匀强电场中的等效方法习题附答案

合集下载

高考典型例题:等效重力场

高考典型例题:等效重力场

运用等效法巧解带电粒子在匀强电场中的运动一、等效法将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法。

中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系。

具体对应如下: 等效重力场重力场、电场叠加而成的复合场 等效重力重力、电场力的合力 等效重力加速度等效重力与物体质量的比值 等效“最低点”物体自由时能处于稳定平衡状态的位置 等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置 等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二、题型归类(1)单摆类问题(振动的对称性)例1、如图2-1所示`,一条长为L 的细线上端固定在O点,下端系一个质量为m 的小球,将它置于一个很大的匀强电场中,电场强度为E,方向水平向右,已知小球在B点时平衡,细线与竖直线的夹角为α。

求:当悬线与竖直线的夹角为多大时,才能使小球由静止释放后,细线到竖直位置时,小球速度恰好为零?运动特点:小球在受重力、电场力两个恒力与不做功的细线拉力作用下的运动,对应联想:在重力场只受重力与细线拉力作用下的运动的模型:单摆模型。

等效分析:对小球在B 点时所受恒力力分析(如图2-2),将重力与电场力等效为一个恒力,将 其称为等效重力可得:αcos mgg m =',小球就做只受“重力”mg ′与绳拉力运动,可等效为单摆运动。

规律应用:如图2-3所示,根据单摆对称运动规律可得,B 点为振动的平衡位置,竖直位置对应小球速度为零是最大位移处,另一最大位移在小球释放位置,根据振动对称性即可得出,当悬线与竖直线的夹角满足αβ2=,小球从这一位置静止释放后至细线到竖直位置时,小球速度恰好为零。

等效法处理带电粒子在电场和重力场中的运动

等效法处理带电粒子在电场和重力场中的运动

度垂直时,速度最小.设F合与竖直方向夹角为θ,
则 tan θ=mEqg=43,则 θ=37°,故 F 合=sinE3q7°=54mg.
设此时的速度为 v,由于合力恰好提供小球圆周运动的向心力,
由牛顿第二定律得:5m4 g=mvR2
解得 v=
5gR 4
从A点到该点由动能定理:
-mgR(1+cos 37°)-3m4gR(13+sin 37°)=12mv2-12mv02 解得 v0=25 gR
答案
3 4h
解析 剪断细线,小球在竖直方向做自由落体运动,水平方向做加速度为a的
匀加速运动,
由Eq=ma x=12at2 h=12gt2 联立解得:x=43h
(3)现将细线剪断,带电小球落地前瞬间的动能.
答案
25 16mgh
解析 从剪断细线到落地瞬间,由动能定理得:Ek=mgh+qEx=2156mgh.
最高点
mg
重力场 竖直面内
E 最高点
最低点 重力场、电场 光滑地面上 mg=FN qE为等效重力 qE=mv2/R
E 最高点
最低点 重力场、电场 光滑地面上
题型二 用“等效法”处理带电粒子在电场和重力场中的运动能力考点 师生共研
1.等效重力法
将重力与电场力进行合成,如图3所示,则F合为等效重力场中
专题解读
1.本专题主要讲解带电粒子(带电体)在电场中运动时动力学和能量观点的综合 运用,高考常以计算题出现.
2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、 运动分析(特别是平抛运动、圆周运动等曲线运动)的方法与技巧,熟练应用 能量观点解题.
3.用到的知识:受力分析、运动分析、能量观点.
题型三 电场中的力电综合问题

求解电场强度13种方法(附例题)

求解电场强度13种方法(附例题)

