专题复习 函数图象中的行程问题

合集下载

中考复习-一次函数实际应用

中考复习-一次函数实际应用

中考复习专题三一次函数图象的实际应用类型一行程问题命题角度❶单人行程问题(2019·吉林省实验模拟)从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少 5 km,下坡的速度比在平路上的速度每小时多5 km,设小明出发x h后,到达离乙地y km的地方,图中的折线ABCDEF表示y 与x之间的函数关系.(1)小明骑车在平路上的速度为________km/h,他在乙地休息了________h;(2)分别求线段AB,EF所对应的函数关系式;(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85 h,求丙地与甲地之间的路程.【分析】(1)分别计算出小明骑车上坡的速度,小明在平路上的速度,小明下坡的速度,小明在平路上所用的时间,小明下坡所用的时间,即可解答;(2)根据上坡的速度为10 km/h,下坡的速度为20 km/h,所以线段AB所对应的函数关系式为y=6.5-10x,线段EF所对应的函数关系式为y=4.5+20(x-0.9),即可解答;(3)设小明出发a小时第一次经过丙地,根据题意得到6.5-10a=20(a+0.85)-13.5,求出a的值,即可解答.【自主解答】1.快递员张师傅从快递公司出发骑电动车匀速前往幸福家园小区投送快递,到达小区后将快递投放到快递专柜,然后原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,张师傅距离快递公司的路程y(千米)与从公司出发所用时间x(小时)的函数图象如图所示,根据图象回答问题:(1)合理解释线段AB表示的实际意义________;(2)图中a=______,直线BC的函数解析式为______;(3)出发x小时,快递员距离快递公司10千米,求x的值.命题角度❷双人行程问题(2019·松原模拟)“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:a=________;b=________;m=________;(2)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100米,此时小军骑行的时间为______分钟.【分析】(1)根据题意和函数图象中的数据可以求得a,b,m的值;(2)根据题意可以列出相应的方程,从而可以解答本题;(3)根据题意可以列出相应的方程,从而可以求得t的值.【自主解答】2.(2019·白山一模)周末,甲、乙两名大学生骑自行车去距学校6 000米的净月潭公园,两人同时从学校出发,以a米/分的速度匀速行驶,出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙,甲追上乙后,两人以相同的速度前往净月潭,乙骑自行车的速度始终不变,设甲,乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.(1)求a,b的值;(2)求甲追上乙时,距学校的路程;(3)当两人相距500米时,直接写出t的值是______.3.(2019·白山二模)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟,发现忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与姐姐出发时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮骑共享单车返回家所用的时间是______分钟,他骑共享单车从家到图书馆所用的时间为________分钟;(2)求小亮骑共享单车从家出发去图书馆时,距家的路程y(米)与姐姐出发时间x(分钟)之间的函数关系式;(3)当小亮追上姐姐时,他距图书馆的路程是____米.类型二 注水问题(2019·吉林名校模拟)游泳池换水清洗的整个过程为“排水——清洗——注水”.一个长方体的游泳池在一次换水清洗的过程中,排水速度是注水速度的2倍,清洗的时间为50 min ,这次换水清洗过程中游泳池水量y(m 3)与时间x(min)之间的函数图象如图所示.(1)这次换水清洗的过程中排水的速度为______m 3/min ;(2)求“注水”过程中y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)在该游泳池换水清洗的整个过程中,当池水的水位高度恰好是注满水的池中水位高度的13时,直接写出x 的值.【分析】(1)分析图象可得;(2)根据图象及排水速度是注水速度的2倍求解即可;(3)分两种情况讨论.【自主解答】4.(2019·长春模拟)某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.每日从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y(立方米)与时间x(小时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.类型三 费用与工程问题(2019·长春模拟)甲、乙两车间同时开始加工一批零件,加工一段时间后,甲车间的设备出现故障停产维修设备,乙车间继续加工,甲车间维修好设备后提高了工作效率,每小时比出现故障前多加工10个零件,从开始加工到加工完这批零件乙车间的工作效率不变且工作10小时.甲、乙两车间加工这批零件的总数量y(个)与加工时间x(时)之间的函数图象如图所示.(1)甲车间每小时加工零件________个;(2)求甲车间维修完设备后,y 与x 之间的函数关系式;(3)求加工完这批零件总数量的23时所用的时间.【分析】(1)根据“工作效率=工作总量÷工作时间”即可求出甲车间每小时加工零件的个数;(2)根据待定系数法即可得到甲车间维修完设备后,y 与x 之间的函数关系式;(3)先求出零件总数量的23,再根据(2)中的函数关系式,即可得解. 【自主解答】5.(2019·德惠模拟)某快递公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的一次函数解析式;(2)如果A,B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?6.(2019·吉林二模)假期小颖决定到游泳馆游泳.游泳馆门票有两种:A种是每天购票进馆,没有优惠;B种是每月先购买贵宾卡,持贵宾卡购票每张可减少8元.设小颖游泳x次,y1(元)是按A种购票方案的费用,y2(元)是按B种购票方案的费用.根据图中信息解答问题:(1)按A种方案购票,每张门票价格为________元;(2)按B种方案购票,求y2与x的函数解析式;(3)如果小颖假期30天,每天都到游泳馆游泳一次,通过计算她选择哪种购票方案比较合算.参考答案类型一【例1】 (1)15 0.1(2)由题意可知,上坡的速度为10 km/h ,下坡的速度为20 km/h , ∴线段AB 所对应的函数关系式为y =6.5-10x ,即y =-10x +6.5(0≤x≤0.2).线段EF 所对应的函数关系式为y =4.5+20(x -0.9),即y =20x -13.5(0.9≤x≤1).(3)由题意可知,小明第一次经过丙地在AB 段,第二次经过丙地在EF 段. 设小明出发a 小时第一次经过丙地,则小明出发后(a +0.85)小时第二次经过丙地,∴6.5-10a =20(a +0.85)-13.5,解得a =0.1,∴0.1×10=1(千米).答:丙地与甲地之间的路程为1千米.跟踪训练1.解:(1)张师傅到达小区后将快递投放到快递专柜(2)3 y =-30x +90(3)分为两种情况:当出发至离公司10千米时,t =10÷20=0.5(h),当回公司至离公司10千米时,10=-30x +90,解得x =83. 【例2】 (1)10 15 200(2)设小军第二次与爸爸相遇时距图书馆的距离为S 米.根据题意得3 000-S 120=15+3 000-S -1 500200, 解得S =750.答:小军第二次与爸爸相遇时距图书馆的距离是750米.(3)704,20或1456跟踪训练2.解:(1)由题意a =9004.5=200,b =6 000200=30, ∴a=200,b =30.(2)9001.5×200+4.5=7.5. 设t 分钟甲追上乙,由题意300(t -7.5)=200t ,解得t =22.5,22.5×200=4 500(米),∴甲追上乙时,距学校的路程为4 500米.(3)5.5分或17.5分两人相距500米时的时间为t 分钟.由题意得1.5×200(t-4.5)+200(t -4.5)=500,解得t =5.5(分);300(t -7.5)+500=200t ,解得t =17.5(分).3.解:(1)2 20(2)∵小亮骑车从家到图书馆用了20分钟,∴点C 对应的时间为30-20=10,即C(10,0).设y =kx +b ,过C(10,0),E(30,3 000),∴⎩⎪⎨⎪⎧10k +b =0,30k +b =3 000,解得⎩⎪⎨⎪⎧k =150,b =-1 500,∴y=150x -1 500(10≤x≤30).(3)2 250类型二【例3】 (1)20(2)1 500÷(20÷2)=150(min),由图可知,150+(75+50)=275(min),∴A(125,0),B(275,1 500).设y =kx +b ,∴⎩⎪⎨⎪⎧125k +b =0,275k +b =1 500,∴⎩⎪⎨⎪⎧k =10,b =-1 250,∴y=10x -1 250(125≤x≤275).(3)50或175.跟踪训练4.解:(1)由图象可知,4点到8点进水20立方米,∴每小时进水量为5立方米.(2)当8≤x≤12时,由图象知,线段过点(8,25)和(12,35).设函数解析式为y =kx +b ,代入(8,25),(12,35)得⎩⎪⎨⎪⎧8k +b =25,12k +b =35,解得⎩⎪⎨⎪⎧k =52,b =5,∴当8≤x≤12时,y 与x 的函数关系式为y =52x +5. (3)9.2≤x≤16.8.类型三【例4】 (1)60(2)(150+10)×(10-4)+540=1 500.设y =kx +b, 把(4,540),(10,1 500)代入得⎩⎪⎨⎪⎧4k +b =540,10k +b =1 500,解得⎩⎪⎨⎪⎧k =160,b =-100,∴y=160x -100.(4<x ≤10)(3)根据题意得1 500×23=1 000, ∴160x-100=1 000,解得x =558. 跟踪训练5.解:(1)设y B 关于x 的函数解析式为y B =kx +b(k≠0).将点(1,0),(3,180)代入得⎩⎪⎨⎪⎧k +b =0,3k +b =180, 解得⎩⎪⎨⎪⎧k =90,b =-90.∴y B 关于x 的函数解析式为y B =90x -90(1≤x≤6).(2)设y A关于x的解析式为y A=k1x.根据题意得3k1=180,解得k1=60.∴y A=60x.当x=5时,y A=60×5=300(千克),x=6时,y B=90×6-90=450(千克),450-300=150(千克).答:如果A,B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.6.解:(1)35(2)设y2=27x+b,将点(10,470)代入得b=200,即y2与x的函数解析式为y2=27x+200.(3)A种费用为30×35=1 050(元),B种费用为27×30+200=1 010(元).答:选择B种购票方案比较合算.。

