4tdva?,dv?adt,?dv??adt,?dv??dt,v?2.7m/s0000dt10f3?4x3?4?3dv3?4xdvdvdxdv???1.5m/s2,a???.?v,②a?,m1010dt10dtdxdtdxv33?4x3?4xdx?vdv,?vdv??dx,v?/s001010124、以投出点为原点,建立直角坐标系。
x?v0cos?t,y?v0sin?t?gt 23、①a?以(x,y)表示着地点坐标,则y??h??10m。
将此值和v0,?值一并代入得11?10?20??t??9.8?t222解之得,t?2.78s和t??0.74s。
取正数解。
着地点离投射击点的水平距离为:x?v0cos?t?20?cos300?2.78?48.1m 5、①?0?2?n?2??1802??180?18.8(rad/s),v0??0r??0.5?9.42(m/s) 6060②由于均匀减速,翼尖的角加速恒定,???a??0ta?0?18.8??0.209(rad/s2) 90at??r??0.105(m/s2)负号表示切向加速度的方向与速度方向相反。
???0??t?18.8?0.209?80?2.08(rad/s)an??2r?2.16(m/s2),a??2.16(m/s2),??arctan0.105?2.780 2.166、x?12t?2t?4?v?t?2?a?1ms2 则: 22(1)t?2s时:v?2?2?4(s) a?1s 方向都沿x轴正方向(2)在1~2s内,a?1?f?ma?2?1?2(n),则在1~2s内,i??212dt?2(n?s) 方向沿x轴正方向(3)在1~2s内,f所做的功:由动能定理得:11a?ek(t?2)?ek(t?1)??2?(2?2)2??2?(1?2)2?7(j)22第二章牛顿运动定律1、小球下落过程中受重力g?mg和空气阻力f?kv作用。
完整版普通物理习题册下答案

第 9 单元静电场(一)一 选择题[C ]1 .一带电体可作为点电荷办理的条件是(A) 电荷必然呈球形分布。
(B) 带电体的线度很小。
(C)带电体的线度与其他相关长度比较可忽视不计。
(D) 电量很小。
[C ]2 .已知一高斯面所包围的体积内电量代数和∑q i =0,则可必然:(A) 高斯面上各点场强均为零。
(B) 穿过高斯面上每一面元的电通量均为零。
(C)穿过整个高斯面的电通量为零。
(D) 以上说法都不对。
[ D ] 3.两个齐心均匀带电球面,半径分别为R a和ba< R b ) , 所带电量分别为Q abR( R和 Q ,设某点与球心相距 r , 当 R a < r < R b 时, 该点的电场强度的大小为:( A )1 Q aQ b( B )1Q aQ b4r 24r 2( C )1 ( Q aQ b )( D )1 Q a4r 2R b 24r 2[D ]4. 以以以下图,两个“无量长”的、半径分别为R 1 和 R 2 的共轴圆柱面均匀带电,轴线方向单位长度上的带电量分别为λ 1和λ 2 , 则在内圆柱面里面、距离轴线为r 处的 P 点的电场强度大小( A )1 2 ( B )1220 r20R 12R22R 11( C )1(D) 0rP4R 2 O 0R1[ D ]5 .图示为一拥有球对称性分布的静电场的 E ~ r 关系曲线,请指出该静电场是由以下哪一种带电体产生的。
(A) 半径为 R 的均匀带电球面。
(B) 半径为 R 的均匀带电球体。
(C) 半径为 R 、电荷体密度ρ =Ar(A 为常数 ) 的非均匀带电球体。
(D)半径为 R 、电荷体密度ρ =A/r(A 为常数 ) 的非均匀带电球体。
二 填空题1. 在点电荷系的电场中,任一点的电场强度等于 __ 各点电荷在该占单独产生的电场强度的矢量和 __, 这称为场强叠加原理。
2.静电场中某点的电场强度,其数值和方向等于单位正电荷在该点遇到的电场力___。
大学物理上活页作业答案

Part
04
结论
总结答案解析
答案A解析
此答案详细解释了问题中涉及的 物理原理和公式,并给出了正确 的计算过程和结论。
答案D解析
此答案提供了与问题相关的实际 应用案例,帮助学生更好地理解 物理原理和概念。
答案B解析
此答案提供了另一种解题思路, 通过不同的公式和计算方法得出 了正确的答案。