求解电场强度办法分类赏析一.必会的根本办法:1.应用电场强度界说式求解例1.质量为m .电荷量为q 的质点,在静电力感化下以恒定速度v 沿圆弧从A 点活动到B 点,,其速度偏向转变的角度为θ(弧度),AB 弧长为s ,求AB 弧中点的场强E .【解析】:质点在静电力感化下做匀速圆周活动,则其所需的向心力由位于圆心处的点电荷产生电场力供给.由牛顿第二定律可得电场力F =F 向=m r v 2.由几何干系有r = θs ,所以F = m s v θ2,根据电场强度的界说有 E = q F =qs mv θ2.偏向沿半径偏向,指向由场源电荷的电性来决议.2.应用电场强度与电场差关系和等分法求解例2(2012安徽卷).如图1-1所示,在平面直角坐标系中,有偏向平行于坐标平面的匀强电场,个中坐标原点O 处的电势为0V ,点A 处的电势为6V,点B 处的电势为3V,则电场强度的大小为AA .200/V mB ./mC .100/V mD ./m(1)在匀强电场中两点间的电势差U = Ed ,d 为两点沿电场强度偏向的距离.在一些非强电场中可以经由过程取微元或等效的办法来进行求解.(2若已知匀强电场三点电势,则应用“等分法”找出等势点,画出等势面,肯定电场线,再由匀强电场的大小与电势差的关系求解.3.应用“电场叠加道理”求解例3(2010海南).如右图2, M.N 和P 是认为MN 直径的半圈弧上的三点,O 点为半圆弧的圆心,60MOP ∠=︒.电荷量相等.符号相反的两个点电荷分离置于M.N 两点,这时O 点电场强度的大小为1E ;若将N 点处的点电荷移至P则O 点的场场壮大小变成2E ,1E 与2E 之比为BA .1:2B .2:1C .2:3D .4:3二.必备的特别办法:4.应用均衡转化法求解例4.一金属球本来不带电,现沿球的直径的延伸线放置一平均带电的细杆MN ,如图3所示.金属球上感应电荷产生的电场在球内直径上a .b .c 三点的场壮大小分离为E a .E b .E c ,三者比拟( )A .E a 最大B .E b 最大C .E c 最大D .E a = E b = E c【解析】:导体处于静电均衡时,其内部的电场强度处处为零,故在球内随意率性点,感应电荷所产生的电场强度应与带电细杆MN 在该点产生的电场强度大小相等,偏向相反.平均带电细杆M N 可算作是由很多点电荷构成的.a .b .c 三点中,c 点到各个点电荷的图3 60° PN OM 图2距离比来,即细杆在c 点产生的场强最大,是以,球上感应电荷产生电场的场强c 点最大.故准确选项为C.点评:求解感应电荷产生的电场在导体内部的场强,转化为求解场电荷在导体内部的场强问题,即E感= -E 外(负号暗示偏向相反).5.应用“对称法”(又称“镜像法”)求解例5.(2013新课标I )如图4,一半径为R 的圆盘上平均散布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a. b.d 三个点,a 和b.b 和c. c 和d 间的距离均为R,在a 点处有一电荷量为q (q>O)的固定点电荷.已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)A.kB. kC. kD. k【解析】:点电荷+q 在b 点场强为E 1.薄板在b 点场强为E 2,b 点场强为零是E 1与E 2叠加引起的,且两者在此处产生的电场强度大小相等,偏向相反,大小E 1 = E 2 = 2R k q .根据对称性可知,平均薄板在d 处所形成的电场强度大小也为E 2,偏向程度向左;点电荷在d 点场强E 3 = 2)3(R kq ,偏向程度向左.根据叠加道理可知,d 点场 E d = E 2 + E 3 = 2910R kq.点评:对称法是应用带电体电荷散布具有对称性,或带电体产生的电场具有对称性的特色来求合电场强度的办法.平日有中间对图4称.轴对称等.例7 如图6所示,在一个接地平均导体球的右侧P 点距球心的距离为d ,球半径为R ..在P 点放置一个电荷量为 +q 的点电荷.试求导体球感应电荷在P 点的电场强度大小.析与解:如图6所示,感应电荷在球上散布不平均,接近P 一侧较密,关于OP 对称,是以感应电荷的等效散布点在OP 连线上一点P ′.设P ′ 距离O 为r ,导体球接地,故球心O 处电势为零.根据电势叠加道理可知,导体概况感应电荷总电荷量Q 在O 点引起的电势与点电荷q 在O点引诱起的电势之和为零,即d kq +R kQ = 0,即感应电荷量Q = q d R -.同理,Q 与q 在球面上随意率性点引起的电势叠加之后也为零,即22cos 2r Rr R kQ+-α=22cos 2d Rd R kq +-α,个中α为球面上随意率性一点与O 连线和OP 的夹角,具有随意率性性.将Q 代入上式并进行数学变换后得 d 2r 2–R 4 = (2Rrd 2– 2R 3d )cos α,因为对于随意率性α角,该式都成立,是以,r 知足的关系是r = d R 2. 根据库仑定律可知感应电荷与电荷q 间的互相感化力F = 2)(r d kqQ-=2222)(R d kdRq -.根据电场强度界说可知感应电荷在P 点所产生的电场强度E = qF =222)(R d kdRq-. 6.应用“等师法”求解图6例6.(2013安徽卷).如图5所示,xOy 平面是无穷大导体的概况,该导体充满0z <的空间,0z >的空间为真空.将电荷为q 的点电荷置于z 轴上z=h 处,则在xOy 平面上会产生感应电荷.空间随意率性一点处的电场皆是由点电荷q 和导体概况上的感应电荷配合激发的.