2021年中考数学专题三 几何证明(42PPT)

合集下载

《初中几何证明题》课件

《初中几何证明题》课件

提高练习题
总结词:能力提升
详细描述:提高练习题是在基础练习题的基础上,进一步加深对几何证明题的理解和应用。这些题目 通常涉及多个知识点,需要学生综合运用所学知识进行解答,有助于提高学生的思维能力和解题技巧 。
竞赛练习题
总结词
挑战与突破
VS
详细描述
竞赛练习题是针对初中数学竞赛的几何证 明题,难度较大,对学生的思维能力和解 题技巧提出了更高的要求。这些题目通常 需要学生突破常规思维,寻找独特的解题 方法,有助于培养学生的创新思维和解决 问题的能力。
反证法
总结词
通过假设结论不成立,然后推导出矛盾,从而证明结论成立 。
详细描述
反证法是一种常用的证明方法。首先假设结论不成立,然后 在此基础上进行推理和计算,如果推导出矛盾,则说明假设 不成立,从而证明结论成立。
综合法与分析法
总结词
综合法是从已知条件出发,逐步推导到结论;分析法是从结论出发,逐步推导到已知条 件。
05
几何证明题总结与反思
总结几何证明题的解题思路
明确已知条件和求证目标
在解题前,应仔细阅读题目,明确已 知的条件和需要证明的目标,以便确 定解题方向。
分析图形结构
根据题目的描述,分析图形的结构, 包括角度、线段、平行、垂直等关系 ,为解题提供依据。
选择合适的证明方法
根据图形的结构和已知条件,选择合 适的证明方法,如利用全等三角形、 相似三角形、勾股定理等。
逐步推导
根据选择的证明方法,逐步推导所需 证明的结论,每一步推导都要有明确 的逻辑依据。
反思几何证明题的常见错误与注意事项
常见错误
在解题过程中,容易出现一些常 见的错误,如混淆已知条件和求 证目标、忽略图形的结构、选择 错误的证明方法等。

几何证明选讲PPT课件

几何证明选讲PPT课件

3.(2011·广州测试(一))如图所示,CD 是圆 O 的切线,切点为 C,点 A、B 在圆 O 上, BC=1,∠BCD=30°,则圆 O 的面积为________. 解析 连接 OC,OB,依题意得,∠COB=2∠CAB=2∠BCD= 60°,又 OB=OC, 因此△BOC 是等边三角形, OB=OC=BC=1,即圆 O 的半径为 1, 所以圆 O 的面积为 π×12=π. 答案 π
m
(2)有 EF 使分得的上下两个梯形相似?若有则相似比 n 的值为
多少?
解析(1)法一、由 AE m,设AE=mx,
EB=nx,又 PA
a
EB n
,所以
AB b a
a
PA a PA a(m n)x
mx
(m n)x b a
b a nx
所以
b
PE PB

EF b
②切线的判定定理
过半径外端且与这条半径 垂直 的直线是圆的切线.
(3)切线长定理
从圆外一点引圆的两条切线长 相等 .
4.弦切角 (1)弦切角:顶点在圆上,一边与圆相切 ,另一边与圆相交的角. (2)弦切角定理及推论 ①定理:弦切角的度数等于所夹弧的度数的 一半.
②推论:同弧(或等弧)上的弦切角 相等 ,同弧(或等弧)上的弦 切角与圆周角 相等 .
割线定 理
(1)求PA、PB、PC、
PA·PB=PC·PD
PD、AB、CD
(2)应用相似求AC、
BD
例题
1.如图所示,△ABC 中,∠C=90°, AB=10,AC=6,以 AC 为直径的圆 与斜边交于点 P,则 BP 长为________. 解析 连接 CP.由推论 2 知∠CPA=90°,即 CP⊥AB,由射影

