2021年中考数学专题三 几何证明(42PPT)
《初中几何证明题》课件

提高练习题
总结词:能力提升
详细描述:提高练习题是在基础练习题的基础上,进一步加深对几何证明题的理解和应用。这些题目 通常涉及多个知识点,需要学生综合运用所学知识进行解答,有助于提高学生的思维能力和解题技巧 。
竞赛练习题
总结词
挑战与突破
VS
详细描述
竞赛练习题是针对初中数学竞赛的几何证 明题,难度较大,对学生的思维能力和解 题技巧提出了更高的要求。这些题目通常 需要学生突破常规思维,寻找独特的解题 方法,有助于培养学生的创新思维和解决 问题的能力。
反证法
总结词
通过假设结论不成立,然后推导出矛盾,从而证明结论成立 。
详细描述
反证法是一种常用的证明方法。首先假设结论不成立,然后 在此基础上进行推理和计算,如果推导出矛盾,则说明假设 不成立,从而证明结论成立。
综合法与分析法
总结词
综合法是从已知条件出发,逐步推导到结论;分析法是从结论出发,逐步推导到已知条 件。
05
几何证明题总结与反思
总结几何证明题的解题思路
明确已知条件和求证目标
在解题前,应仔细阅读题目,明确已 知的条件和需要证明的目标,以便确 定解题方向。
分析图形结构
根据题目的描述,分析图形的结构, 包括角度、线段、平行、垂直等关系 ,为解题提供依据。
选择合适的证明方法
根据图形的结构和已知条件,选择合 适的证明方法,如利用全等三角形、 相似三角形、勾股定理等。
逐步推导
根据选择的证明方法,逐步推导所需 证明的结论,每一步推导都要有明确 的逻辑依据。
反思几何证明题的常见错误与注意事项
常见错误
在解题过程中,容易出现一些常 见的错误,如混淆已知条件和求 证目标、忽略图形的结构、选择 错误的证明方法等。
几何证明选讲PPT课件

3.(2011·广州测试(一))如图所示,CD 是圆 O 的切线,切点为 C,点 A、B 在圆 O 上, BC=1,∠BCD=30°,则圆 O 的面积为________. 解析 连接 OC,OB,依题意得,∠COB=2∠CAB=2∠BCD= 60°,又 OB=OC, 因此△BOC 是等边三角形, OB=OC=BC=1,即圆 O 的半径为 1, 所以圆 O 的面积为 π×12=π. 答案 π
m
(2)有 EF 使分得的上下两个梯形相似?若有则相似比 n 的值为
多少?
解析(1)法一、由 AE m,设AE=mx,
EB=nx,又 PA
a
EB n
,所以
AB b a
a
PA a PA a(m n)x
mx
(m n)x b a
b a nx
所以
b
PE PB
EF b
②切线的判定定理
过半径外端且与这条半径 垂直 的直线是圆的切线.
(3)切线长定理
从圆外一点引圆的两条切线长 相等 .
4.弦切角 (1)弦切角:顶点在圆上,一边与圆相切 ,另一边与圆相交的角. (2)弦切角定理及推论 ①定理:弦切角的度数等于所夹弧的度数的 一半.
②推论:同弧(或等弧)上的弦切角 相等 ,同弧(或等弧)上的弦 切角与圆周角 相等 .
割线定 理
(1)求PA、PB、PC、
PA·PB=PC·PD
PD、AB、CD
(2)应用相似求AC、
BD
例题
1.如图所示,△ABC 中,∠C=90°, AB=10,AC=6,以 AC 为直径的圆 与斜边交于点 P,则 BP 长为________. 解析 连接 CP.由推论 2 知∠CPA=90°,即 CP⊥AB,由射影
人教版八年级数学上册:第三部分 专题探究 专题四 几何证明专题 ppt课件

〔2〕解:△ABE是等边三角形. 理由如下. ∵BC是线段AE的垂直平分线, ∴BA=BE,即△ABE是等腰三角形. 又∵∠CAB=60°, ∴△ABE是等边三角形.