已知静电均衡时导体内部场强处处为零,则在z 轴上2hz =处的场壮大小为(k为静电力常量) A.24q k h B.249q k h C.2329q k h D.2409q k h 【解析】:求金属板和点电荷产生的合场强,显然用如今的公式直接求解比较艰苦.可否用中学所学的常识灵巧地迁徙而解决呢?当然可以.因为xOy 平面是无穷大导体的概况,电势为0,而一对等量异号的电荷在其连线的中垂线上电势也为0,因而可以联想成图6中所示的两个等量异号电荷构成的静电场等效替代原电场.根据电场叠加道理,轻易求得2hz =点的场强,22()224039()2q h q q E k k k h h =+=,故选项D 准确. 点评:(1)等师法的本质在后果雷同的情形下,应用问题中某些类似或雷同后果进行常识迁徙的解决问题办法,往往是用较简略的身分代替较庞杂的身分.(2)本题也可以用消除法求解.仅点电荷q 在2h z =处产生的场强就是24q k h ,而合场强必定大于24q k h ,相符的选项只有D 准确.例6如图5(a )所示,距无穷大金属板正前方l 处,有正点电荷q ,金属板接地.求距金属板d 处a 点的场强E (点电荷q 与a 连线垂直于金属板). 析与解:a 点场强E 是点电荷q 与带电金属板产生的场强的矢量和.画出点电荷与平行金属板间的电场线并剖析其的疏密程度及曲折特点,会发明其外形与等量异种点电荷电场中的电场线散布类似,金属板位于连线中垂线上,其电势为零,假想金属板左侧与 +q 对称处放点电荷 -q ,其后果与+q 及金属板间的电场后果雷同.是以,在+q 左侧对称地用 –q 等效替代金属板,如图5(b )所示.所以,a 点电场强度E a = kq [22)(1)(1d l d l ++-].7应用“微元法”求解例7.(2006•甘肃).ab 是长为l 的平均带电细杆,P 1.P 2是位于ab 地点直线上的两点,地位如图7所示.ab 上电荷产生的静电场在P 1处的场壮大小为E 1,在P 2处的场壮大小为E 2.则以下说法准确的是( )A 两处的电场偏向雷同,E1>E2B 两处的电场偏向相反,E1>E2C 两处的电场偏向雷同,E1<E2D 两处的电场偏向相反,E1<E2. .【解析】: 将平均带电细杆等分为很多段,每段可看作点电荷,因图5 图6图7 (a+q da l 图5 +q - q a(b为细杆平均带电,我们取a 关于P 1的对称点a′,则a 与a′关于P 1点的电场互相抵消,全部杆对于P 1点的电场,仅仅相对于a′b 部分对于P 1的产生电场.而对于P 2,倒是全部杆都对其有感化,所以,P 2点的场壮大.设细杆带正电,根据场的叠加,这些点电荷在P 1的合场强偏向向左,在P 2的合场强偏向向右,且E 1<E 2.故选D .点评:(1)因为只学过点电荷的电场或者匀强电场,而对于杆产生的电场却没有学过,因而须要将杆算作是由若干个点构成,再进行矢量合成.(2)微元法就是将研讨对象朋分成很多渺小的单位,或从研讨对象上拔取某一“微元”加以剖析,找出每一个微元的性质与纪律,然后经由过程累积乞降的方法求出整体的性质与纪律.严厉的说,微分法是应用微积分的思惟处理物理问题的一种思惟办法 例8 如图7(a )所示,一个半径为R 的平均带电细圆环,总量为Q .求圆环在其轴线上与环心O 距离为r 处的P 产生的场强.析与解:圆环上的每一部分电荷在P 点都产生电场,全部圆环在P 所树立电场的场强等于各部分电荷所产生场强的叠加.如图7(b )在圆环上取微元Δl ,其所带电荷量Δq = R Qπ2Δl ,在P 点产生的场强:ΔE = 22R r qk +∆=)(222R r R l kQ +∆π 图7 (b ) (a )全部圆环在P 点产生的电场强度为所有微元产生的场强矢量和.根据对称性道理可,所有微元在P 点产生场强沿垂直于轴线偏向的分量互相抵消,所以全部圆环在P 点产生场中各微元产生的场强沿轴线偏向分量之和,即E P = ΣΔE cos θ= Σ2222)(2R r r R r R l kQ +⋅+∆π=322)(R r kQr +8.应用“割补法”求解例8.如图8所示,用长为L 的金属丝弯成半径为r 的圆弧,但在A.B 之间留有宽度为d 的间隙,且d 远远小于r,将电量为Q 的正电荷均为散布于金属丝上,求圆心处的电场强度.【解析】:假设将这个圆环缺口补上,并且已补缺部分的电荷密度 与原出缺口的环体上的电荷密度一样,如许就形成一个电荷平均 散布的完全带电环,环上处于统一向径两头的渺小部分所带电荷 可视为两个响应点的点电荷,它们在圆心O 处产生的电场叠加后合场强为零.根据对称性可知,带电小段,由题给前提可视为点电荷,它在圆心O 处的场强E 1,是可求的.若题中待求场强为E 2,则E 1+ E 2=0.设原缺口环所带电荷的线密度为ρ,Q ρπ=/(2r-d),则补上的那一小段金属丝带电量Q '=d ρ,在0处的场强E 1=K Q '/r 2,由E 1+ E 2=0可得:E 2=- E 1,负号暗示E 2与E 1反向,背向圆心向左.例9 如图8(a )所示,将概况平均带正电的半球,沿线分成两r图8部分,然后将这两部分移开很远的距离,设离开后的球概况仍平均带电.试比较A ′点与 A ″点电场强度的大小.析与解:如图8(b )所示,球冠上正电荷在A ′点产生的电场强度为E 1.球层面上正电荷在A ″点产生电场强度为E 2.球冠与球层两部分不规矩带电体产生的电场强度,无法用所学公式直接进行盘算或比较.于是,须要经由过程抵偿创造出一个可以应用已知纪律进行比较的前提. 在球层概况附着一个与本来完全雷同的带正电半球体,如图8(c )所示,显然由叠加道理可知,在A ″点产生电场强度E 3 > E 2.若将球冠与抵偿后的球缺构成一个完全球体,则则平均带电球体内电场强度处处为零可知,E 1与E 3大小相等,偏向相反.