人教版八年级数学上册:第三部分 专题探究 专题四 几何证明专题 ppt课件

人教版八年级数学上册:第三部分  专题探究 专题四 几何证明专题 ppt课件

〔2〕解:△ABE是等边三角形. 理由如下. ∵BC是线段AE的垂直平分线, ∴BA=BE,即△ABE是等腰三角形. 又∵∠CAB=60°, ∴△ABE是等边三角形.
5. 如图3-4-10,知:在△ABC中,∠B,∠C的平分线相交 于点D,过点D作EF∥BC交AB于点E,交AC于点F,求 证:BE+CF=EF. 证明:∵BD平分∠ABC, ∴∠EBD=∠DBC. ∵EF∥BC,∴∠EDB=∠DBC. ∴∠EDB=∠EBD. ∴DE=BE. 同理,CF=DF. ∴EF=DE+DF=BE+CF, 即BE+CF=EF.
第三部分 专题探求
专题四 几何证明专题
考点突破
考点一: 证明三角形全等 【例1】如图3-4-1所示,在△ABC中,AD⊥BC, CE⊥AB,垂足分别为点D,E,AD,CE相交于点H, 假设AE=CE,求证:△AEH≌△CEB. 证明:∵AD⊥BC,CE⊥AB,∴∠AEH=∠CEB=90°, ∠EAH=90°-∠B,∠ECB=90°-∠B. ∴∠EAH=∠ECB. 在△AEH和△CEB中, ∴△AEH≌△CEB〔ASA〕.
根底训练
6. 如图3-4-11,AB=CD,BC=DA,点E,F在AC上, 且AE=CF. 试阐明:△BCF≌△DAE. 证明:在△ABC和△CDA中, ∴△ABC≌△CDA〔SSS〕. ∴∠ACB=∠CAD. 在△BCF和△DAE中,
∴△BCF≌△DAE〔SAS〕.
7. 如图3-4-12,在Rt△ABC中,∠ABC=90°,CD平分 ∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点 F. 求证:DE=BF. 证明:∵CD平分∠ACB, ∴∠1=∠2. ∵DE⊥AC,∠ABC=90°,∴DE=BD. 可证△BCD≌△ECD, ∴∠3=∠4. ∵BF∥DE,∴∠4=∠5. ∴∠3=∠5. ∴BD=BF. ∴DE=BF.

《几何证明举例》PPT课件

《几何证明举例》PPT课件

出要使结论成立所需要的条件,再把这样的“条件”看作“结
论”,一步一步逆推,直至归结为已知条件。
精选课件ppt
21
等腰三角形的判定方法有下列几 种: ①定义,②判定定理 。
等腰三角形的判定定理与性质定理的区别 是 条件和结论刚好相反。 。
运用等腰三角形的判定定理时,应注 意 在同一个三角形中 。
精选课件ppt
C 60
A B C 精6选0课件p(pt 等式的性质 )
17
交流与探索
思考:等边三角形的每个内角都等于600的逆命题是什 么?这个逆命题是真命题吗?
逆命题是真命题: 如果一个三角形的每个内角都等于600 ,那么这个三
角形是等边三角形。
你能把这个逆命题的条件适当减少,使它仍然是真命题吗?
4.等腰三角形一个角为110°,它的另外两个角
为3_5_°__,3_5__°。
精选课件ppt
2
学习目标
1.进一步掌握证明的基本步
骤和书写格式。
2.能用“公理”和“已经证
明的定理”为依据,证明等
腰三角形的性质定理和判定
定理。
精选课件ppt
3
回顾与思考 ☞
1.我们学习了证明的相关知识,你还记得我们依据
7

已知:△ABC中,AB=AC
求证:∠B= ∠C
证明:作BC边上的中线 AD
∴ BD = CD (中线定义)
∵在 △BAD与 △CAD中
AB = AC (已知)
B DC
BD = CD (已证) AD = AD (公共边)
∴ △BAD≌△CAD( SSS )
∴ ∠B = ∠ C (全等三角形对应角相等)
符号表示:

2021年九年级数学中考一轮复习——几何专题:全等三角形性质与判定(三)

2021年九年级数学中考一轮复习——几何专题:全等三角形性质与判定(三)