5. 如图3-4-10,知:在△ABC中,∠B,∠C的平分线相交 于点D,过点D作EF∥BC交AB于点E,交AC于点F,求 证:BE+CF=EF. 证明:∵BD平分∠ABC, ∴∠EBD=∠DBC. ∵EF∥BC,∴∠EDB=∠DBC. ∴∠EDB=∠EBD. ∴DE=BE. 同理,CF=DF. ∴EF=DE+DF=BE+CF, 即BE+CF=EF.
第三部分 专题探求
专题四 几何证明专题
考点突破
考点一: 证明三角形全等 【例1】如图3-4-1所示,在△ABC中,AD⊥BC, CE⊥AB,垂足分别为点D,E,AD,CE相交于点H, 假设AE=CE,求证:△AEH≌△CEB. 证明:∵AD⊥BC,CE⊥AB,∴∠AEH=∠CEB=90°, ∠EAH=90°-∠B,∠ECB=90°-∠B. ∴∠EAH=∠ECB. 在△AEH和△CEB中, ∴△AEH≌△CEB〔ASA〕.
根底训练
6. 如图3-4-11,AB=CD,BC=DA,点E,F在AC上, 且AE=CF. 试阐明:△BCF≌△DAE. 证明:在△ABC和△CDA中, ∴△ABC≌△CDA〔SSS〕. ∴∠ACB=∠CAD. 在△BCF和△DAE中,
∴△BCF≌△DAE〔SAS〕.
7. 如图3-4-12,在Rt△ABC中,∠ABC=90°,CD平分 ∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点 F. 求证:DE=BF. 证明:∵CD平分∠ACB, ∴∠1=∠2. ∵DE⊥AC,∠ABC=90°,∴DE=BD. 可证△BCD≌△ECD, ∴∠3=∠4. ∵BF∥DE,∴∠4=∠5. ∴∠3=∠5. ∴BD=BF. ∴DE=BF.
《几何证明举例》PPT课件

出要使结论成立所需要的条件,再把这样的“条件”看作“结
论”,一步一步逆推,直至归结为已知条件。
精选课件ppt
21
等腰三角形的判定方法有下列几 种: ①定义,②判定定理 。
等腰三角形的判定定理与性质定理的区别 是 条件和结论刚好相反。 。
运用等腰三角形的判定定理时,应注 意 在同一个三角形中 。
精选课件ppt
C 60
A B C 精6选0课件p(pt 等式的性质 )
17
交流与探索
思考:等边三角形的每个内角都等于600的逆命题是什 么?这个逆命题是真命题吗?
逆命题是真命题: 如果一个三角形的每个内角都等于600 ,那么这个三
角形是等边三角形。
你能把这个逆命题的条件适当减少,使它仍然是真命题吗?
4.等腰三角形一个角为110°,它的另外两个角
为3_5_°__,3_5__°。
精选课件ppt
2
学习目标
1.进一步掌握证明的基本步
骤和书写格式。
2.能用“公理”和“已经证
明的定理”为依据,证明等
腰三角形的性质定理和判定
定理。
精选课件ppt
3
回顾与思考 ☞
1.我们学习了证明的相关知识,你还记得我们依据
7
A
已知:△ABC中,AB=AC
求证:∠B= ∠C
证明:作BC边上的中线 AD
∴ BD = CD (中线定义)
∵在 △BAD与 △CAD中
AB = AC (已知)
B DC
BD = CD (已证) AD = AD (公共边)
∴ △BAD≌△CAD( SSS )
∴ ∠B = ∠ C (全等三角形对应角相等)
符号表示:
2021年九年级数学中考一轮复习——几何专题:全等三角形性质与判定(三)

2021年九年级数学中考复习——几何专题:全等三角形性质与判定(三)1.如图,在△ABC中,AB=AC,∠A=108°,BE平分∠ABC交AC于点E,求证:BC=AB+CE.2.如图2,△ABC中,∠B=∠C,若∠A=70°,求∠B的度数.3.如图,在△ABC中,AD⊥BC于点D,AD=BD,点E是线段AD上一点,且ED=CD,连接BE交AC于点F.(1)求证:∠CBF=∠DAC;(2)若BD=3,BF=,求△BAF的周长.4.如图,△ABC中,AD既是中线,又是角平分线,DE⊥AB于点E,DF⊥AC于点F.(1)求证:△BDE≌△CDF;(2)你认为AD还是△ABC的高吗?如果是,请给出证明;如果不是,请说明理由.5.已知:D,A,E三点都在直线m上,在直线m的同一侧作△ABC,使AB=AC,连接BD,CE.(1)如图①,若∠BAC=90°,BD⊥m,CE⊥m,求证:△ABD≌△ACE;(2)如图②,若∠BDA=∠AEC=∠BAC,请判断BD,CE,DE三条线段之间的数量关系,并说明理由.6.已知:如图,点A、B、C、D在一条直线上,AE∥DF,AE=DF,AB=CD.(1)求证:∠E=∠F;(2)若∠D=28°,∠ECA=100°,求∠F的度数.7.如图1,在△ABC中,AE⊥BC于点E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由.8.已知,在△ABC中,D是AC上一点,BF交AC于点E,连接DF.