答案C解析
总结词
分析物理过程,选择合适的物理模型
详细描述
对于涉及多个物理过程的问题,需要仔细分析每个过程的物理特点和相互关系。根据分析结果,选择 合适的物理模型进行描述和计算。在选择物理模型时,要注意模型的适用条件和局限性,确保其能够
正确反映物理过程。同时,要注意不同物理过程之间的联系和影响,以便更好地理解和解决问题。
作业目的
加深学生对物理学基本概 念和原理的理解,提高其 理论水平。
训练学生运用物理学知识解 决实际问题的能力,培养其 科学素养和实践能力。
通过习题的求解过程,培养 学生的逻辑思维和创造性思 维,提高其综合素质。
Part
02
作业题目及答案
题目一答案
总结词
理解基本概念
描述1
理解了牛顿第二定律的基本概念和应 用,能够正确分析物体的受力情况和 运动状态。
大学物理上活页作业 答案
• 引言 • 作业题目及答案 • 解题思路及解析 • 结论
目录
Part
01
引言
作业背景
大学物理是理工科专业的一门必修基础课程,旨在培养学生掌握物理学的基本原理、概 念和实验技能,为后续的专业课程学习打下基础。
活页作业是大学物理教学过程中的一个重要环节,旨在通过习题练习帮助学生巩固所学 知识,提高解题能力和思维水平。
同济大学物理大作业解答4至6章答案

第四章(一) 振动学基础解答一、选择题1.D 2.B 3.C 4.C 5.B 6.B 7.D 8.B二、填空题1.振动系统自身的性质;π2秒内的的振动次数;振动系统运动的初始条件;表示振动的幅度或振动的强度;表征计时零点的振动状态。
2.;cm 2 ;4s ;1-s 2π ;π23 )232cos(02.0ππ+t ;m )232s i n (01.0πππ+-t -1s m ⋅;)232cos(201.02πππ+-t -2s m ⋅; ππ或33.0.158 m ; 0.5 s ; 2π4.)41cos(02.0ππ+t m ; )43c o s (02.0ππ+t m5.π326.8T , T 83 7.ππ232或-8.合力的大小与位移成正比,方向与位移方向相反; 0d d 222=+x tx ω三、计算题1.解:(1) s 638.084.922,s84.9258.0251-======πωπωT mk(2) m/s 17.03sin02.084.9sin ,30-=⨯⨯-=-==πϕωπϕA v (3) )384.9cos(02.0)cos(πϕω+=+=t t A x m2.解:(1))32cos(3πππϕ-=-=t T A x (2)0=a ϕ,2πϕ=b(3)作振幅矢量图,得到: 6233T Tt a ===ππωπ125223T Tt b =⎪⎭⎫⎝⎛=πππ+3.解:木块下移时,恢复力 )1(22xgL gxLf -=-=水ρmk =ω , 由(1)式知 2gL k =所以,木块做简谐运动。
在水中的木块未受压而处于平衡时 a gL mg 2水ρ= ,于是可求得ag aL gLm k ===22水ρω ga T πωπ22==振幅:a b A -=4.解:(1)两个同方向、同频率简谐运动的合振动仍为简谐运动,且合振动的频率与分振动的频率相同,即121s 3-===ωωω合振动振幅A 和初相0ϕ为 ()cm 52cos 43243cos 22221212221=⨯⨯++=++=πϕϕ-A A A A A︒==+︒+︒=++=--13.5334tg 24cos 3cos024sin 3sin0tgcos cos sin sin tg11-2211221110ππϕϕϕϕϕA A A A即0ϕ在第一象限内。
同济大学大学物理答案

同济大学大学物理答案同济大学大学物理答案【篇一:大学物理复习题答案(同济大学课件)】>1、①r?rcos?ti?rsin?tj?htdxdyk;②vxr?sin?t,vy??r?cos?t,2?dtdtvz?dvydvdvdzh2r?2sin?t,az?z?0 ;③ax?x??r?cos?t,ay?dt2?dtdtdt2、在运动函数中消去t,可得轨道方程为y?x2?8 由r?2ti?(4t2?8)j,得v?drdv2i?8tj,a??8j dtdt可得在t?1时r1?2i?4j,v1?2i?8j,a1?8j 在t?2时r2?2i?8j,v2?2i?16j,a1?8jf3?4t3?4?31.5m/s2, m1010v3v33?4tdva?,dv?adt,?dv??adt,?dv??dt,v?2.7m/s0000dt10f3?4x3?4?3dv3?4xdvdvdxdv1.5m/s2,a.?v,②a?,m1010dt10dtdxdtdxv33?4x3?4xdx?vdv,?vdv??dx,v?/s001010124、以投出点为原点,建立直角坐标系。