由此可以断定,球冠面电荷在A ′点产生的电场强度为E 1大于球层面电荷在A ″点产生电场强度E 2.9应用“极值法”求解例9.如图9所示,两带电量增色为+Q 的点电荷相距2L,MN 是两电荷连线的中垂线,求MN 上场强的最大值.【解析】:用极限剖析法可知,两电荷间的中点O 处的场强为零,在中垂线MN 处的无穷远处电场也为零,所以MN 上必有场强的最大值.最通例办法找出所求量的函数表达式,再求极值.点评:物理学中的极值问题可分为物理型和数学型两类.物理型重要根据物理概念.定理.定律求解.数学型则是在根据物理纪律列方程后,依附数学中求极值的常识求解.本题属于数学型极值法,对数(a ) (b ) (c )图8学才能请求较高,求极值时要奇妙采取数学办法才干解得. 10应用“极限法”求解例10(2012安徽卷).如图11-1所示,半径为R 的平均带电圆形平板,单位面积带电量为σ,其轴线上随意率性一点P (坐标为x )的电场强度可以由库仑定律和电场强度的叠加道理求出:221/22[1]()x E k R x πσ=-+,偏向沿x 轴.现斟酌单位面积带电量为0σ的无穷大平均带电平板,从个中央挖去一半径为r 圆板,在Q 处形成的场强为02E k πσ=.的圆版,如图11-2所示.则圆孔轴线上随意率性一点Q (坐标为x )的电场强度为A .0221/22()x k r x πσ+ B. 0221/22()r k r x πσ+ C .02x k r πσD .02r k x πσ【解析1】:由题中信息可得单位面积带电量为0σ无穷大平均带电平板,可算作是R →∞的圆板,在Q 处形成的场强为02E k πσ=.而挖去的半径为r 的圆板在Q 点形成的场强为0221/22[1]()x E k r x πσ'=-+,则带电圆板残剩部分在Q 点形成的场强为0221/22()x E E k r x πσ'-=+.准确选项:A 【解析2】:R →∞的圆板,在Q 处形成的场强为02E k πσ=.当挖去圆板r →0时,坐标x 处的场强应为02E k πσ=,将r=0代入选项,只有A 相符. 图11-1 图11-2点评:极限思维法是一种科学的思维办法,在物理学研讨中有普遍的应用.我们可以将该物理量或它的变更进程和现象外推到该区域内的极限情形(或极端值),使物理问题的本质敏捷吐露出来,再根据己知的经验事实很快得出纪律性的熟悉或准确的断定.“图像法”求解例11(2011北京理综).静电场偏向平行于x轴,其电势φ随x的散布可简化为如图12所示的折线,图中φ0和d为已知量.一个带负电的粒子在电场中以x=0为中间,沿x轴偏向做周期性活动.已知该粒子质量为m.电量为-q,其动能与电势能之和为-A(0<A<qφ0).疏忽重力.求:(1)粒子所受电场力的大小.【解析】:(1)由图可知,0与d(或-d)两点间的电势差为φ0电场强度的大小0 Edϕ=电场力的大小q F qEdϕ==点评:物理图线的斜率,其大小为k=纵轴量的变更量/横轴量的变更量.但对于不合的具体问题,k的物理意义其实不雷同.描写电荷在电场中受到的电场力F与电量q关系的F-q图像的斜率暗示电场强度,同样,电势对电场偏向位移图像的斜率也暗示场强.12.应用“类比法”求解例10 如图9(a)所示,ab是半径为 r 的圆的一条直径,该圆图12(a)图8(b)处于匀强电场中,电场强度为E .在圆周平面内,将一电荷量为 q 的带正电小球从 a 点以雷同的动能抛出,抛出偏向不合时,小球会经由圆周上不合的点.在这些点中,到达 c 点时小球的动能最大.已知 ∠cab = 30°.若不计重力和空气阻力,试求:⑴电场的偏向与弦ab 间的夹角.⑵若小球在 a 点时初速度偏向与电场偏向垂直,则小球正好落在 c 点时的动能为多大.析与解:⑴ 求解电场强度偏向问题看起来简略但有时是比较庞杂而艰苦的.本题中,在匀强电场中,仅电场力做功,不计重力,则电势能与动能之和保持不变.在两个等势面间电势差最大,则动能变更量最大.是以,小球到达 c 点时小球的动能最大,则ac 间电势最大.根据重力场类比,可知c 点为其最低点,电场偏向与等势面垂直,由“重力”竖直向下可以类比,出电场偏向沿oc 偏向,与弦ac 夹角为30°.⑵ 若小球在a 点初速度偏向与电场偏向垂直,则小球将做类平抛活动,由图9(b )可知,ad = r cos30°=23r .cd = r (1 + sin30°) = 23r .小球在初速度偏向上做匀速活动,其初速度v 0 = t ad.在电场偏向上做匀加快活动,加快度a = m qE ,cd = 21at 2. 从a 到c ,由动能定理有 qE ·cd = E k –21mv 02,联立上述方程解得小球落到c点动能为E k = 813qEr .13.分解应用力学纪律求解例13.在程度偏向的匀强电场中,有一带电微粒质量为m,电量为q,从A点以初速v0竖直向上射入电场,到达最高点B时的速度大小为2v0,如图13所示.不计空气阻力.试求该电场的场强E.【解析】:带电微粒能达到最高点,隐含微粒的重力不克不及疏忽的前提.是以,微粒在活动进程中受到竖直向下的重力mg和程度向右的电场力qE.微图13粒在程度偏向上做匀加快直线活动,在竖直偏向上做竖直上抛活动.到达最高点B点时,竖直分速度v y = 0,设所用的时光为t,应用动量定理的分量式:程度偏向上qEt = m(2v0) –0.竖直偏向上mgt = 0 – (–mv0),解得:E =2mg/q.点评:带电粒子或带电体在复合电场中的活动时,受到电场力与其他力的感化而活动,活动进程庞杂,是以解题进程中要分解剖析物体的受力状态与初始前提,然后选择响应的物理纪律进行求解.。