(1)如图1,BE=EF,AB∥DF.求证:AE=DE;(2)如图2,点D与点C重合,∠A=90°,∠ACB=∠ECF,∠F=∠AEB.若CE=3,BC=5,求AC的长.9.如图,AB=CD,AE⊥BC于E,DF⊥BC于F,AE=DF.求证:(1)CE=BF;(2)AB∥CD.10.如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,求∠ACB的度数.参考答案1.证明:如图,在BC上取BA′=BA,连接EA′,∵∠A=108°,AB=AC,∴∠ABC=∠ACB=36°,∵BE平分∠ABC,∴∠ABE=∠CBA=18°,在△ABE与△A′BE中,,∴△ABE≌△A′BE(SAS),∴∠BA′E=∠A=108°,∴∠EA′C=72°,∴∠A′EC=72°,∴∠A′EC=∠CA′E,∴CE=CA′,∴BC=BA′+EC=AB+EC=AC+EC.2.(1)证明:∵C是线段AB的中点,∴AC=CB,在△ACD和△CBE中,∵,∴△ACD≌△CBE(SSS);(2)解:△ABC中,∠A+∠B+∠C=180°,∵∠B=∠C,∴70°+∠B+∠B=180°,∴∠B=55°.3.解:(1)证明:∵AD⊥BC,∴∠ADC=∠ADB=90°,在△ACD和△BED中,,∴△ACD≌△BED(SAS),∴∠DAC=∠CBF;(2)∵AD⊥BC,AD=BD=3,∴AB==3,∵∠DAC=∠CBF,∴∠DAC+∠C=∠CBF+∠C=90°,∴∠AFB=90°,∴AF==2,∴△BAF的周长为:AB+BF+AF=3++2.4.(1)证明:∵AD既是中线,又是角平分线,DE⊥AB,DF⊥AC,∴BD=CD,DE=DF,∠DEB=∠DFC=90°,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL);(2)AD还是△ABC的高,证明:由(1)△BDE≌△CDF,∴∠B=∠C,∵AD既是中线,又是角平分线,∴BD=CD,∠BAD=∠CAD,在△BAD和△CAD中,,∴△BAD≌△CAD(AAS),∴∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,即AD还是△ABC的高.5.解:(1)证明:如图①,∵D,A,E三点都在直线m上,∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS);(2)DE=BD+CE.理由是:如图②,∵∠BDA=∠AEC=∠BAC,∴由三角形内角和及平角性质,得:∠BAD+∠ABD=∠BAD+∠CAE=∠CAE+∠ACE,∴∠ABD=∠CAE,∠BAD=∠ACE,在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE.6.(1)证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=CD+BC,∴AC=DB,在△EAC和△FDB中,,∴△EAC≌△FDB(SAS),∴∠E=∠F;(2)解:由(1)得:△EAC≌△FDB,∴∠ECA=∠FBD=100°,∴∠F=180°﹣∠D﹣∠FBD=180°﹣28°﹣100°=52°.7.解:(1)BD=AC,BD⊥AC,理由:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)结论不发生变化,理由是:设AC与DE相交于点O,∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC.8.(1)证明:∵AB∥DF,∴∠A=∠EDF,在△ABE和△DFE中,,∴△ABE≌△DFE(AAS),∴AE=DE;(2)解:过B作BH∥DF交CA的延长线于点H,∴∠HBE=∠F=∠AEB,∠H=∠ACF=ACB,∴BH=EH=BC=5,∵CE=3,∴CH=HE+CE=8,又∠BAD=90°,∴CA=HA=CH=4.9.(1)证明:∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL),∴BE=CF,∴BE﹣EF=CF﹣EF,∴CE=BF;(2)∵Rt△ABE≌Rt△CDF,∴∠B=∠C,∴AB∥CD.10.解:在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴∠ACD=∠BCE,∴∠ACD﹣∠ACE=∠BCE﹣∠ACE,即∠DCE=∠ACB,∴∠ACB=(∠BCD﹣∠ACE)=(155°﹣55°)=50°.。
中考数学专题三 几何证明(共40张PPT)

又∵∠EAF=∠ABG,∴△AEF∽△BAG,
∴∠AEF=∠BAG,
∵∠BAG+∠EAO=90°,∴∠AEF+∠EAO=90°,
∴∠AOE=90°,∴EF⊥AG.