专练二 图像中的行程问题(解析版)-2022年中考数学双减改革重点题型专练

专练二 图像中的行程问题(解析版)-2022年中考数学双减改革重点题型专练

2022年中考数学改革重点题型专练(重庆专用)专练二、图像中的行程问题1.东东和爸爸一起出去运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,东东继续前行,5分钟后也原路返回,两人恰好同时到家.东东和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论中错误的是()A.两人前行过程中的速度为180米/分B.m的值是15,n的值是2700C.爸爸返回时的速度为90米/分D.运动18分钟或31分钟时,两人相距810米【解答】解:由图可得,两人前行过程中的速度为3600÷20=200(米/分),故选项A不合题意;m的值是20﹣5=15,n的值是180×15=2700,故选项B不合题意;爸爸返回时的速度为:2700÷(45﹣15)=90(米/分),故选项C不合题意;东东开始返回时与爸爸相距:3600﹣2700+90×5=1350(米),运动18分钟时两人相距:180×(18﹣15)+90×(18﹣15)=810(米),东东返回时的速度为:3600÷(45﹣20)=150(米/分),则运动31分钟时,两人相距:1350﹣(150﹣90)×(30﹣20)=750(米),故选项D 符合题意,故选:D.2.某天,小南和小开两兄弟一起从家出发到某景区旅游,开始大家一起乘坐时速为50千米的旅游大巴,出发2小时后,小南有急事需回家,于是立即下车换乘出租车,一个小时后返回家中,办事用了30分钟后自己驾车沿同一路线以返回时的速度赶往景区,结果小南比小开早30分钟到达景区(三车的速度近似匀速,上下车的时间忽略不计,两地之间为直线路程),两人离家的距离y(千米)与出发时间x(小时)的关系如图所示,则以下说法错误的是()A.出租车的速度为100千米/小时B.小南追上小开时距离家300千米C.小南到达景区时共用时7.5个小时D.家距离景区共400千米【解答】解:由题意可得,出租车的速度为:50×2=100(千米/小时),故选项A正确,不符合题意;设小开乘坐大巴行驶a小时时,小南追上小开,50a=100(a﹣3﹣),解得a=7,则南追上小开时距离家50×7=350(千米),故选项B错误,符合题意;设小开乘坐大巴行驶b小时时,到达景区,则50b=100(b﹣3﹣﹣),解得b=8,故小南到达景区时共用时8﹣=7.5(小时),故选项C正确,不符合题意;家距离景区共50×8=400(千米),故选项D正确,不符合题意;故选:B.3.A、B两地相距350 km,甲骑摩托车从A地匀速驶向B地.当甲行驶1小时途径C地时,一辆货车刚好从C地出发匀速驶向B地,当货车到达B地后立即掉头以原速匀速驶向A 地.如图表示两车与B地的距离y(km)和甲出发的时间x(h)的函数关系.则下列说法错误的是()A.甲行驶的速度为80 km/hB.货车返回途中与甲相遇后又经过甲到B地C.甲行驶2.7小时时货车到达B地D.甲行驶到B地需要【解答】解:由图象可得,甲行驶的速度为:(350﹣270)÷1=80÷1=80(km/h),故选项A正确,不符合题意;货车返回途中与甲相遇后又经过350÷80﹣4=h甲到达B地,故选项B正确,不符合题意;货车的速度为:[270+(350﹣80×4)]÷(4﹣1)=100(km/h),货车从C地到B地用的时间为:270÷100=2.7(h),则甲行驶1+2.7=3.7小时时货车到达B地,故选项C错误,符合题意;甲行驶到B地需要350÷80=(h),故选项D正确,不符合题意;故选:C.4.一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条笔直的公路分别从甲、乙两地同时出发,匀速行驶.两车离乙地的距离y(单位:km)和两车行驶时间x(单位:h)之间的关系如图所示.下列说法错误的是()A.两车出发2h时相遇B.甲、乙两地之间的距离是360kmC.货车的速度是80km/hD.3h时,两车之间的距离是160km【解答】解:由图象可得,两车出发2h时相遇,故选项A正确,不符合题意;甲、乙两地之间的距离是360km,故选项B正确,不符合题意;货车的速度是(360﹣200)÷2=160÷2=80(km/h),故选项C正确,不符合题意;轿车的速度为:200÷2=100(km/h),则3h时,两车之间的距离是(100+80)×(3﹣2)=180×1=180km,故选项D错误,符合题意;故选:D.5.我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B 追赶(图1).图2中l1,l2分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系,下列说法错误的是()A.快艇的速度比可疑船只的速度快0.3海里/分B.5分钟时快艇和可疑船只的距离为3.5海里C.若可疑船只一直匀速行驶,则它从海岸出发0.5小时后,快艇才出发追赶D.当快艇出发分钟后追上可疑船只,此时离海岸海里【解答】解:从图2中不难看出,L1表示快艇B是从海岸开始去追击可疑船只A的;根据一次函数图象在本题中的意义,可得A的速度为:(7﹣5)÷10=0.2(海里/分钟),B的速度为:5÷10=0.5(海里/分钟),∴快艇的速度比可疑船只的速度快0.3海里/分,故选项A不合题意;5分钟时快艇和可疑船只的距离为:5+5×0.2﹣5×0.5=3.5(海里),故选项B不合题意;5÷0.2=25(分钟)=(小时),故若可疑船只一直匀速行驶,则它从海岸出发小时后,快艇才出发追赶,故选项C符合题意;当快艇出发分钟后追上可疑船只,此时离海岸:5+0.2×=(海里),故选项D 不合题意;故选:C.6.初三学生小博匀速骑车从家前往体有馆打羽毛球.已知小博家离体育馆路程为5000米,小博出发5分钟后,爸爸发现小博的电话手表落在家里,无法联系,于是爸爸匀速骑车去追赶小博,当爸爸追赶上小博把手表交给小博后,爸爸立即返回家,小博以原速继续向体育馆前行(假定爸爸给手表和掉头的时间忽略不计),在整个骑行过程中,小博和爸爸均保持各自的速度匀速骑行,小博、爸爸两人之间的距离y(米)与小博出发的时间x (分钟)之间的关系如图所示,对于以下说法错误的是()A.小博的速度为180米/分B.爸爸的速度为270米/分C.点C的坐标是(25,4000)D.当爸爸出发的时间为分钟或分钟时,爸爸与小博相距800米【解答】解:小博出发5分钟后行驶900米,∴小博的速度为900÷5=180米/分,故选项A正确;爸爸匀速骑车去追赶小博,15分钟时追上小博,设爸爸匀速骑车速度为x米/分,∴15×180=10x,解得:x=270米/分,∴故选项B正确;点C表示爸爸返回家中两者间的距离,爸爸追上小博用10分钟,(假定爸爸给手表和掉头的时间忽略不计),返回时仍然用10分钟到家,此时小博行驶15+10=25分,∴行驶距离为25×180=4500米,∴点C(25,500),故选项C不正确,爸爸出发时间为t分钟时,两者之间距离为800米,∴(5+t)180﹣270t=800或(180+270)×((t﹣10)=800,解得:t=分钟或t=分钟,当爸爸出发的时间为分钟或分钟时,爸爸与小博相距800米,故选项D正确.故选:C.7.甲、乙两人分别从笔直道路上的A、B两地出发相向匀速而行,已知甲比乙先出发6分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x(分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟,乙的速度是80米/分钟;②甲出发30分钟时,两人在C地相遇;③乙到达A地时,甲与A地相距450米,其中正确的说法有()A.0个B.1个C.2个D.3个【解答】解:由图象可知,A、B两地相距3720米,甲的速度为(3720﹣3360)÷6=60(米/分钟),乙的速度为(3360﹣1260)÷(21﹣6)﹣60=80(米/分钟),故①说法正确;甲、乙相遇的时间为6+3360÷(60+80)=30(分钟),故②说法正确;A、C两地之间的距离为60×30=1800(米),乙到达A地时,甲与A地相距的路程为1800﹣1800÷80×60=450(米).故③说法正确.即正确的说法有3个.故选:D.8.甲、乙两人分别从笔直道路上的A、B两地出发相向匀速而行,已知甲比乙先出发5分钟,两人在C地相遇,相遇后甲立即按原速原路返回A地,乙继续向A地前行,约定先到A地者停止运动就地休息.