2021年九年级数学中考复习——几何专题:全等三角形性质与判定(三)1.如图,在△ABC中,AB=AC,∠A=108°,BE平分∠ABC交AC于点E,求证:BC=AB+CE.2.如图2,△ABC中,∠B=∠C,若∠A=70°,求∠B的度数.3.如图,在△ABC中,AD⊥BC于点D,AD=BD,点E是线段AD上一点,且ED=CD,连接BE交AC于点F.(1)求证:∠CBF=∠DAC;(2)若BD=3,BF=,求△BAF的周长.4.如图,△ABC中,AD既是中线,又是角平分线,DE⊥AB于点E,DF⊥AC于点F.(1)求证:△BDE≌△CDF;(2)你认为AD还是△ABC的高吗?如果是,请给出证明;如果不是,请说明理由.5.已知:D,A,E三点都在直线m上,在直线m的同一侧作△ABC,使AB=AC,连接BD,CE.(1)如图①,若∠BAC=90°,BD⊥m,CE⊥m,求证:△ABD≌△ACE;(2)如图②,若∠BDA=∠AEC=∠BAC,请判断BD,CE,DE三条线段之间的数量关系,并说明理由.6.已知:如图,点A、B、C、D在一条直线上,AE∥DF,AE=DF,AB=CD.(1)求证:∠E=∠F;(2)若∠D=28°,∠ECA=100°,求∠F的度数.7.如图1,在△ABC中,AE⊥BC于点E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由.8.已知,在△ABC中,D是AC上一点,BF交AC于点E,连接DF.(1)如图1,BE=EF,AB∥DF.求证:AE=DE;(2)如图2,点D与点C重合,∠A=90°,∠ACB=∠ECF,∠F=∠AEB.若CE=3,BC=5,求AC的长.9.如图,AB=CD,AE⊥BC于E,DF⊥BC于F,AE=DF.求证:(1)CE=BF;(2)AB∥CD.10.如图,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,求∠ACB的度数.参考答案1.证明:如图,在BC上取BA′=BA,连接EA′,∵∠A=108°,AB=AC,∴∠ABC=∠ACB=36°,∵BE平分∠ABC,∴∠ABE=∠CBA=18°,在△ABE与△A′BE中,,∴△ABE≌△A′BE(SAS),∴∠BA′E=∠A=108°,∴∠EA′C=72°,∴∠A′EC=72°,∴∠A′EC=∠CA′E,∴CE=CA′,∴BC=BA′+EC=AB+EC=AC+EC.2.(1)证明:∵C是线段AB的中点,∴AC=CB,在△ACD和△CBE中,∵,∴△ACD≌△CBE(SSS);(2)解:△ABC中,∠A+∠B+∠C=180°,∵∠B=∠C,∴70°+∠B+∠B=180°,∴∠B=55°.3.解:(1)证明:∵AD⊥BC,∴∠ADC=∠ADB=90°,在△ACD和△BED中,,∴△ACD≌△BED(SAS),∴∠DAC=∠CBF;(2)∵AD⊥BC,AD=BD=3,∴AB==3,∵∠DAC=∠CBF,∴∠DAC+∠C=∠CBF+∠C=90°,∴∠AFB=90°,∴AF==2,∴△BAF的周长为:AB+BF+AF=3++2.4.(1)证明:∵AD既是中线,又是角平分线,DE⊥AB,DF⊥AC,∴BD=CD,DE=DF,∠DEB=∠DFC=90°,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL);(2)AD还是△ABC的高,证明:由(1)△BDE≌△CDF,∴∠B=∠C,∵AD既是中线,又是角平分线,∴BD=CD,∠BAD=∠CAD,在△BAD和△CAD中,,∴△BAD≌△CAD(AAS),∴∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,即AD还是△ABC的高.5.解:(1)证明:如图①,∵D,A,E三点都在直线m上,∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS);(2)DE=BD+CE.理由是:如图②,∵∠BDA=∠AEC=∠BAC,∴由三角形内角和及平角性质,得:∠BAD+∠ABD=∠BAD+∠CAE=∠CAE+∠ACE,∴∠ABD=∠CAE,∠BAD=∠ACE,在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE.6.(1)证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=CD+BC,∴AC=DB,在△EAC和△FDB中,,∴△EAC≌△FDB(SAS),∴∠E=∠F;(2)解:由(1)得:△EAC≌△FDB,∴∠ECA=∠FBD=100°,∴∠F=180°﹣∠D﹣∠FBD=180°﹣28°﹣100°=52°.7.解:(1)BD=AC,BD⊥AC,理由:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)结论不发生变化,理由是:设AC与DE相交于点O,∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(SAS),∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC.8.(1)证明:∵AB∥DF,∴∠A=∠EDF,在△ABE和△DFE中,,∴△ABE≌△DFE(AAS),∴AE=DE;(2)解:过B作BH∥DF交CA的延长线于点H,∴∠HBE=∠F=∠AEB,∠H=∠ACF=ACB,∴BH=EH=BC=5,∵CE=3,∴CH=HE+CE=8,又∠BAD=90°,∴CA=HA=CH=4.9.(1)证明:∵AE⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL),∴BE=CF,∴BE﹣EF=CF﹣EF,∴CE=BF;(2)∵Rt△ABE≌Rt△CDF,∴∠B=∠C,∴AB∥CD.10.解:在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴∠ACD=∠BCE,∴∠ACD﹣∠ACE=∠BCE﹣∠ACE,即∠DCE=∠ACB,∴∠ACB=(∠BCD﹣∠ACE)=(155°﹣55°)=50°.。