25
(3)过点O作MN∥AB,交AD于点M,交BC于点N,如图 所示,则MN⊥AD,MN=AB=4, ∵P是正方形ABCD内一点,S△PAB=S△OAB, ∴点P在线段MN上,当P为MN的中点时,△PAB的周长 最小,此时PA=PB,P1 M= MN=2,
15
(3)两头凑法:将分析与综合法合并使用,比较起来,分 析法利于思考,综合法易于表达,因此,在实际思考问 题时,可合并使用,灵活处理,以利于缩短题设与结论 的距离,最后达到证明目的.
16
2.掌握构造基本图形的方法:复杂的图形都是由基本 图形组成的,因此要善于将复杂图形分解成基本图形. 在更多时候需要构造基本图形,在构造基本图形时往 往需要添加辅助线,以达到集中条件、转化问题的目 的.
32
【自主解答】如图,把△ABE逆时针旋转90°得到
△ADG,
∴BE=GD,AE=AG,
∵∠EAF=45°,ຫໍສະໝຸດ ∴∠FAG=90°-45°=45°,
∴∠EAF=∠FAG,
在△AEF和△AGF中,
33
AE AG,
E
A
F
FAG,
A F A F,
∴△AEF≌△AGF(SAS),
∴EF=GF,
即EF=GD+DF,
专题三 几何证明
1
几何证明是平面几何中的一个重要问题,它对培养 学生逻辑思维能力有着很大作用.几何证明有两种基本 类型:一是平面图形的数量关系;二是有关平面图形的 位置关系.这两类问题常常可以相互转化,如证明平行 关系可转化为证明角相等或角互补的问题.
2021年中考数学复习专题3 方程、函数思想 - 副本(教学课件)

精讲释疑
重重点点题题型型
题组训练
题 型 一 用方程思想解决实际问题
例1.欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中 一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服 装的盈利情况是( B )
A.盈利
B.亏损
C.不盈不亏
D.与售价a有关
重重点点题题型型
题组训练
【解析】列一元一次方程求出两件衣服的进价,进而求出总盈 亏.设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设 第二件衣服的进价为y元,依题意得:y(1-20%)=a,得出x(1 +20%)=y(1-20%),整理得:3x=2y,该服装店卖出这两件 服装的盈利情况为:0.2x-0.2y=0.2x-0.3x=-0.1x,即赔了 0.1x元.
重重点点题题型型
题组训练
解:(1)根据题意,得y与x的解析式为:y=22+2(x-1)=2x+ 20(1≤x≤12); (2)设当天的销售利润为w元,则当1≤x≤6时,w=(1200-800)(2x +20)=800x+8000,∵800>0,∴w随x的增大而增大,∴当x =6时,w最大值=800×6+8000=12800.