若甲、乙两人相距的路程y(米)与甲行走的时间x(分钟)之间的关系如图所示,有下列说法:①甲的速度是60米/分钟;②乙的速度是90米/分钟;③甲出发18分钟时,两人在C地相遇;④乙到达A地时,甲与A地相距460米,其中正确的说法有()A.①②B.①②③C.①②④D.①②③④【解答】解:由题意可得,甲的速度为:(3000﹣2700)÷5=60(米/分),故①正确,乙的速度为:(2700﹣1200)÷(15﹣5)﹣60=90(米/分),故②正确,甲、乙相遇时乙出发的时间为:2700÷(60+90)=18(分钟),此时甲出发:5+15=23)分钟,故③错误,乙到达A地时,甲与A地相距的路程是:[(3000﹣90×18)÷60﹣(3000﹣90×18)÷90]×60=460(米),故④正确,故选:C.9.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系.根据图象提供的信息,下列说法正确的是()①甲乙两地的距离为450千米;②轿车的速度为90千米/小时;③货车的速度为60千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.①②B.①③C.①②③D.①②③④【解答】解:由图象可知,甲乙两地的距离为450千米,故①说法正确;设轿车和货车的速度分别为V1千米/小时,V2千米/小时.根据题意得3V1+3V2=450.3V1﹣3V2=90.解得:V1=90,V2=60,故轿车和货车速度分别为90千米/小时,60千米/小时;故②③说法正确;轿车到达乙地的时间为450÷90=5(小时),此时两车间的距离为(90+60)×(5﹣3)=300(千米),故点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.故④说法正确.所以说法正确的是①②③④.故选:D.10.甲、乙两地高速铁路建设成功.试运行期间,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发.设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y与x之间的函数关系.根据图象分析出以下信息:①甲、乙两地相距1000千米;②动车从甲地到乙地共需要4个小时;③表示的实际意义是动车的速度;④普通列车的速度是千米/小时;⑤动车到达乙地停留2小时后返回甲地,在普通列车出发后7.5小时和动车再次相遇.以上信息正确的是()A.①②④B.①③④⑤C.①②④⑤D.②③⑤【解答】解:由图象可得,AB两地相距1000千米,故①正确;由出发4小时后两车的距离增加速度不变并比原来的增加速度变小即可得出动车从甲地到乙地共需要4个小时,故②正确;表示的实际意义是动车与普通列车的速度和,故③错误;普通列车的速度是(千米/小时),故④正确;设动车的速度为x千米/小时,根据题意,得:3x+3×=1000,解得:x=250,动车的速度为250千米/小时,设动车与普通列车再次相遇时普通列车出发了t小时,根据题意得,250(t﹣6)=t,解得t=9,即动车到达乙地停留2小时后返回甲地,在普通列车出发后9小时和动车再次相遇.故⑤错误.综上所述,正确的有:①②④.故选:A.11.为增强师生体质,提高师生的运动积极性,某校举办了“缤纷越野跑”比赛,三百多名师生积极参与比赛.越野跑全程2.5千米,小陈同学与刘老师同时出发,刘老师全程保持匀速运动,小陈跑了一段时间后,因体力不支,以200米/分的速度跑了一段,最后以原速冲刺与刘老师同时到达.小陈和刘老师距终点的距离y(单位:米)与运动时间x(单位:分)之间的函数关系如图所示,下列说法错误的是()A.刘老师的速度为250米/分B.小陈的冲刺速度为5米/秒C.刘老师追上小陈花了7.5分钟D.第9分钟时刘老师与小陈相距50米【解答】解:由图象可得,刘老师的速度为2500÷10=250(米/分),故选项A正确,不符合题意;小陈的冲刺速度为:[2500﹣200×(9﹣4)]÷(10﹣9+4)=300(米/分),∵300÷60=5,∴300米/秒=5米/秒,故选项B正确,不符合题意;设刘老师追上小陈花了a分钟,300×4+200(a﹣4)=250a,得a=8,故选项C错误,符合题意;第9分钟时刘老师与小陈相距:250×9﹣[300×4+200×(9﹣4)]=50(米),故选项D 正确,不符合题意;故选:C.12.某客运公司的特快巴士与普通巴士同时从甲地出发,以各自的速度匀速向乙地行驶,普通巴士到达乙地后停止行驶,特快巴士到达乙地后,停留30分钟,然后按原路以另一速度匀速返回甲地,已知两辆巴士分别距乙地的路程y(千米)与行驶时间x(小时)之间的图象如图所示,则下列说法错误的是()A.普通巴士的速度是60km/hB.特快巴士返回甲地时的速度为80km/hC.行驶过程中,特快巴士与普通巴士的相遇时间为4小时D.普通巴士到达乙地时,特快巴士与甲地之间的距离为185千米【解答】解:由图象可得,普通巴士的速度是:(300﹣120)÷3=60(km/h),故选项A不符合题意;特快巴士返回甲地时的速度为:300÷(7﹣3﹣)=80(km/h),故选项B不符合题意;设行驶过程中,特快巴士与普通巴士的相遇时间为a小时,60a+80(a﹣3﹣)=300,解得a=4,故选项C不符合题意;普通巴士到达乙地时用的时间为:300÷60=5(小时),∴普通巴士到达乙地时,特快巴士与甲地之间的距离为:80×(7﹣5)=180(千米),故选项D符合题意;故选:D.13.在同一条笔直的道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线表示甲、乙两车之间的距离y(千米)与乙从B出发后的时间x(小时)之间函数关系的图象,下列说法正确的是()A.甲的速度为85千米/时B.乙的速度为65千米/时C.当x=1.3时,甲乙两车相距42千米D.甲车整个行驶过程用时为1.75小时【解答】解:由图象可得,乙的速度为:(100﹣70)÷0.5=60(千米/时),故选项B错误,不符合题意;则甲的速度为:70÷(1﹣0.5)﹣60=80(k千米/时),故选项A错误,不符合题意;当x=1.3时,甲乙两车相距:(80+60)×(1.3﹣1)=42(千米),故选项C正确,符合题意;甲车整个行驶过程用时为:100÷80=1.25(小时),故选项D错误,不符合题意;故选:C.二.填空题(共2小题)14.甲车从A地匀速驶往相距330km的B地,当甲车行驶0.5小时经过途中的C地时,乙车恰好从C地出发以另一速度匀速驶往B地,当乙车到达B地后立即掉头以原来的速度匀速驶往A地(甲车到达B地,乙车到达A地后分别停止运动).行驶过程中两车的距离y(km)与甲车从出发所用的时间x(h)之间的函数关系如图所示,则甲车到达B地时,乙车距A地180km.【解答】解:由图象可得,甲车的速度为:30÷0.5=60(km/h),乙车的速度为:[300+(330﹣60×4.5)]÷(4.5﹣0.5)=90(km/h),甲车从A地到B地用的时间为:330÷60=5.5(小时),则甲车到达B地时,乙车距A地的路程是:330﹣(330﹣60×4.5)﹣90×(5.5﹣4.5)=180(km),故答案为:180.15.春节期间,月月和妈妈从家出发到电影院观看热映电影《你好,李焕英》.妈妈先出发,2分钟后月月沿同一路线出发去追妈妈,当月月追上妈妈时发现手机落在途中了,妈妈立即返回找手机,月月继续前往电影院,当月月到达电影院时,妈妈刚好找到了手机并立即前往电影院(妈妈找手机的时间忽略不计),月月在电影院等了一会儿,没有等到妈妈,就沿同一路线返回接妈妈,最终与妈妈会合,月月和妈妈的速度始终不变,如图是月月和妈妈两人之间的距离y(米)与妈妈出发的时间x(分)的图象,则月月开始返回时,妈妈离家的距离为575米.【解答】解:妈妈的速度为:100÷2=50(米/分),月月的速度为:[100+50(12﹣2)]÷(12﹣2)=60(米/分),相遇时行走的路程为:12×50=600(米),观察图象在x=18时,月月和妈妈的相距最大,可知是月月到达电影院所经历的时间,所以家到电影院的距离为:60×(18﹣2)=960(米),由(18﹣12=6分钟)可知妈妈返回找到手机行走路程为:6×50=300(米),此时设月月在电影院等妈妈的时间为t分钟,由图象知月月与妈妈会合所用时间为27﹣18=9分钟,可建立方程如下:60×(9﹣t)+50×9=960﹣(600﹣300),解得t=5.5(分钟),∴月月开始返回时,妈妈离家的距离为:50×(18+5.5﹣6×2)=575(米).故答案为:575.。