高考物理一轮复习带电粒子在电场中运动的综合问题考点2用等效法处理带电体在电场和重力场中的运动(含答案

高考物理一轮复习带电粒子在电场中运动的综合问题考点2用等效法处理带电体在电场和重力场中的运动(含答案

高考物理一轮总复习考点突破:考点2 用等效法处理带电体在电场和重力场中的运动(能力考点·深度研析) 1.等效重力法将重力与电场力进行合成,如图所示,则F合为等效重力场中的“重力”,g′=F合m为等效重力场中的“等效重力加速度”,F合的方向为等效“重力”的方向,即在等效重力场中的“竖直向下”方向。

2.等效最高点与等效最低点小球能自由静止的位置,即是“等效最低点”,圆周上与该点在同一直径的点为“等效最高点”。

3.举例►考向1 电场线竖直时的等效重力法(多选)如图所示,长为L的细线拴一个带电荷量为+q、质量为m的小球,重力加速度为g,球处在竖直向下的匀强电场中,电场强度为E,小球恰好能够在竖直平面内做圆周运动,则( CD )A.小球在最高点的速度大小为gLB .当小球运动到最高点时电势能最小C .小球运动到最低点时,机械能最大D .小球运动到最低点时,动能为52(mg +qE )L[解析] 小球恰好能够在竖直平面内做圆周运动,则在最高点由其所受重力和静电力的合力提供向心力,则有mg +Eq =m v 2L ,解得v =mg +EqmL ,故A 错误;小球向上运动时,静电力做负功,电势能增加,当小球运动到最高点时电势能最大,故B 错误;小球向下运动时,静电力做正功,机械能增大,运动到最低点时,小球的机械能最大,故C 正确;小球从最高点到最低点的过程中,根据动能定理得E k -12mv 2=(mg +Eq )·2L ,解得E k =52(mg +Eq )L ,故D 正确。

►考向2 电场线水平时的等效重力法如图所示,绝缘光滑轨道AB 部分是倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切。

整个装置处于场强为E 、方向水平向右的匀强电场中。

现有一个质量为m 的带正电小球,电荷量为q =3mg3E,要使小球能安全通过圆轨道,在O 点的初速度应满足什么条件?[解析] 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道的作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE2+mg2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动。

微专题-方法系列 用等效法解决带电体在匀强电场中的圆周运动问题

微专题-方法系列 用等效法解决带电体在匀强电场中的圆周运动问题

方法系列
用等效法解决带电体在匀强电场中的圆周运动问题 试题
上页
下页
典例
解析
小球在竖直平面内做圆周运动的过程中,只有等效重力做 功,动能与等效重力势能可相互转化,其总和不变.与重 力势能类比知,等效重力势能为Ep=mg′h,其中h为小球距 等效重力势能零势能点的高度. (1)设小球静止的位置B为零势能点,由于动能与等效重力势 能的总和不变,则小球位于和B点对应的同一直径上的A点 时等效重力势能最大,动能最小,速度也最小.设小球在A 点的速度为vA,此时细线的拉力为零,等效重力提供向心 力,则 v2 A mg′=m , l
用等效法解决带电体在匀强电场中的圆周运动问题 答案 试题
上页
下页
典例
解析
【典例】 在水平向右的匀强电场中,有一质量为m、带正 电的小球,用长为l的绝缘细线悬挂于O点,当小球静止时, 细线与竖直方向夹角为θ,如图所示.现给小球一个垂直于 悬线的初速度,小球恰能在竖直平面内做圆周运动,试问: (1)小球在做圆周运动的过程中, 在哪一位置速度最小?速度最小 值多大? (2)小球在B点的初速度多大?
gl cos θ 5gl cos θ
(1)A 点速度最小
(2)
方法系列
用等效法解决带电体在匀强电场中的圆周运动问题 试题
上页
下页
典例
解析
如图所示,小球受到的重力、静电力 mg 均为恒力,二力的合力为 F= . cos θ 重力场与电场的叠加场为等效重力场, F 为等效重力,小球在叠加场中的 等效重力加速度为 g′= 成 θ 角. g ,其方向斜向右下,与竖直方向 cos θ
方法系列
用等效法解决带电体在匀强电场中的圆周运动问题
上页
下页

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析

(1)求电子进入圆形区域时的速度大小和匀强电场场强 E 的大小; (2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂 直于 x 轴.求所加磁场磁感应强度 B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面 向外为磁场正方向),最后电子从 N 点处飞出,速度方向与进入磁场时的速度方向相 同.请写出磁感应强度 B0 的大小、磁场变化周期 T 各应满足的关系表达式.
【解析】 【详解】 (1)电子在电场 E1 中做初速度为零的匀加速直线运动,设加速度为 a1,到达 MN 的速度
为 v,则: 解得
a1= eE1 = eE mm
2a1
L 2
v2
v eEL m
(2)设电子射出电场 E2 时沿平行电场线方向的速度为 vy,
a2= eE2 = 2eE mm t= L v
MN 板的距离为 L.假设太空中漂浮着质量为 m,电量为 q 的带正电粒子,它们能均匀地吸 附到 AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对 粒子的影响,不考虑过边界 ACDB 的粒子再次返回.
(1)求粒子到达 O 点时速度的大小; (2)如图 2 所示,在 PQ(与 ACDB 重合且足够长)和收集板 MN 之间区域加一个匀强磁
在磁场变化的前三分之一个周期内,电子的偏转角为 60°,设电子运动的轨道半径为 r, 运动的 T0,粒子在 x 轴方向上的位移恰好等于 r1; 在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期 T′=2T0,故粒子的
偏转角度仍为 60°,电子运动的轨道半径变为 2r,粒子在 x 轴方向上的位移恰好等于 2r. 综合上述分析,则电子能到达 N 点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)