重重点点题题型型
题组训练
题 型 二 用方程思想解决几何问题
例 3.(温州一模)如图,在△ABC 中,分别以 AB,AC 为边向外 作正方形 ABED,ACGF.若点 E,A,G 在同一直线上,EG=8 2 ,
15 BC=7,则△ABC 的面积为__4__.
重重点点题题型型
题组训练
【解析】设 AB=x,AC=y,∵EG=8 2 ,BC=7,∴x2 +y2=72, 2 x+ 2 y=8 2 ,∴x+y=8,∴(x+y)2=x2+y2 +2xy=64,∴2xy=15,∴xy=125 ,∴△ABC 的面积=12 AB·AC =12 xy=145 .
中考数学专题复习课件:题型3 几何证明(共15张PPT)

5.[2017·重庆中考]在△ABM中,∠ABM=45°,AM⊥BM, 垂足为M,点C是BM延长线上一点,连接AC. (1)如图1,若AB=3 ,BC=5,求AC的长; (2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一 点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中 点,求证:∠BDF=∠CEF.
2.如图,已知BD是△ABC的角平分线,DE∥AB交BC于点E, EF∥AC交AB于点F. (1)求证:BE=AF; (2)连接DF,试探究当△ABC满足什么条件时,使得四边形 BEDF是菱形,并说明理由.
解:(1)证明:∵BD是△ABC的角平分线,∴∠ABD=∠DBC. ∵DE∥AB,∴∠ABD=∠BDE. ∴∠BDE=∠DBC.∴BE=DE. ∵EF∥AC,∴四边形ADEF是平行四边形. ∴AF=DE.∴AF=BE. (2)当AB=BC时,四边形BEDF是菱形.理由如下: ∵AB=BC,∴∠A=∠C. ∵EF∥AC,∴∠A=∠BFE,∠C=∠BEF. ∴∠BFE=∠BEF.∴BF=BE. ∵DE=BE,∴BF=DE. 又∵DE∥AB,∴四边形BEDF是平行四边形. 又∵BF=BE,∴平行四边形BEDF是菱形.
【解】证明:(1)∵四边形ABCD 是正方形, ∴AD=AB,∠BAD=90°. ∵MN⊥AF,∴∠AHM=90°. ∴∠BAF+∠MAH=∠MAH+∠AMH=90°. ∴∠BAF=∠AMH. 在△AMN和△BAF中,
∠AMN=∠BAF, AM=BA, ∠MAN=∠ABF
∴△AMN≌△BAF(ASA).∴AF=MN.
∵MD⊥DE,MN为⊙O的直径, ∴∠MDE=∠MEN=90°. ∵∠NME=∠DME,∴△MDE∽△MEN.
满分技法►与三角形有关的证明,通常是通过三角形相似进行相 关运算.看到证线段之间成比例,想到三角形相似,是在此问题 当中的一个定性思维.相似三角形有以下6种基本图形(如下图所 示).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【思考】图2中的四边形ABDE是平行四边形吗?请说明理由. 【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求 AF的长. 活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度 (0≤α≤90),连接OB,OE(如图4).
【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.
2
∴OF=OA-AF=21 - x,
2
在Rt△OFE中, ∵OF2+EF2=OE2,
∴(2- x1)2+32= 1(x+4)2,解得:x= ,9
2
4
4
∴AF= 9 cm.
4
【探究】BD=2OF,
理由:如图2,延长OF交AE于点H,
∵四边形ABDE为矩形,
∴∠OAB=∠OBA=∠ODE
=∠OED,
OA=OB=OE=OD,
2
∴S菱形DCEB=BC·DO=318 .
考点四 与图形变换有关的探究题 【示范题4】(2020·嘉兴中考)在一次数学研究性学习中,小兵将两个全等的直 角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中 ∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动. 活动一:将图1中的纸片DEF沿AC方向平移,连接AE,BD(如图2),当点F与点C重合 时停止平移.