初中数学结合函数图象解决“行程问题”学法指导学法指导

初中数学结合函数图象解决“行程问题”学法指导学法指导

点拨:从图上分析可知,甲、乙相距12米,甲速度快,经过了8秒,
甲追赶上了乙,两个人相遇。就可以得到:8秒甲比乙多走了12米,即
每秒多走1.5米。
正确答案选C。
例3 图中的图象(折线ABCDE)描述了一辆汽车在某一直线上的行
驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的
函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120
期数
内容标题 结合函数图象解决“行程问题”
分类索引 G.622.46 号
分类索引描述 辅导与自 学
主题词 结合函数图象解决“行程问题”
栏目 学法 名称 指导
供稿老师
审稿 老师
录入 韩荟 一校
二校
审核
千米;②汽车在行驶途中停了0.5小时;③汽车在这个行驶过程中的平
均速度为千米/小时;④汽车自出发后3~4.5小时之间行驶的速度在逐渐
减少。其中正确的说法有( )
A. 1个
B. 2个
C. 3个
D. 4

点拨:从图象看出,汽车往返于120千米的两地,去时停留了0.5小 时,共用了3个小时,回来用了1.5小时,所以汽车一共行驶了240千 米;汽车在行驶途中停了0.5小时;汽车在这个行驶过程中的平均速度 为(千米/小时);车自出发后3~4.5小时之间行驶的平均速度为(千 米/小时)。故选A。
一点。
例1 已知:如图1,A、B两地相距4千米,上午8:00,甲从A地出
发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的
距离(千米)与所用的时间(分)之间的关系如图所示。由图中的信息
可知,乙到达A地的时间为( )
A. 8:30
B. 8:35

专题复习--函数图象中的行程问题

专题复习--函数图象中的行程问题

函数图象中的行程问题图象信息题是指由图象(表)来获取信息.从而达到解题目的的题型,这类问题来源广泛,形式灵活,突出对考生收集、整理和加工信息能力的考查.而将普通的行程问题以图像的方式呈现无疑更是中考试题的亮点。

解此类题的关键是“识图”和“用图”,一般步骤是:(1)观察图象,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系;(3)选择适当的数学工具,通过建模解决问题。

下面以中考试题为例加以分类剖析。

一.相遇问题例1.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶.甲车先到达B 地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离y (千米)与乙车行驶时间x (小时)之间的函数图象.(1)请将图中的( )内填上正确的值,并直接写出甲车从A 到B 的行驶速度;(2)求从甲车返回到与乙车相遇过程中y 与x 之间的函数关系式,并写出自变量x 的取值范围.(3)求出甲车返回时行驶速度及A 、B 两地的距离.解:(1)( )内填60,甲车从A 到B 的行驶速度:100千米/时(2)设y kx b =+,把(4,60)、(4.4,0)代入上式得: 604044k b k b =+⎧⎨=+⎩. 解得:150600k b =-⎧⎨=⎩ 150660y x ∴=-+ 自变量x 的取值范围是:4≤x ≤4.4(3)设甲车返回行驶速度为v 千米/时,有0.4(60)60v ⨯+=得90(/)v =千米时A B 、两地的距离是:3100300⨯=(千米)评析:细心、耐心的读题、审题是解题的前提。