高中物理(人教版)选修1-1课后练习 1-2 电场 word版含解析

第一章电场电流二、电场课时训练2电场1.用比值法定义物理量是物理学中一种常用的方法,下面四个物理量都是用比值法定义的,其中定义式正确的是()A.加速度B.电场强度C.电场强度D.密度ρ=答案解析中是a的决定式,同理C中是电场强度E的决定式,所以符合题意的只有B项和D项. 2.如图所示的各电场中、B两点电场强度相同的是()答案解析图中A、B两点电场强度大小相等、方向不同,而B图中大小不等、方向相同.同理D图中大小不同、方向相同,只有C图所示的匀强电场中各点电场强度大小、方向均相同.3.在电场中某一点,当放入正电荷时受到的电场力方向向右,当放入负电荷时受到的电场力方向向左,下列说法正确的是()A.当放入正电荷时,该点的电场强度方向向右,当放入负电荷时,该点的电场强度方向向左B.只有在该点放入电荷时,该点才有电场强度C.该点的电场强度方向一定向右D.关于该点的电场强度,以上说法均不正确答案解析:电场是一种客观存在的物质,一旦电场确定,则电场中任何一点的电场强度的大小和方向就被确定,与放入电场中电荷所带的电性、电荷量的多少和是否在该点放入电荷无关.电场中任何一点电场强度的方向规定为正电荷在该点受力的方向,与负电荷受力的方向相反,综上所述,正确选项为C.4.下列关于电场与电场线的说法中,正确的是()A.电场是人为规定的B.电场是客观存在的特殊物质,它对放入其中的电荷有力的作用C.电场线是客观存在的一条条的线D.电场线只能描述电场的方向,不能描述电场的强弱答案5.如图所示是某电场中的电场线分布示意图,在该电场中有A、B两点,下列结论正确的是()点的电场强度比B点的大点的电场强度方向与B点的电场强度方向相同C.将同一点电荷分别放在A、B两点,点电荷所受静电力在A点比在B点大D.因为A、B两点没有电场线通过,所以电荷放在这两点不会受静电力的作用答案解析:电场线的疏密反映电场的强弱,由题图可以看出处电场线密,所以>,由知>,所以、C项正确.电场线的切线方向表示电场强度的方向,所以A、B两点电场强度方向不同,所以B项错误.电场中某点没有电场线通过不能认为没有电场,因为我们用电场线的疏密表示电场强弱,所以不能让空间充满电场线,则D项错.6.正电荷q在电场力作用下由P向Q沿直线做加速运动,而且加速度越来越大,那么可以断定,它所在的电场是下图中的()答案解析:带电体在电场中沿直线做加速运动,其电场力方向与加速度方向相同,加速度越来越大,电荷所受电场力也应越来越大,而电荷量不变,由电场力知应越来越大,即电场线应越来越密集,且沿方向,因此正确选项为D.7.氢原子核的电荷量1.6×10-19C,核外电子的电荷量1.6×10-19C,核外电子在离核0.53×10-10m处受到的电场力为8.2×10-8 N.试求氢原子核在该处产生的电场的电场强度E的大小.答案:5.1×1011解析:根据电场强度的定义式可得5.1×1011 .8.如图所示,在雷雨天气,在一不规则带电云团A附近的B点放置一个q12.0×10-8C的电荷,若测出它受到的电场力大小为4.0×10-6 N,方向如图所示,求:(1)B处电场强度的大小是多少处电场强度方向如何?(2)如果在B点换一个q2=4. 0×10-7C的电荷,则其所受电场力大小和方向如何?答案:(1)2.0×102方向与F方向相反(2)8.0×10-5N方向与F方向相反解析:(1)由定义式得2.0×102 .由电场强度方向规定为正电荷受力方向可判定B点场强方向与负电荷q1在B点受电场力F的方向相反.(2)在B点换q2后,其所受电场力F'24.0×10-7×2.0×102 8.0×10-5N,方向与题图F方向相反.。

带电粒子在匀强电场中的运动习题课(含答案)

带电粒子在匀强电场中的运动习题课1.如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,极板长L=0.1m,两板间距离d=0.4cm.有一束由相同粒子组成的带电粒子流从两板中央平行于板射入,由于重力作用,粒子能落到下板上.已知粒子质量为m=2×10-6 kg,电荷量q=1×10-8 C,电容器的电容C=10-6 F.求:(1)为使第一个粒子能落在下板中点O到紧靠边缘的B点之间,粒子入射速度v0应为多大?(2)以上述速度入射的带电粒子,最多能有多少个落到下极板上?(g取10m/s2)(1)第一个粒子在极板间做平抛运动,即水平位移:x=v0t①2. 如图所示,在O点处放置一个正电荷。

在过O点的竖直平面内的A点,自由释放一个带正电的小球,小球的质量为m、电荷量为q。

小球落下的轨迹如图中虚线所示,它与以O为圆心、R为半径的圆(图中实线表示)相交于B、C两点,O、C在同一水平线上,∠BOC = 30°,A距离OC的竖直高度为h。