【解析】(1)如图2,连接AM, 由已知得△ABD≌△ACE, ∴AD=AE,AB=AC,∠BAD=∠CAE, ∵MD=ME, ∴∠MAD=∠MAE, ∴∠MAD-∠BAD=∠MAE-∠CAE, 即∠BAM=∠CAM, 在△ABM和△ACM中,
AB AC BAM CAM AM AM,
∴△ABM≌△ACM(SAS),
∴∠OBD=∠ODB,∠OAE=∠OEA, ∵∠ABD+∠BDE+∠DEA+∠EAB=360°, ∴∠ABD+∠BAE=180°, ∴AE∥BD,∴∠OHE=∠ODB, ∵EF平分∠OEH,∴∠OEF=∠HEF, ∵∠EFO=∠EFH=90°,EF=EF, ∴△EFO≌△EFH(ASA),∴EO=EH,FO=FH,
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变, 求出四边形PQED的面积; ②当线段BP的长为何值时,以点P,Q,R为顶点的三角形与△BOC相似?
【自主解答】(1)四边形ABCE是菱形. 证明:∵△ECD是△ABC沿BC方向平移得到的, ∴EC∥AB,EC=AB. ∴四边形ABCE是平行四边形. 又∵AB=BC,∴四边形ABCE是菱形. (2)①四边形PQED的面积不发生变化,理由如下: 由菱形的对称性知,△PBO≌△QEO, ∴S△PBO=S△QEO.
考点二 相似三角形的判定与性质 【示范题2】(2020·贵港港南区一模)如图1,在△ABC中,AB=BC=5,AC=6.△ECD 是△ABC沿CB方向平移得到的,连接AE,AC和BE相交于点O. (1)判断四边形ABCE是怎样的四边形,并证明你的结论; (2)如图2,P是线段BC上一动点(不与点B,C重合),连接PO并延长交线段AE于点 Q,QR⊥BD,垂足为点R.
【自主解答】(1)∵AB⊥OM于B,DE⊥ON于E,
∴∠ABO=∠DEA=90°.
在Rt△ABO与Rt△DEA中,
∵
AO AD OB AE,
∴Rt△ABO≌Rt△DEA(HL),
∴∠AOB=∠DAE.
∴AD∥BC.
又∵AB⊥OM,DC⊥OM, ∴AB∥DC. ∴四边形ABCD是平行四边形, ∵∠ABC=90°, ∴四边形ABCD是矩形.
(3)MB=MC还成立.
如图4,延长BM交CE于F,
∵CE∥BD,
∴∠MDB=∠MEF,∠MBD=∠MFE,
又∵M是DE的中点,
∴MD=ME,
在△MDB和△MEF中,MMDBDB
MEF MFE
MD ME,
∴△MDB≌△MEF(AAS), ∴MB=MF, ∵∠ACE=90°, ∴∠BCF=90°, ∴MB=MC.
【跟踪训练】 (2020·昆明盘龙区一模)如图,在Rt△ABC和Rt△ADE中,∠C=∠E=90°, ∠CAD=∠EAB,AC=AE,AB,DE相交于点F,AD,BC相交于点G. (1)求证:△ABC≌△ADE; (2)若AB=11,AG=6,求DG的长.
【解析】(1)∵∠CAD=∠EAB, ∴∠CAD+∠BAD=∠EAB+∠DAB, 即∠CAB=∠EAD. 又AC=AE,∠C=∠E=90°, ∴△ABC≌△ADE(ASA). (2)∵△ABC≌△ADE, ∴AB=AD. ∵AB=11,∴AD=11. 又AG=6,∴DG=11-6=5.
(2)由(1)知Rt△ABO≌Rt△DEA, ∴AB=DE=3, 设AD=x,则OA=x, AE=OE-OA=9-x. 在Rt△DEA中,由AE2+DE2=AD2, 得:(9-x)2+32=x2, 解得x=5. ∴AD=5.即AB,AD的长分别为3和5.
【跟踪训练】 (2020·北京二模)如图,在Rt△ABC中,∠ACB=90°,D为AB中点,O为BC中点,连接 DO并延长到点E,使OE=OD,连接BE,CE. (1)求证:四边形DCEB为菱形; (2)若AC=6,∠DCB=30°,求四边形DCEB的面积.
∵△ECD是由△ABC平移得到的,
∴ED∥AC,ED=AC=6.
又∵BE⊥AC,∴BE⊥ED,BD=5+5=10,BE10=2 62 =8,
∴S四边形PQED=S△QEO+S四边形POED=S△PBO+S四边形POED
=S△BED=12
×BE×ED=1
2
×8×6=24.