本题中的行程过程分三个阶段,分别对应了三段函数图像,因此理解图像中每一条线段以及每个折点的实际意义成了解题的关键。

如:点(3,120)的含义是乙车出发3小时后两车相距120千米,而此时乙车行驶了180km ,甲车行驶了300km 。

从知识点上讲,此题主要考查了二元一次方程组、一次函数、、图像交点等内容,其中第(2)小题便是函数解析式与图像、方程的综合,第(3)小题对思维能力要求较高,关键仍是对图像要有足够的理解,需要学生有相当的读图能力。

中考专题-路程-时间 函数图像的应用-含答案

中考专题-路程-时间 函数图像的应用-含答案

题型六 “路程—时间”函数图象的实际应用 1. 在一条笔直的公路上有A 、B 两地,甲、乙两人同时出发,甲骑自行车从A 地到B 地,中途出现故障后停车修理,修好车后以原速继续行驶到B 地;乙骑电动车从B 地到A 地,到达A 地后立即按原路原速返回,结果两人同时到B 地.如图是甲、乙两人与A 地的距离y (km)与行驶时间x (h )之间的函数图象.当甲距离B 地还有5 km 时,此时乙距B 地还有________km.第1题图2. 甲、乙两人骑自行车分别从A 、B 两地同时出发,相向匀速行驶,当乙到达A 地后,继续保持原速向远离B 的方向行驶,而甲到达B 地后继续保持原速向远离A 的方向行驶,经过一段时间后,甲、乙两人分别同时到达D 、C 两地(C 、D 两地与B 地的距离相等),设两人骑行的时间为x (分),两人与B 地的距离为y (米),y 与x 之间的函数关系如图所示,则D 地与A 地之间的距离为________米.第2题图3. 甲、乙两名同学参加户外拓展活动,过程如下:甲、乙分别从直线赛道A 、B 两端同时出发,匀速相向而行.相遇时,甲将出发时在A 地抽取的任务单递给乙后继续向B 地前行,乙原地执行任务,用时14分钟,再继续向A 地前行,此时甲尚未到达B 地.当甲和乙分别到达B 地和A 地后立即以原路原速返回并交换角色,即由乙在A 地抽取任务单,与甲相遇时交给甲,由甲原地执行任务,乙继续向B 地前行.抽取和递交任务单的时间忽略不计.甲、乙两名同学之间的距离y (米)与运动时间x (分)之间的关系如图所示.已知甲的速度为60米/分,且甲的速度小于乙的速度,则甲在出发后第________分钟时开始执行任务.第3题图 4. (2019重庆三校联考一诊)甲、乙两人在同一直线道路上同起点、同方向、同时出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继针对演练续跑向终点,先到终点的人在终点休息.在跑步的整个过程中,甲、乙两人的距离y (米)与出发的时间x (秒)之间的关系如图所示,则甲到终点时,乙跑了________米.第4题图 5. (2019重庆南开中学模拟)甲、乙两车分别从A 、B 两地同时出发,以各自的速度匀速相向而行,当甲车到达B 地后,发现有重要物品需要送给乙车,于是甲车司机立即通知乙车司机(通知时间忽略不计),乙车司机接到通知后将速度降低50%继续匀速行驶,甲车司机花一定的时间准备好相关物品后,以原速的43倍匀速前去追赶乙车,当甲车追上乙车时,乙车恰好到达A 地,如图反映的是两车之间的距离y (千米)与乙车行驶时间x (小时)之间的函数关系,则甲车在B 地准备好相关物品共花了________小时.第5题图 6. (2019重庆沙坪坝区模拟)2019年重庆国际马拉松赛于3月31日在南滨公园鸣枪开跑.已知A 、B 两补给站之间的路程为1470米,志愿者甲、乙都从A 站出发支援B 站,甲先出发,且在途中停留了4分钟,甲出发6分钟后,乙才从A 站出发.在整个行走过程中,两人保持各自速度匀速行走,两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示,则乙到达B 站时,甲与B 站相距的路程是________米.第6题图7. (2019重庆八中模拟)小明和小亮分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C ,小明先到达奶茶店C ,并在C 地休息了一小时,然后按原速度前往B 地,小亮从B 地直达A 地,结果还是小明先到达目的地,下图是小明和小亮两人之间的距离y (千米)与小亮出发时间x (时)之间关系的函数图象,请问当小明到达B 地时,小亮距离A 地________千米.第7题图8. (2019重庆西南大附中月考七)甲、乙两人从A地出发去相距1800米的B地,甲出发1.5分钟后乙再出发,在中途乙追上甲,追上甲后,乙发现有东西忘带了,于是以原来1.2倍的速度返回,甲则继续以原速度前行,乙返回A地后取东西花了2分钟,取完东西后立即以返回时的速度追甲,甲到达B地以后立即返回,并与乙在途中相遇,设甲、乙两人之间的距离为y(米),甲出发的时间为x(分),y(米)与x(分)的关系如图所示,则当甲、乙两人第二次相遇时,两人距B地的距离为________米.第8题图参考答案题型六 “路程—时间”函数图象的实际应用1. 7.5 【解析】甲修车前的速度为30÷[2-(1.25-0.75)]=20 km/h ,乙的速度为30千米/时,当甲距离B 地还有5 km 时,甲还要行驶520=14小时到达B 地,此时乙距B 地14×30=7.5 km. 2. 2940 【解析】由图象得,A 、B 两地相距840米,第12分钟时,甲到达B 地,求得甲的速度为840÷12=70米/分,第7分钟时甲、乙两人相遇,可得乙的速度为(840-70×7)÷7=50米/分,由于甲、乙两人同时到达D 、C 两地,且BD =BC ,又第12分钟时乙和B 地的距离为12×50=600(米),甲从第12分钟开始,又行驶了600÷(70-50)=30(分钟),所以BD 的距离为30×70=2100(米),则D 地与A 地之间的距离为AB +BD =840+2100=2940米.3. 44 【解析】甲的速度为60米/分,设乙的速度为v 米/分,A 、B 两地距离为s 米,∵x =5时,y =980,此时两人相距980米,列方程得:5×(60+v )+980=s ①,当x =31时,甲走的路程为60×31=1860(米),图象中,x =31时,y =1180,即此时甲、乙两人相距1180米,甲已经到达B 地并返回,乙还在前往A 地.列方程得:1860-s +1180=(31-14)v ②,①②联立方程组解得:⎩⎪⎨⎪⎧v =80s =1680,设甲出发t 分钟时开始执行任务,此时甲乙第二次相遇,两人走的总路程和为3s ,列方程得:60t +80(t -14)=3×1680,解得t =44.4. 1450 【解析】由图可知,乙的速度=1500÷600=2.5米/秒.甲的速度-乙的速度=200÷400=0.5米/秒,∴甲的速度=3米/秒.当甲与乙会合后,甲跑向终点所用的时间为(1500-3×400)÷3=100秒.此时乙跑的距离为(400+200÷2.5+100)×2.5=1450米.5. 56 【解析】如解图,根据题意可知,乙车行驶2小时两车第一次相遇,乙车行驶103小时甲车到达B 地,且乙车与甲车此时相距200千米,CD 段表示甲车在B 地准备物品,DE 段表示甲车从B 地返回A 地追赶乙车.∴设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,A 、B 两地的距离为s 千米,则根据题意有2(a +b )=s ,(103-2)(a +b )=200,解得a +b =150,∴s =300,a =300103=90,b =60.设甲车在B 地准备物品用时t 小时,则根据题意得30043×90+t =10060×50%,解得t =56.第5题解图6. 90 【解析】根据图象可知,甲走完全程共用时间28.5-4=24.5分钟,全程1470米,则甲的速度为1470÷24.5=60米/分钟,甲出发6分钟后,乙出发,且甲走过18分钟后,甲乙第一次相遇,设乙行走的速度为a 米/分钟,则(18-6)a =(18-4)×60,解得a =70,则乙从甲出发开始到到达B 站共用时147070+6=27分钟,此时甲离B 站还需28.5-27=1.5分钟路程,则s =60×1.5=90米.7. 90 【解析】设小明的速度为a 千米/小时,小亮的速度为b 千米/小时,A 、B 两地之间的距离为S 千米,由图可知,小明用了2.5小时到达B 地,即2.5a =S ①,小明与小亮在2小时时相遇,此时1.5a +2b =S ②,联立①②得a =2b ,即小明的速度是小亮的2倍,由图可知,在3.5小时时,小明到达B 地,此时小明与小亮相距210千米,即1.5b +a =210,解得b =60千米/小时,a =120千米/小时,则S =300千米,当小明到达B 地时,小亮距A 地的距离为300-210=90千米.8. 336 【解析】设甲的速度为a 米/分钟,乙的速度为b 米/分钟,由题图可得7.5a =(7.5-1.5)b ,∵乙追上甲后以原来1.2倍的速度返回,∴乙返回所用时间为(7.5-1.5)b 1.2b=5分钟.结合题图可列方程(7.5+5)a =1000,解得a =80米/分钟,则b =100米/分钟,又∵乙返回A 地后取东西花了2分钟,∴此时甲共行走了(7.5+5+2)×80=1160米.∵A 、B 两地相距1800米,∴甲、乙两人第二次相遇时,两人用的时间为(1800×2-1160)÷(80+1.2×100)=12.2分钟.则两人距B 地的距离为1800-1.2×100×12.2=336米.。