x?v0cos?t,y?v0sin?t?gt 23、①a?以(x,y)表示着地点坐标,则y??h??10m。
将此值和v0,?值一并代入得1110?20??t??9.8?t222解之得,t?2.78s和t??0.74s。
取正数解。
着地点离投射击点的水平距离为:x?v0cos?t?20?cos300?2.78?48.1m 5、①?0?2?n?2??1802??18018.8(rad/s),v0??0r??0.5?9.42(m/s) 6060②由于均匀减速,翼尖的角加速恒定,??a??0ta0?18.80.209(rad/s2) 90at??r??0.105(m/s2)负号表示切向加速度的方向与速度方向相反。
0??t?18.8?0.209?80?2.08(rad/s)an??2r?2.16(m/s2),a??2.16(m/s2),??arctan0.1052.780 2.166、x?12t?2t?4?v?t?2?a?1ms2 则: 22(1)t?2s时:v?2?2?4(s) a?1s 方向都沿x轴正方向(2)在1~2s内,a?1?f?ma?2?1?2(n),则在1~2s内,i?212dt?2(n?s) 方向沿x轴正方向(3)在1~2s内,f所做的功:由动能定理得:11a?ek(t?2)?ek(t?1)??2?(2?2)2??2?(1?2)2?7(j)22第二章牛顿运动定律1、小球下落过程中受重力g?mg和空气阻力f?kv作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 质点运动学班号 学号 姓名 日期一、 选择题1. 一个质点在Oxy 平面上运动,已知质点的运动方程为j t i t r 2252-=(SI ),则该质点作(A )匀速直线运动; (B )变速直线运动;(C )抛物线运动; (D )一般曲线运动。
( B ) 2.一个质点作曲线运动,r 表示位置矢量,s 表示路程,τ表示曲线的切线方向。
下列几个表达式中,正确的表达式为C (A )a t =d d v ; (B )v =t rd d ; (C )v =tsd d ; (D )τa =t d d v 。
( C )3.沿直线运动的物体,其速度的大小与时间成反比,则其加速度的大小与速度大小的关系是(A )与速度大小成正比; (B )与速度大小的平方成正比; (C )与速度大小成反比; (D )与速度大小的平方成反比。
( B ) 4.下列哪一种说法是正确的(A) 在圆周运动中,加速度的方向一定指向圆心; (B) 匀速率圆周运动的速度和加速度都恒定不变; (C) 物体作曲线运动时,速度的方向一定在运动轨道的切线方向上,法向分速度恒等于零;因此其法向加速度也一定等于零;(D) 物体作曲线运动时,必定有加速度,加速度的法向分量一定不等于零。
( D ) 5. 如图所示,路灯距离地面高度为H ,行人身高为h匀速v 背向路灯行走,则人头的影子移动的速度为(A)v H h H -; (B )v h H H-; (C ) v H h ; (D ) v hH。
( B ) 6.一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为t v ,那么它运动的时间是(A)g t 0v v -; (B) gt 20v v -;选择题5图(C)()g21202tv v -; (D)()g221202tv v-。
( C )7.一个质点沿直线运动,其速度为kte -=0v v (式中k 、v 0为常量)。
当0=t 时,质点位于坐标原点,则此质点的运动方程为: (A )kt e k x -=0v ; (B )kt e kx --=0v; (C ))1(0kt e k x --=v ; (D ))1(0kt e kx ---=v。