②如图,当点P在BC上运动,使以点P,Q,R为顶点的三角形与△COB相似. ∵∠2是△OBP的外角, ∴∠2>∠3. ∴∠2不与∠3对应. ∴∠2与∠1对应.即∠2=∠1,∴OP=OC=3. 过O作OG⊥BC于G,则G为PC的中点.可证△OGC∽△BOC.∴CG∶CO=CO∶BC. 即CG∶3=3∶5.
AC 7 FG
【解析】(1)∵∠AED=∠B,∠DAE=∠CAB, ∴△AED∽△ABC, ∴∠ADF=∠C, 又∵ AD= DF ,
AC CG
∴△ADF∽△ACG.
(2)∵△ADF∽△ACG,
AD= AF , AC AG AD 3, AC 7
AF =3, AG 7
AF=3. FG 4
考点三 特殊平行四边形的判定与性质 【示范题3】(2020·常州新北区一模)如图,点A在∠MON的边ON上,AB⊥OM于 B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C. (1)求证:四边形ABCD是矩形; (2)若DE=3,OE=9,求AB,AD的长.
专题三 几 何 证 明
几何证明与计算,主要考查的知识点有三角形的全等、相似的判定与性 质,四边形的判定与性质,圆的切线的判定与性质,综合性较强、解决此类问 题的关键是准确把握三角形全等、相似的判定方法及性质,四边形的判定方 法及性质,掌握不同知识间的综合应用.
考点一 全等三角形的判定与性质 【示范题1】 (2020·防城港模拟)如图,在△ABC中,AB=AC,点D,E分别在AC及其延长线上,点 B,F分别在AE两侧,连接CF,已知AD=EC,BC=DF,BC∥DF. (1)求证:△ABC≌△EFD; (2)若CE=CF,FC平分∠DFE,求∠A的度数.
∴∠EHO=∠EOH=∠OBD=∠ODB, ∴△EOH≌△OBD(AAS),∴BD=OH=2OF.
【跟踪训练】 1.(2020·百色模拟)如图,将两个全等的直角三角形△ABD,△ACE拼在一起(图 1).△ABD不动,
(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB,MC(图2),证 明:MB=MC; (2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB,MC(图3), 判断并直接写出MB,MC的数量关系; (3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB,MC的数量 关系还成立吗?说明理由.
∴MB=MC.
(2)MB=MC. 理由如下:如图3,延长DB,AE相交于E′,延长EC交AD于F, ∴BD=BE′,CE=CF, ∵M是ED的中点,B是DE′的中点, ∴MB∥AE′, ∴∠MBC=∠CAE, 同理:MC∥AD,
∴∠BCM=∠BAD, ∵∠BAD=∠CAE,∴∠MBC=∠BCM, ∴MB=MC.
【解析】(1)∵O是BC边中点, ∴OC=OB, 又∵OE=OD, ∴四边形DCEB是平行四边形. ∵在Rt△ABC中,∠ACB=90°,D为AB中点, ∴CD=BD, ∴四边形DCEB为菱形.
(2)∵CD=BD,∠DCB=30°, ∴∠ABC=∠DCB=30°, ∵在Rt△ABC中,∠ACB=90°,AC=6,∠ABC=30°, ∴AB=12,BC=63 . ∵D为AB中点,O是BC中点, ∴DO=1 AC=3,
2.(2020·深圳中考)背景:一次小组合作探究课上,小明将两个正方形按如图所 示的位置摆放(点E,A,D在同一条直线上),发现BE=DG且BE⊥DG. 小组讨论后,提出了下列三个问题,请你帮助解答: (1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请 给出证明;若不能,请说明理由;
∴CG= 9 .∴PB=BC-PC=BC-2CG
5
ห้องสมุดไป่ตู้
=5-2×
9 5
=
.7
5
【跟踪训练】 (2020·来宾模拟)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,线段AG 分别交线段DE,BC于点F,G,且 AD DF.
AC CG
(1)求证:△ADF∽△ACG; (2)若 AD 3,求 AF 的值.