函数图像应用--行程问题

函数图像应用--行程问题

函数图像应⽤--⾏程问题中考专题(第25题):⼀次函数图象应⽤------⾏程问题1.为响应环保组织提出的“低碳⽣活”的号召,李明决定不开汽车⽽改骑⾃⾏车上班.有⼀天,李明骑⾃⾏车从家⾥到⼯⼚上班,途中因⾃⾏车发⽣故障,修车耽误了⼀段时间,车修好后继续骑⾏,直⾄到达⼯⼚(假设在骑⾃⾏车过程中匀速⾏驶).李明离家的距离y (⽶)与离家时间x (分钟)的关系表⽰如下图:(1)李明从家出发到出现故障时的速度为⽶/分钟;(2)李明修车⽤时分钟;(3)求线段BC 所对应的函数关系式(不要求写出⾃变量的取值范围).y(⽶)X(分钟)(2)2.如图,l A l B 分别表⽰A 步⾏与B 骑车在同⼀路上⾏驶的路程S 与时间t 的关系。

(1)B 出发时与A 相距千⽶。

(2)⾛了⼀段路后,⾃⾏车发⽣故障,进⾏修理,所⽤的时间是⼩时。

(3)B 出发后⼩时与A 相遇。

(4)若B 的⾃⾏车不发⽣故障,保持出发时的速度前进,⼩时与A 相遇,相遇点离B 的出发点千⽶。

在图中表⽰出这个相遇点C 。

(5)求出A ⾏⾛的路程S 与时间t 的函数关系式。

(写出过程)3.⼩张骑⾃⾏车匀速从甲地到⼄地,在途中休息了⼀段时间后,仍按原速⾏驶.他距⼄地的距离与时间的关系如图中折线所⽰,⼩李骑摩托车匀速从⼄地到甲地,⽐⼩张晚出发⼀段时间,他距⼄地的距离与时间的关系如图中线段AB所⽰.(1)⼩李到达甲地后,再经过___⼩时⼩张到达⼄地;⼩张骑⾃⾏车的速度是___千⽶/⼩时. (2)⼩张出发⼏⼩时与⼩李相距15千⽶?(3)若⼩李想在⼩张休息期间与他相遇,则他出发的时间x 应在什么范围?(直接写出答案)4.张师傅驾车运荔枝到某地出售,汽车出发前油箱有油50升,⾏驶若⼲⼩时后,途中在加油站加油若⼲升,油箱中剩余油量y (升)与⾏驶时间t (⼩时)之间的关系如图所⽰.请根据图象回答下列问题:(1)汽车⾏驶⼩时后加油,中途加油升; (2)求加油前油箱剩余油量y 与⾏驶时间t 的函数关系式;(3)已知加油前、后汽车都以70千⽶/⼩时的速度匀速⾏驶,如果加油站距⽬的地210千⽶,要到达⽬的地,问油箱中的油是否够⽤?请说明理由.5.运动会前⼣,⼩明和⼩亮相约晨练跑步.⼩明⽐⼩亮早1分钟离开家门,3分钟后迎⾯遇到从家跑来的⼩亮.两⼈沿滨江路并⾏跑了2分钟后,决定进⾏长跑⽐赛,⽐赛时⼩明的速度始终是180⽶/分,⼩亮的速度始终是220⽶/分.下图是两⼈之间的距离y (⽶)与⼩明离开家的时间x (分钟)之间的函数图象,根据图象回答下列问题:⑴请直接写出⼩明和⼩亮⽐赛前的速度.⑵请在图中的( )内填上正确的值,并求两⼈⽐赛过程中y 与x 之间的函数关系式.(不⽤写⾃变量x 的取值范围)⑶若⼩亮从家出门跑了14分钟后,按原路以⽐赛时的速度返回,则再经过多少分钟两⼈相遇?y(。

2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)(提升篇)(含答案)

2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)(提升篇)(含答案)