若小球通过B点的速度为v求小球由A至B的过程中损失的机械能B到OC的垂直距离为R/2,AB之间的竖直距离为h-R/2AB过程使用动能定理有:W电+WG=mv^2/2W电+mg(h-R/2)=mv^2/2W电=mv^2/2 -mg(h-R/2)取B点重力势能为零,则A点机械能EA=mg(h-R/2)B点机械能为EB=mv^2/2ΔE=EA-EB=mg(h-R/2)-mv^2/2 =-W电也就是说小球从A到B过程中机械能损失为mg(h-R/2)-mv^2/2 ,而且知道电场力做的功为mv^2/2 -mg(h-R/2)沿垂直场强方向射入两平行金属板中间的匀强电场中.现增3..A电子以初速度v大两板间的电压,但仍使电子能够穿过平行板间,则电子穿越平行板所需要的时间( D)A.随电压的增大而减小B.随电压的增大而增大C.若加大两板间距离,时间将减小D.与电压及两板间距离均无关4.带电粒子垂直进入匀强电场中发生偏转时(除电场力外不计其他力的作用)(B)A.电势能增加,动能增加B.电势能减小,动能增加C.动能和电势能都不变D.上述结论都不正确5.氢的三种同位素氕、氘、氚的原子核分别为它们以相同的初动能垂直进人同一匀强电场,离开电场时,末动能最大的是( D)A.氕核B.氘核C.氚核D.一样大6. 质子和氮核从静止开始经相同电压加速后,又垂直于电场方向进入同一匀强电场,离开偏转电场时,它们横向偏移量之比和在偏转电场中运动的时间之比分别为( B)A.2:1, 根号2:1B.1:1, 1:根号2C.1:2,2:1D.1:4,1:27.a、b、c三个а粒子由同一点垂直电场方向进入偏转电场,其轨迹如图所示,其中b恰好飞出电场.由此可以肯定( ACD )A.在b飞离电场的同时,а刚好打在负极板上B.b和c同时飞离电场C.进入电场时,c的速度最大,a的速度最小D.动能的增量,c的最小,a 和b的一样大8.—个初动能为EK的带电粒子,垂直电场线方向飞人带电的平行板电容器,飞出时带电粒子动能为飞入时动能的2倍.如果使粒子的初速度为原来的2倍,那么当它飞出电容器的时刻,动能为( B)A.4EK B.4.25EKC.5EKD.8EK9.质子、氘核和氦核从静止开始经相同电压加速后,从同一点垂直进人同一匀强电场关于它们在匀强电场中的运动,下列说法中正确的是( A)A.质子、氘核和а粒子的轨迹相同B.有两条轨迹.其中质子和氘核轨迹相同C.有两条轨迹,其中氘核和а粒子轨迹相同D.三者的轨迹各不相同10.5、如图所示,绝缘细线系一带有负电的小球,小球在竖直向下的匀强电场中,做竖直面内的圆周运动,以下说法正确的是( CD)A.当小球到达最高点时,线的张力一定最小B.当小球到达最低点时,小球的速度一定最大C.当小球到达最高点时,小球的电势能一定最小D.小球在最高点机械能最大11. 真空中有一带电粒子,其质量为m,带电荷量为q,以初速度v0从A点竖直向上射入水平方向的匀强电场,如图所示.粒子在电场中到达B点时,速度方向变为水平向右,大小为2V0,则该匀强电场的场强E=______,A、B两点间电势差U AB=______答案:(1)由于在A点时受到重力和电场力的作用,合力斜向下,则做类斜抛运动到B点时竖直速度为0E=2mg/q(2)由A到B由动能定理有-mgh+qU=1/2m(2v0)^2-1/2mv0^2又由上小题可知mgh=1/2mv0^2qU=1/2m(2v0)^2解得U=2mv0^2/q12.如图所示,电子电荷量为-e,以v0的速度,沿与电场强度E垂直的方向从A点飞入匀强电场,并从另一端B沿与场强E成150°角飞出则A、B两点间的电势差为______.答案:电子受电场力F=eE,则加速度为a=F/m=eE/m,方向与场强E方法相反。

用等效法解决带电体在匀强电场中的圆周运动问题

用等效法解决带电体在匀强电场中的圆周运动问题(1)等效思维方法就是将一个复杂的物理问题,等效为一个熟知的物理模型或问题的方法。

常见的等效法有“分解”“合成”“等效类比”“等效替换”“等效变换”“等效简化”等。

带电粒子在匀强电场和重力场组成的复合场中做圆周运动的问题是一类重要而典型的题型。

对于这类问题,若采用常规方法求解,过程复杂,运算量大。

若采用“等效法”求解,则过程比较简捷。

(2)解题思路:①求出重力与电场力的合力,将这个合力视为一个“等效重力”。

②将a =F 合m视为“等效重力加速度”。

③将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解。

[典例] 在水平向右的匀强电场中,有一质量为m 、带正电的小球,用长为l 的绝缘细线悬挂于O 点,当小球静止时,细线与竖直方向夹角为θ,如图所示,现给小球一个垂直于悬线的初速度,小球恰能在竖直平面内做圆周运动,试问:(1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大?(2)小球在B 点的初速度多大?对应练习:1.如图所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切。

整个装置处于场强为E 、方向水平向右的匀强电场中。

现有一个质量为m 的小球,带正电荷量为q =3mg 3E,要使小球能安全通过圆轨道,在O 点的初速度应为多大?2.(2012·合肥质检)如图所示,在竖直平面内固定的圆形绝缘轨道的圆心为O、半径为r、内壁光滑,A、B两点分别是圆轨道的最低点和最高点。

该区间存在方向水平向右的匀强电场,一质量为m、带负电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过C点时速度最大,O、C连线与竖直方向的夹角θ=60°,重力加速度为g。

(1)求小球所受到的电场力的大小;(2)求小球在A点速度v0多大时,小球经过B点时对圆轨道的压力最小?3.如图所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高h的A处由静止开始下滑,沿轨道ABC运动并进入圆环内做圆周运动。