( C )8.在相对地面静止的坐标系内,A 、B 两船都以2 m ∙s -1的速率匀速行驶。
A 船沿Ox 轴正方向行驶,B 船沿Oy 轴正方向行驶。
今在A 船上设置与静止坐标系方向相同的坐标系,则从A 船上看B 船,它对A 船的速度为(SI)(A )22 i j +; (B )-+22i j ; (C )--22 i j ; (D )22i j -。
( B )二、 填空题1.一个质点沿Ox 轴运动,其运动方程为3223t t x -=(SI )。
当质点的加速度为零时,其速度的大小v = 1.5 m ·s -1。
2.一个质点在Oxy 平面内的运动方程为84,62-==t y t x (SI )。
则t = 1 s 时,质点的切向加速度t a = 6.4 ms -2,法向加速度n a = 4.8 ms -2。
3.一个质点沿半径R = 1 m 的圆周运动,已知走过的弧长s 和时间t 的关系为222t s +=,那么当质点的总加速度a 恰好与半径成045角时,质点所经过的路程s = 2.5 m 。
4.一个质点沿Ox 方向运动,其加速度随时间变化关系为 a = 3+2 t (SI),如果初始时刻质点的速度v 0 = 5 m ·s -1,则当3=t s 时,质点的速度 v = 23 m ·s -15.一个质点沿直线运动,其运动学方程为26t t x -= (SI),则在t 由0至4s 的时间间隔内,质点的位移大小为 ___8m___,在t 由0到4s 的时间间隔内质点走过的路程为____10m_ 6.一质点沿半径为R 的圆周运动,在t = 0时经过P 点,此后它的速率Bt A v += (其中A 、B 为正的已知常量)变化。
则质点沿圆周运动一周后再经过P 点时的切向加速度t a =B ,法向加速度n a =B RA π42+。
7.飞轮作加速转动时,轮边缘上一点的运动学方程为31.0t s =(SI)。
设飞轮半径为2m 。
当此点的速率=v 30 m ∙s -1时,其切向加速度为6 m ·s -2,法向加速度为__450 m ·s -2_。
8.一船以速度0v 在静水湖中匀速直线航行,一位乘客以初速1v 在船中竖直向上抛出一石子,则站在岸上的观察者看石子运动的轨道是 抛物线 。
取抛出点为坐标原点,Ox 轴沿0v 方向,Oy 轴沿竖直向上方向,石子的轨道方程是202012v v v gx x y -=。
三、 计算题1.物体在平面直角坐标系Oxy 中运动,其运动方程为4321532-+=+=t t y t x (式中,x ,y 以m 计,t 以s 计)。
(1) 以时间t 为变量,写出质点位矢的表达式; (2) 求质点的运动轨道方程;(3) 求t =1 s 时和t =2 s 时的位矢,并计算这一秒内质点的位移; (4) 求t = 4 s 时质点的速度和加速度。
解:(1)()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+++=j i 4321532t t t r m(2)4321532-+=+=t t y t x 两式消去t 得质点的运动轨道 18117941812-+=x x y (3)()j i 5.081-=r m ;()j i 411+=2r m()j i 5.43+=∆r m(4)1x s m 3d d -⋅==t x v 1y s m )3(d d -⋅+==t tyvs 4=t 时,1x s m 3-⋅=v 1y s m 7d d -⋅==tyv []j i 73+=v m ∙s -10d d x x ==ta v2y y s m 1d d -⋅==t a v j =a m ∙s -22. 对一枚火箭的圆锥型头部进行试验。