2024学年九年级中考数学专题复习:行程问题(一次函数的综合实际应用)姓名:___________班级:___________考号:___________1.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,图中的折线表示两车之间距离()kmy与慢车行驶时间()h x之间的函数关系图象,请根据图象提供的信息回答:(1)快车的速度是______km/h.(2)求线段BC所表示的函数关系式.(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同,直接写出第二列快车出发多长时间与慢车相距200km.2.A、B两地相距60km,甲从A地去B地,乙从B地去A地,图中12,分别表示甲、乙l l两人离B地的距离y(km)与甲出发时间x(h)的函数关系图象.(1)求点A的坐标,并说明其实际意义;(2)甲出发多少时间,两人之间的距离恰好相距5km;(3)若用y3(km)表示甲、乙两人之间的距离,请在坐标系(图3)中画出y3(km)关于时间x(h)的函数关系图象,注明关键点的数据.3.快车甲和慢车乙分别从A、B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之间的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息.解答下列问题:(1)直接写出快、慢两车的速度及A、B两站间的距离;(2)求快车从B返回A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.4.甲、乙两人从相距4千米的两地同时、同向出发,乙每小时走4千米,小狗随甲一起同向出发,小狗追上乙的时候它就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑…就这样一直匀速跑下去.如图,折线A B C--,A D E--分别表示甲、小狗在行进过程中,y与甲行进时间x(h)之间的部分函数图象.离乙的路程()km(1)求AB所在直线的函数解析式;(2)小狗的速度为______km/h;求点E的坐标;(3) 小狗从出发到它折返后第一次与甲相遇的过程中,求x为何值时,它离乙的路程与离甲的路程相等?5.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发.设普通列车行驶的时间为x(小时),两车之间的距离为y(千米).图中的折线表示y与x之间的函数关系图像.求:(1)甲、乙两地相距______千米;(2)求动车和普通列车的速度;(3)求C点坐标和直线CD解析式;(4)求普通列车行驶多少小时后,两车相距1000千米.6.甲、乙两车分别从A,B两地同时出发,匀速行驶,先相向而行.途中乙车因故停留1小时,然后以原速继续向A地行驶,甲车到达B地后,立即按原路原速返回A地(甲车掉头的时间忽略不计),到达A地后停止行驶,原地休息;甲、乙两车距B地的路程y(千米)与所用时间x (时)之间的函数图象如图,请结合图象信息解答下列问题:(1)乙车的速度为千米/时,在图中的()内应填上的数是.(2)求甲车从B地返回A地的过程中,y与x的函数关系式.(3)两车出发后几小时相距120千米,请直接写出答案:时.7.甲、乙两人从A地前往B地,先到终点的人在原地休息.已知甲先出发30s后,乙才出发.在运动过程中,甲、乙两人离A地的距离分别为1y(单位:m)、2y(单位:m),都是甲出发时间x(单位:s)的函数,它们的图象如图①.设甲的速度为1v m/s,乙的速度为2v m/s.(1)12:v v=______,=a______;(2)求2y与x之间的函数表达式;(3)在图②中画出甲、乙两人之间的距离s(单位:m)与甲出发时间x(单位:s)之间的函数图象.8.小明从学校出发,匀速骑行前往距离学校2400米的图书馆,小明出发的同时,同学小阳以每分钟80米的速度从图书馆沿同一条道路步行回学校,两人距离学校的路程y(单位:米)与小明从学校出发的时间x(单位:分钟)的函数图象如图所示.(1)点C的坐标为_________;(2)求直线BC的表达式;(3)若小明在图书馆停留7分钟后沿原路按原速返回,请补全小明距离学校的路程y与x的函数图象;(4)在(3)的基础上,小明能否在返校途中追上小阳?若能,请计算此时两人与学校之间的距离;若不能,请说明理由.9.如图,已知:平面直角坐标系中,正比例函数y=kx(k≠0)的图象经过点A(﹣2,﹣2),点B是第二象限内一点,且点B的横、纵坐标分别是一元二次方程x2﹣36=0的两个根.过点B作BC⊥x轴于点C.(1)直接写出k的值和点B的坐标:k=;B(,);(2)点P从点C出发,以每秒1个单位长度的速度沿x轴向右运动,设运动时间为t,若△BPO 的面积是S,试求出S关于t的函数解析式(直接写出t的取值范围)(3)在(2)的条件下,当S=6时,以PQ为一边向直线PQ下方作正方形PQRS,求点R 的坐标.10.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶,乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.根据图像回答下列问题:(1)乙车行驶小时追上了甲车.(2)乙车的速度是;(3)m=;(4)点H的坐标是;(5)n=.11.已知矩形ABCD中,AB=4米,BC=6米,E为BC中点,动点P以2米/秒的速度从A 出发,沿着△AED的边,按照A→E→D→A顺序环行一周,设P从A出发经过x秒后,△ABP 的面积为y(平方米),求y与x间的函数关系式.12.某兴趣小组利用计算机进行电子虫运动实验.如图1,在相距100个单位长度的线段AB 上,电子虫甲从端点A出发,匀速往返于端点A、B之间,电子虫乙同时从端点B出发,设定不低于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员重点探究了甲、乙迎面相遇的情况,这里的“迎面相遇”包括面对面相遇、在端点处相遇这两种.设甲、乙第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.(1)请直接写出:当x=20时,y的值为_________;当x=40时,y的值为________;(2)兴趣小组成员发现了y与x的函数关系,并画出了部分函数图像(如图2中的线段OM,但不包括点O,因此点O用空心画出)①请直接写出:a=_______;②分别求出各部分图像对应的函数解析式,并在图2中补全函数图像,标出关键点的坐标;(2)小黄在距离学校多少米处遭遇堵车?从小黄遇到堵车到小吴追上小黄用了多少时间?(3)小吴和小黄何时相距520m?15.甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y(千米)与甲出发时间x(小时)的函数关系如图所示.(1)点A的实际意义是什么?(2)求甲、乙两人的速度;(3)求OC和BD的函数关系式;(4)求学校和博物馆之间的距离.16.甲乙两人沿相同的路线同时登山甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲距地面的高度y(米)与登山时间x(分)之间的函数关系式为:y 甲.(2)若乙提速后,乙的速度是甲登山速度的3倍,登山多长时间时,乙追上了甲?此时乙距A 地的高度为多少米?答案:21200 430v=15 6v∴=⨯30 a∴=⨯。

如何解有关行程问题的图像信息题

如何解有关行程问题的图像信息题

如何解有关行程问题的图像信息题有关行程问题的图像信息题是中考中的常见题型,解这类题型一般要考虑以下两方面:(1)正确解读图像以上几种函数图像的含义为( s 表示路程, t 表示时间)图1表示: ; 图2表示: ; 图3表示: ; 图4表示: ; 图5表示: ; 图6表示: ;(2)要学会根据图像提供的信息结合公式进行计算,同时还要善于根据图像中的数量关系列方程、不等式或者求函数解析式,有是若能利用图形的几何性质,往往能得到巧妙的解法。

例1.一辆快车和一辆慢车沿相同的路线从A 到B 地,所行使的路程与时间的函数图像如下图所示,试根据图像回答下列问题:(1)慢车比快车早出发 小时;快车追上慢车时行使了 千米;快车比慢车早 小时到达B 地。

(2)在下列3个问题中任选一个求解:①快车追上慢车需要几小时?②求两车的速度?③求A 、B 两地间的距离?例 2.下图表示一骑自行车者和一骑摩托车者沿相同的路线由甲地到乙地行使过程中的函数图像(分别为正比例函数和一次函数),两地间的距离是80千米,请根据图像回答或解决下面的问题:(1)分别求出表示骑自行车者和骑摩托车者行使过程中的函数关系式(不要求写自变量的取值范围)(2)指出在什么时间段内两车均在行使过程中,且①自行车行使在摩托车的前面;②自行车与摩托车相遇;③自行车在摩托车的后面。

例3.如图,一游泳池长90米,甲、乙两人分别在游泳池相对两边同时朝另一边游泳,图中的实线和虚线分别表示甲、乙与游泳池一边的距离随时间的变化而变化的图像,若不计转向时间,那么可以知道:(1)甲游泳的平均速度是: ; (2)乙游泳的平均速度是: ;(3)从开始到3分钟之内,他们相遇了 次。

例4.甲、乙两人(甲骑自行车,乙骑摩托车)从A 城到B 城,下图表示甲、乙两人离开A 城的路程与时间之间的函数图像。

根据图像,你能得到关于甲、乙两人旅行的哪些信息?[答题要求:①请至少提供四条信息,如,由图像可知:甲比乙早出发4小时(或乙比甲迟出发4小时);甲离开A 城的路程与时间之间的函数图像是一条折线段,说明甲作变速运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习
函数图象中的行程问题
图象信息题是指由图象(表)来获取信息.从而达到解题目的的题型,这类问题来源广泛,形式灵活,突出对考生收集、整理和加工信息能力的考查.而将普通的行程问题以图像的方式呈现无疑更是中考试题的亮点。

解此类题的关键是“识图”和“用图”,一般步骤是:
(1)观察图象,获取有效信息;(2)对已获信息进行加工、整理,理清各变量之间的关系;
(3)选择适当的数学工具,通过建模解决问题。