中考数学专题三 几何证明(共40张PPT)

中考数学专题三 几何证明(共40张PPT)
BG 2 AE1, AFAE, AB 2 BG AB
又∵∠EAF=∠ABG,∴△AEF∽△BAG,
∴∠AEF=∠BAG,
∵∠BAG+∠EAO=90°,∴∠AEF+∠EAO=90°,
∴∠AOE=90°,∴EF⊥AG.
25
(3)过点O作MN∥AB,交AD于点M,交BC于点N,如图 所示,则MN⊥AD,MN=AB=4, ∵P是正方形ABCD内一点,S△PAB=S△OAB, ∴点P在线段MN上,当P为MN的中点时,△PAB的周长 最小,此时PA=PB,P1 M= MN=2,
15
(3)两头凑法:将分析与综合法合并使用,比较起来,分 析法利于思考,综合法易于表达,因此,在实际思考问 题时,可合并使用,灵活处理,以利于缩短题设与结论 的距离,最后达到证明目的.
16
2.掌握构造基本图形的方法:复杂的图形都是由基本 图形组成的,因此要善于将复杂图形分解成基本图形. 在更多时候需要构造基本图形,在构造基本图形时往 往需要添加辅助线,以达到集中条件、转化问题的目 的.
32
【自主解答】如图,把△ABE逆时针旋转90°得到
△ADG,
∴BE=GD,AE=AG,
∵∠EAF=45°,ຫໍສະໝຸດ ∴∠FAG=90°-45°=45°,
∴∠EAF=∠FAG,
在△AEF和△AGF中,
33
AE AG,
E
A
F
FAG,
A F A F,
∴△AEF≌△AGF(SAS),
∴EF=GF,
即EF=GD+DF,
专题三 几何证明
1
几何证明是平面几何中的一个重要问题,它对培养 学生逻辑思维能力有着很大作用.几何证明有两种基本 类型:一是平面图形的数量关系;二是有关平面图形的 位置关系.这两类问题常常可以相互转化,如证明平行 关系可转化为证明角相等或角互补的问题.

2021年中考数学复习专题3 方程、函数思想 - 副本(教学课件)

2021年中考数学复习专题3 方程、函数思想 - 副本(教学课件)

精讲释疑
重重点点题题型型
题组训练
题 型 一 用方程思想解决实际问题
例1.欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中 一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服 装的盈利情况是( B )
A.盈利
B.亏损
C.不盈不亏
D.与售价a有关
重重点点题题型型
题组训练
【解析】列一元一次方程求出两件衣服的进价,进而求出总盈 亏.设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设 第二件衣服的进价为y元,依题意得:y(1-20%)=a,得出x(1 +20%)=y(1-20%),整理得:3x=2y,该服装店卖出这两件 服装的盈利情况为:0.2x-0.2y=0.2x-0.3x=-0.1x,即赔了 0.1x元.
重重点点题题型型
题组训练
解:(1)根据题意,得y与x的解析式为:y=22+2(x-1)=2x+ 20(1≤x≤12); (2)设当天的销售利润为w元,则当1≤x≤6时,w=(1200-800)(2x +20)=800x+8000,∵800>0,∴w随x的增大而增大,∴当x =6时,w最大值=800×6+8000=12800.
重重点点题题型型
题组训练
题 型 二 用方程思想解决几何问题
例 3.(温州一模)如图,在△ABC 中,分别以 AB,AC 为边向外 作正方形 ABED,ACGF.若点 E,A,G 在同一直线上,EG=8 2 ,
15 BC=7,则△ABC 的面积为__4__.
重重点点题题型型
题组训练
【解析】设 AB=x,AC=y,∵EG=8 2 ,BC=7,∴x2 +y2=72, 2 x+ 2 y=8 2 ,∴x+y=8,∴(x+y)2=x2+y2 +2xy=64,∴2xy=15,∴xy=125 ,∴△ABC 的面积=12 AB·AC =12 xy=145 .