把它以初速度-1s m 150⋅铅直向上发射后,受空气阻力而减速,其阻力所引起的加速度大小为2v 0005.0(SI ),求火箭头部所能达到的最大高度?解:取Ox 向上为正方向,则火箭头部的加速度为)0005.0(2v +-=g a ,又xt a d d d d vv v ==,从而得)0005.0(d d 2v vv+-=g x当火箭头部达到最大高度m ax h 时,0=v ,因此v v v 2d 0005.0d 01500max ⎰⎰+-=g x h解得 m 52.764max =h3. 一个质点沿半径为0.10 m 的圆周运动,其角位置342t +=θ(SI ),求 (1)在t = 2 s 时,它的速度、加速度的大小各为多少?(2)当切向加速度的大小恰好是总加速度大小的一半时,θ值为多少? (3)在什么时刻,切向加速度和法向加速度恰好大小相等?.解: ttRa R a n d d d d 2θωωωτ=== (1)t =2 s , v = 4.8 m s-1a n = 230.4 m s -2 a t = 4.8 m s -2 a = 230.5 m s -2(2)rads t a a a n 15.366.0222===+θττs t a a n 55.0==τ4.一颗子弹在一定高度以水平初速度0v 射出,忽略空气阻力。
取枪口为坐标原点,沿0v 方向为Ox 轴,铅直向下为Oy 轴,并取发射时刻0=t ,试求: (1)子弹在任一时刻t 的位置坐标及轨道方程;(2)子弹在任一时刻t 的速度,切向加速度和法向加速度。
解:(1) 2021 , gt y t x ==v 轨迹方程是: 22/21v g x y =(2) v x = v 0,v y = g t ,速度大小为: 222022t g y x +=+=v v v v 方向为:与O x 轴夹角 θ = tg -1( gt /v 022202//d d t g t g t a t +==v v 与v 同向. ()222002/122/t g g a g a t n +=-=v v 方向与t a 垂直.xyO θ0v t an ag第二章(一) 牛顿力学班号 学号 姓名 日期四、 选择题1.下列说法中正确的是:(A) 运动的物体有惯性, 静止的物体没有惯性; (B) 物体不受外力作用时, 必定静止;(C) 物体作圆周运动时, 合外力不可能恒定; (D) 牛顿运动定律只适用于低速、微观物体。
( C )2.图中P 是一圆的竖直直径PC 的上端点,一质点从P 开始分别沿不同的弦无摩擦下滑时,把到达各弦的下端所用的时间相比较是 (A )到A 用的时间最短; (B )到B 用的时间最短; (C )到C 用的时间最短; (D )所用时间都一样。
( D )3.假设质量为70kg 的飞机驾驶员由于动力俯冲得到6g 的净加速度, 问作用于驾驶员上的力最接近于下列的哪一个值 (A) 10 N ; (B) 70 N ; (C) 420 N ; (D) 4100 N 。
( D )4.在平面直角坐标系Oxy 中,质量为25.0kg 的质点受到力i F t =N 的作用。
0=t 时,该质点以1s m 2-⋅=j v 的速度通过坐标原点O ,则该质点在任意时刻的位置矢量是 (A )j i t222+ m ; (B )j t i t2323+ m ; (C )j t i t343243+ m ; (D )不能确定。
( B )5. 如图所示,一根轻绳跨过一个定滑轮,绳的两端各系一个重物,它们的质量分别为1m 和2m ,且1m >2m (滑轮质量和一切摩擦均不计),系统的加速度为a 。
今用一竖直向下的恒力gm F 1=代替重物1m ,系统的加速度为a ',则有(A )a a =' ; (B )a a >' ; (C )a a <' ; (D )不能确定。
( B )A C选择题2图选择题5图6.一只质量为m 的猴子,原来抓住一根用绳吊在天花板上的质量为M 的直杆。
在悬绳突然断开的同时,小猴沿杆子竖直向上爬,小猴在攀爬过程中,始终保持它离地面的高度不变,此时直杆下落的加速度应为(A) g ;(B)g Mm; (C) g M m M +; (D) g m M m M -+;(E) g Mm M -。
( C )7.水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ。
现加一恒力F ,如图所示。
欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足(A) sin θ =μ; (B) cos θ =μ; (C) tan θ =μ; (D) cot θ =μ。