下面以08、09两年的中考试题为例加以分类剖析。

一.相遇问题
例1.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶.甲车先到达B 地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离y (千米)与乙车行驶时间x (小时)之间的函数图象.
(1)请将图中的( )内填上正确的值,并直接写出甲车从A 到B 的行驶速度;
(2)求从甲车返回到与乙车相遇过程中y 与x 之间的函数关系式,并写出自变量x 的取值范围.
(3)求出甲车返回时行驶速度及A 、B 两地的距离.
解:(1)( )内填60,甲车从A 到B 的行驶速度:100千米/时
(2)设y kx b =+,把(4,60)、(4.4,0)代入上式得: 604044k b k b =+⎧⎨=+⎩.
解得:150
600
k b =-⎧⎨=⎩ 150660y x ∴=-+ 自变量x 的取值范围是:4≤x ≤4.4
(3)设甲车返回行驶速度为v 千米/时,
有0.4(60)60v ⨯+=得90(/)v =千米时
A B 、两地的距离是:3100300
⨯=(千米)
评析:细心、耐心的读题、审题是解题的前提。

本题中的行程过程分三个阶段,分别对应了三段函数图像,因此理解图像中每一条线段以及每个折点的实际意义成了解题的关键。

如:点(3,120)的含义是乙车出发3小时后两车相距120千米,而此时乙车行驶了180km ,甲车行驶了300km 。

从知识点上讲,此题主要考查了二元一次方程组、一次函数、、图像交点等内容,其中第(2)小题便是函数解析式与图像、方程的综合,第(3)小题对思维能力要求较高,关键仍是对图像要有足够的理解,需要学生有相当的读图能力。

这三个问题环环相扣,层层推进,区分度较明显,既有利于考查学生思维的逻辑性和灵活性,也有利于考查学生的运算能力。

二.追及问题
例2.2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题:
(1)由于汽车发生故障,甲组在途中停留了小时;
(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?
(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图像所表示的走法是否符合约定.
略解:(1)1.9
(2) 直线EF的解析式可通过E、F两点求出为y2=80X-100
∴点C的坐标是(6,380)
再由C、D两点坐标可求出直线BD的解析式是y甲=100X -220
∵B点在直线BD上且点B的横坐标为4.9,代入y甲得B(4.9,
270)
∴甲组在排除故障时,距出发点的路程是270千米。

(3)符合约定
由图像可知:甲、乙两组第一次相遇后在B和D相距最远。

在点B处有y乙—y甲=80×4.9—100—(100×4.9—220)=22千米<25千米
在点D有y甲—y乙=100×7—220—(80×7—100)=20千米<25千米
∴按图像所表示的走法符合约定。

评析:此题是将追击问题以函数图像的方式呈现,图像中的数据较多,而且是由两条线路构成,将题目中的条件和从图像中获取的信息结合对不少学生来说是难点。

第(2)小题的关键是先求直线BD的解析式,抓住C点是BD与EF的交点,可以由EF的解析式求出C点的坐标,再利用待定系数法求BD的解析式。

第(3)小题只要求出在B、D两点处甲乙两组之间的距离是否满足不超过25千米即可。

要求学生结合具体情境体会函数的实际意义,并从不同角度深刻的体现对函数意义的考查,符合学业水平考试的要求,有利于对日常教学落实“双基”形成正确的导向。

三.航行问题
例3.甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A 港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.
(1)写出乙船在逆流中行驶的速度.
(2)求甲船在逆流中行驶的路程.
(3)求甲船到A 港的距离y 1与行驶时间x 之间的函数关系式.
(4)求救生圈落入水中时,甲船到A 港的距离.
【参考公式:船顺流航行的速度=船在静水中航行的速度+水流速度,船逆流航行的速度=船在静水中航行的速度-水流速度.】
解:(1)乙船在逆流中行驶的速度为6km/h .
(2)甲船在逆流中行驶的路程为6(2.52)3⨯-=(km).
(3)设甲船顺流的速度为a km/h ,
由图象得23(3.5 2.5)24a a -+-=. 解得a =9.
当0≤x ≤2时,19y x =.
当2≤x ≤2.5时,设116y x b =-+.
把2x =,118y =代入,得130b =.
∴1630y x =-+.
当2.5≤x ≤3.5时,设129y x b =+.
把 3.5x =,124y =代入,得27.5b =-. ∴197.5y x =-.
(4)水流速度为(96)2 1.5-÷=(km/h).
设甲船从A 港航行x 小时救生圈掉落水中.
根据题意,得9 1.5(2.5)9 2.57.5x x +-=⨯-.
解得 1.5x =. 1.5913.5⨯=.
即救生圈落水时甲船到A 港的距离为13.5 km .
评析:对甲、乙两船而言,由于在静水中的速度相同,水流速又不变,所以它们在逆流中航行的速度也相等。

搞清这个道理第(2)小题便可迎刃而解。

在解第(3)小题时,首先由题意应正确认识甲船在整个航行过程中,共经历三个阶段,对照图像,求出每个阶段对应的一次函数解析式。

解答第(4)小题需要理解甲船航行和救生圈漂流的情况,然后列出方程求出救生圈落入水中的时间,从而求出甲船到A 港的距离。

四.综合问题
例4.如图①,一条笔直的公路上有A 、B 、C 三地,B 、C 两地相距 150 千米,甲、乙两辆汽车分别从B 、C 两地同时出发,沿公路匀速相向而行,分别驶往C 、B 两地.甲、乙两车到A 地的距离1y 、2y (千米)与行驶时间 x (时)的关系如图②所示.
根据图象进行以下探究:
⑴请在图①中标出A地的位置,并作简要的文字说明;
⑵求图②中M点的坐标,并解释该点的实际意义.
⑶在图②中补全甲车的函数图象,求甲车到A地的距离
1
y与行驶时间x的函数关系式.
⑷A地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.
解:⑴A 地位置如图所示.使点A满足AB ∶AC=2∶3 。

⑵乙车的速度150÷2=75千米/时,
9075 1.2
÷=,∴M(1.2,0)
所以点M表示乙车1.2 小时到达A地.
⑶甲车的函数图象如图所示.
当01
x
≤≤时,
1
6060
y x
=-+;
当1 2.5
x
<≤时,
1
6060
y x
=-.
⑷由题意得
606015
606015
x
x
-≤


-+≤

,得
35
44
x
≤≤;
759015
759015
x
x
-+≤


-≤

,得
7
1
5
x
≤≤. ∴
5
1
4
x
≤≤
∴两车同时与指挥中心通话的时间为
51
1
44
-=小时.
评析:此题主要考查一次函数、函数图像的交点坐标和一元一次不等式组等知识。

解答第(1)问时,学生需要从图像中获取甲乙两车分别距A地60千米和90千米这一信息,进而求出AB:AC=2∶3。

第(2)问是对M点的实际意义作出解释,这需要学生具有一定的读图理解能力。

第(3)问需对甲车的行驶过程有一个全面了解,然后利用待定系数法列出二元一次方程组求出两个时间段内的解析式。

第(4)问是在第(3)问基础上的应用,关键是对“两部对讲机在15千米之内(含15千米)时能够互相通话”这一条件的理解,此小问更加深入的考查了学生对函数意义与性质的理解和运用。

以上4题将行程问题巧妙的融入一次函数图像中,很具特色。

同时对学生从函数图像中捕获信息的能力,综合运用数学知识分析、加工、提炼的能力提出了很高的要求,教师在平时教学中也应当有意识的培养学生逐步形成用函数知识认识问题和解决问题的能力,促使他们形成深入而牢固的函数思想。

相关文档
最新文档