中考数学专题复习课件:题型3 几何证明(共15张PPT)

中考数学专题复习课件:题型3 几何证明(共15张PPT)

5.[2017·重庆中考]在△ABM中,∠ABM=45°,AM⊥BM, 垂足为M,点C是BM延长线上一点,连接AC. (1)如图1,若AB=3 ,BC=5,求AC的长; (2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一 点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中 点,求证:∠BDF=∠CEF.
2.如图,已知BD是△ABC的角平分线,DE∥AB交BC于点E, EF∥AC交AB于点F. (1)求证:BE=AF; (2)连接DF,试探究当△ABC满足什么条件时,使得四边形 BEDF是菱形,并说明理由.
解:(1)证明:∵BD是△ABC的角平分线,∴∠ABD=∠DBC. ∵DE∥AB,∴∠ABD=∠BDE. ∴∠BDE=∠DBC.∴BE=DE. ∵EF∥AC,∴四边形ADEF是平行四边形. ∴AF=DE.∴AF=BE. (2)当AB=BC时,四边形BEDF是菱形.理由如下: ∵AB=BC,∴∠A=∠C. ∵EF∥AC,∴∠A=∠BFE,∠C=∠BEF. ∴∠BFE=∠BEF.∴BF=BE. ∵DE=BE,∴BF=DE. 又∵DE∥AB,∴四边形BEDF是平行四边形. 又∵BF=BE,∴平行四边形BEDF是菱形.
【解】证明:(1)∵四边形ABCD 是正方形, ∴AD=AB,∠BAD=90°. ∵MN⊥AF,∴∠AHM=90°. ∴∠BAF+∠MAH=∠MAH+∠AMH=90°. ∴∠BAF=∠AMH. 在△AMN和△BAF中,
∠AMN=∠BAF, AM=BA, ∠MAN=∠ABF
∴△AMN≌△BAF(ASA).∴AF=MN.
∵MD⊥DE,MN为⊙O的直径, ∴∠MDE=∠MEN=90°. ∵∠NME=∠DME,∴△MDE∽△MEN.
满分技法►与三角形有关的证明,通常是通过三角形相似进行相 关运算.看到证线段之间成比例,想到三角形相似,是在此问题 当中的一个定性思维.相似三角形有以下6种基本图形(如下图所 示).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【思考】图2中的四边形ABDE是平行四边形吗?请说明理由. 【发现】当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求 AF的长. 活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度 (0≤α≤90),连接OB,OE(如图4).
【探究】当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.
2
∴OF=OA-AF=21 - x,
2
在Rt△OFE中, ∵OF2+EF2=OE2,
∴(2- x1)2+32= 1(x+4)2,解得:x= ,9
2
4
4
∴AF= 9 cm.
4
【探究】BD=2OF,
理由:如图2,延长OF交AE于点H,
∵四边形ABDE为矩形,
∴∠OAB=∠OBA=∠ODE
=∠OED,
OA=OB=OE=OD,
2
∴S菱形DCEB=BC·DO=318 .
考点四 与图形变换有关的探究题 【示范题4】(2020·嘉兴中考)在一次数学研究性学习中,小兵将两个全等的直 角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中 ∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动. 活动一:将图1中的纸片DEF沿AC方向平移,连接AE,BD(如图2),当点F与点C重合 时停止平移.
【解析】(1)如图2,连接AM, 由已知得△ABD≌△ACE, ∴AD=AE,AB=AC,∠BAD=∠CAE, ∵MD=ME, ∴∠MAD=∠MAE, ∴∠MAD-∠BAD=∠MAE-∠CAE, 即∠BAM=∠CAM, 在△ABM和△ACM中,
AB AC BAM CAM AM AM,
∴△ABM≌△ACM(SAS),
∴∠OBD=∠ODB,∠OAE=∠OEA, ∵∠ABD+∠BDE+∠DEA+∠EAB=360°, ∴∠ABD+∠BAE=180°, ∴AE∥BD,∴∠OHE=∠ODB, ∵EF平分∠OEH,∴∠OEF=∠HEF, ∵∠EFO=∠EFH=90°,EF=EF, ∴△EFO≌△EFH(ASA),∴EO=EH,FO=FH,
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变, 求出四边形PQED的面积; ②当线段BP的长为何值时,以点P,Q,R为顶点的三角形与△BOC相似?
【自主解答】(1)四边形ABCE是菱形. 证明:∵△ECD是△ABC沿BC方向平移得到的, ∴EC∥AB,EC=AB. ∴四边形ABCE是平行四边形. 又∵AB=BC,∴四边形ABCE是菱形. (2)①四边形PQED的面积不发生变化,理由如下: 由菱形的对称性知,△PBO≌△QEO, ∴S△PBO=S△QEO.
考点二 相似三角形的判定与性质 【示范题2】(2020·贵港港南区一模)如图1,在△ABC中,AB=BC=5,AC=6.△ECD 是△ABC沿CB方向平移得到的,连接AE,AC和BE相交于点O. (1)判断四边形ABCE是怎样的四边形,并证明你的结论; (2)如图2,P是线段BC上一动点(不与点B,C重合),连接PO并延长交线段AE于点 Q,QR⊥BD,垂足为点R.
【自主解答】(1)∵AB⊥OM于B,DE⊥ON于E,
∴∠ABO=∠DEA=90°.
在Rt△ABO与Rt△DEA中,

AO AD OB AE,
∴Rt△ABO≌Rt△DEA(HL),
∴∠AOB=∠DAE.
∴AD∥BC.
又∵AB⊥OM,DC⊥OM, ∴AB∥DC. ∴四边形ABCD是平行四边形, ∵∠ABC=90°, ∴四边形ABCD是矩形.
(3)MB=MC还成立.
如图4,延长BM交CE于F,
∵CE∥BD,
∴∠MDB=∠MEF,∠MBD=∠MFE,
又∵M是DE的中点,
∴MD=ME,
在△MDB和△MEF中,MMDBDB
MEF MFE
MD ME,
∴△MDB≌△MEF(AAS), ∴MB=MF, ∵∠ACE=90°, ∴∠BCF=90°, ∴MB=MC.
【跟踪训练】 (2020·昆明盘龙区一模)如图,在Rt△ABC和Rt△ADE中,∠C=∠E=90°, ∠CAD=∠EAB,AC=AE,AB,DE相交于点F,AD,BC相交于点G. (1)求证:△ABC≌△ADE; (2)若AB=11,AG=6,求DG的长.
【解析】(1)∵∠CAD=∠EAB, ∴∠CAD+∠BAD=∠EAB+∠DAB, 即∠CAB=∠EAD. 又AC=AE,∠C=∠E=90°, ∴△ABC≌△ADE(ASA). (2)∵△ABC≌△ADE, ∴AB=AD. ∵AB=11,∴AD=11. 又AG=6,∴DG=11-6=5.
(2)由(1)知Rt△ABO≌Rt△DEA, ∴AB=DE=3, 设AD=x,则OA=x, AE=OE-OA=9-x. 在Rt△DEA中,由AE2+DE2=AD2, 得:(9-x)2+32=x2, 解得x=5. ∴AD=5.即AB,AD的长分别为3和5.
【跟踪训练】 (2020·北京二模)如图,在Rt△ABC中,∠ACB=90°,D为AB中点,O为BC中点,连接 DO并延长到点E,使OE=OD,连接BE,CE. (1)求证:四边形DCEB为菱形; (2)若AC=6,∠DCB=30°,求四边形DCEB的面积.
∵△ECD是由△ABC平移得到的,
∴ED∥AC,ED=AC=6.
又∵BE⊥AC,∴BE⊥ED,BD=5+5=10,BE10=2 62 =8,
∴S四边形PQED=S△QEO+S四边形POED=S△PBO+S四边形POED
=S△BED=12
×BE×ED=1
2
×8×6=24.
②如图,当点P在BC上运动,使以点P,Q,R为顶点的三角形与△COB相似. ∵∠2是△OBP的外角, ∴∠2>∠3. ∴∠2不与∠3对应. ∴∠2与∠1对应.即∠2=∠1,∴OP=OC=3. 过O作OG⊥BC于G,则G为PC的中点.可证△OGC∽△BOC.∴CG∶CO=CO∶BC. 即CG∶3=3∶5.
AC 7 FG
【解析】(1)∵∠AED=∠B,∠DAE=∠CAB, ∴△AED∽△ABC, ∴∠ADF=∠C, 又∵ AD= DF ,
AC CG
∴△ADF∽△ACG.
(2)∵△ADF∽△ACG,
AD= AF , AC AG AD 3, AC 7
AF =3, AG 7
AF=3. FG 4
考点三 特殊平行四边形的判定与性质 【示范题3】(2020·常州新北区一模)如图,点A在∠MON的边ON上,AB⊥OM于 B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C. (1)求证:四边形ABCD是矩形; (2)若DE=3,OE=9,求AB,AD的长.
专题三 几 何 证 明
几何证明与计算,主要考查的知识点有三角形的全等、相似的判定与性 质,四边形的判定与性质,圆的切线的判定与性质,综合性较强、解决此类问 题的关键是准确把握三角形全等、相似的判定方法及性质,四边形的判定方 法及性质,掌握不同知识间的综合应用.
考点一 全等三角形的判定与性质 【示范题1】 (2020·防城港模拟)如图,在△ABC中,AB=AC,点D,E分别在AC及其延长线上,点 B,F分别在AE两侧,连接CF,已知AD=EC,BC=DF,BC∥DF. (1)求证:△ABC≌△EFD; (2)若CE=CF,FC平分∠DFE,求∠A的度数.
∴∠EHO=∠EOH=∠OBD=∠ODB, ∴△EOH≌△OBD(AAS),∴BD=OH=2OF.
【跟踪训练】 1.(2020·百色模拟)如图,将两个全等的直角三角形△ABD,△ACE拼在一起(图 1).△ABD不动,
(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB,MC(图2),证 明:MB=MC; (2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB,MC(图3), 判断并直接写出MB,MC的数量关系; (3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB,MC的数量 关系还成立吗?说明理由.
∴MB=MC.
(2)MB=MC. 理由如下:如图3,延长DB,AE相交于E′,延长EC交AD于F, ∴BD=BE′,CE=CF, ∵M是ED的中点,B是DE′的中点, ∴MB∥AE′, ∴∠MBC=∠CAE, 同理:MC∥AD,
∴∠BCM=∠BAD, ∵∠BAD=∠CAE,∴∠MBC=∠BCM, ∴MB=MC.
【解析】(1)∵O是BC边中点, ∴OC=OB, 又∵OE=OD, ∴四边形DCEB是平行四边形. ∵在Rt△ABC中,∠ACB=90°,D为AB中点, ∴CD=BD, ∴四边形DCEB为菱形.
(2)∵CD=BD,∠DCB=30°, ∴∠ABC=∠DCB=30°, ∵在Rt△ABC中,∠ACB=90°,AC=6,∠ABC=30°, ∴AB=12,BC=63 . ∵D为AB中点,O是BC中点, ∴DO=1 AC=3,
2.(2020·深圳中考)背景:一次小组合作探究课上,小明将两个正方形按如图所 示的位置摆放(点E,A,D在同一条直线上),发现BE=DG且BE⊥DG. 小组讨论后,提出了下列三个问题,请你帮助解答: (1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请 给出证明;若不能,请说明理由;
∴CG= 9 .∴PB=BC-PC=BC-2CG
5
ห้องสมุดไป่ตู้
=5-2×
9 5
=
.7
5
【跟踪训练】 (2020·来宾模拟)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,线段AG 分别交线段DE,BC于点F,G,且 AD DF.
AC CG
(1)求证:△ADF∽△ACG; (2)若 AD 3,求 AF 的值.
相关文档
最新文档