带电粒子在匀强电场中的运动练习题及答案

带电粒子在匀强电场中的运动练习题及答案(总7页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除七、带电粒子在匀强电场中的运动练习题一、选择题A.只适用于匀强电场中,v0=0的带电粒子被加速B.只适用于匀强电场中,粒子运动方向与场强方向平行的情况C.只适用于匀强电场中,粒子运动方向与场强方向垂直的情况D.适用于任何电场中,v0=0的带电粒子被加速2.如图1,P和Q为两平行金属板,板间电压为U,在P板附近有一电子由静止开始向Q板运动.关于电子到达Q板时的速率,下列说法正确的是 [ ]A.两板间距离越大,加速时间越长,获得的速率就越大B.两板间距离越小,加速度越大,获得的速率就越大C.与两板间距离无关,仅与加速电压U有关D.以上说法都不正确3.带电粒子以初速v0垂直电场方向进入平行金属板形成的匀强A.粒子在电场中作类似平抛的运动C.粒子飞过电场的时间,决定于极板长和粒子进入电场时的初速度D.粒子偏移距离h,可用加在两极板上的电压控制4.带电粒子垂直进入匀强电场中偏转时(除电场力外不计其它力的作用)[ ]A.电势能增加,动能增加B.电势能减小,动能增加C.电势能和动能都不变D.上述结论都不正确5.电子以初速度v0沿垂直场强方向射入两平行金属板中间的匀强电场中,现增大两板间的电压,但仍使电子能够穿过平行板间,则电子穿越平行板所需要的时间 [ ]A.随电压的增大而减小B.随电压的增大而增大C.加大两板间距离,时间将减小D.与电压及两板间距离均无关6.如图2所示,从灯丝发出的电子经加速电场加速后,进入偏转电场,若加速电压为U1,偏转电压为U2,要使电子在电场中的偏转量y增大为原来的2倍,下列方法中正确的是 [ ]B.使U2增大为原来的2倍C.使偏转板的长度增大为原来2倍7.如图3所示,A、B、C、D是某匀强电场中的4个等势面,一个质子和一个α粒子(电荷量是质子的2倍,质量是质子的4倍)同时在A等势面从静止出发,向右运动,当到达D面时,下列说法正确的是 [ ]A.电场力做功之比为1∶2B.它们的动能之比为2∶1D.它们运动的时间之比为1∶18.真空中水平放置的两金属板相距为d,两板电压是可以调节的,一个质量为m、带电量为+q的粒子,从负极板中央的小孔以速度A.使v0增大1倍B.使板间电压U减半C.使v0和U同时减半9.分别将带正电、负电和不带电的三个等质量小球,分别以相同的水平速度由P点射入水平放置的平行金属板间,已知上板带负电,下板接地.三小球分别落在图4中A、B、C三点,则 [ ]A.A带正电、B不带电、C带负电B.三小球在电场中加速度大小关系是:a A<a B<a CC.三小球在电场中运动时间相等D.三小球到达下板时的动能关系是E kC>E kB>E kA10.如5所示,带电粒子以平行极板的速度从左侧中央飞入匀强电场,恰能从右侧擦极板边缘飞出电场(重力不计),若粒子的初动能变为原来的2倍,还要使粒子保持擦极板边缘飞出,可采用的方法是 [ ]A.将极板的长度变为原来的2倍C.将两板之间的电势差变为原来的2倍D.上述方法都不行二、填空题11.如图6所示,B板电势为U,质量为m的带电粒子(重量不计)以初速v0水平射入电场.若粒子带-q电量,则粒子到达B板时速度大小为______;若粒子带+q电量,它到达B板时速度大小为______.12.电子电量为e,质量为m,以速度v0沿着电场线射入场强为E的匀强电场中,如图7所示,电子从A点入射到达B点速度为零,则AB两点的电势差为______;AB间的距离为______.13.电子垂直场强方向进入匀强电场,初速为v0,如图8所示,电子离开电场时偏离原来方向h距离.若使两极板间电压变为原来的2倍,则电子离开电场时偏离原来方向的距离为_______.14.如图9,真空中有一束电子流以一定的速度v0沿与场强垂直的方向,自O点进入匀强电场,以O点为坐标原点,x、y轴分别垂直于、平行于电场方向.若沿x轴取OA=AB=BC,分别自A、B、C作与y轴平行的线与电子流的径迹交于M、N、P,则电子流经M、N、P三点时,沿y轴方向的位移之比y1∶y2∶y3=_____;在M、N、P三点电子束的即时速度与x轴夹角的正切值之比tgθ1∶tgθ2∶tgθ3=_______;在OM、MN、NP这三段过程中,电子动能的增量之比△E k1∶△E k2∶△E k3=_______.15.如图10,两带电粒子P1、P2先后以相同的初速度v从带电的平行金属板A、B正中央O点垂直于电场线进入匀强电场,偏转后分别打在A板上的C 点和D点.已知AC=CD,P1带电量是P2的3倍,则P1、P2的质量比为___________.16.两金属板间距离为4×10-2m,所加电压为100V.现有一个具有一定速度的电子沿垂直于电场方向飞入,离开电场时,侧向位移为×10-2m,那么电子经过电场加速后的动能增量为_________eV.17.一个质量为m、电量为q的带电粒子(不计重力),以平行于电场的初速v0射入匀强电场.经过t秒时间,带电粒子具有的电势能与刚射入到电场时具有的电势能相同,则此匀强电场的场强E=_______,带电粒子在电场中所通过的路程是________.18.如图11所示,电子的电量为e,质量为m,以v0的速度沿与场强垂直的方向从A点飞入匀强电场,并从另一侧B点沿与场强方向成150°角飞出.则A、B两点间的电势差为________.三、计算题19.如图12所示,AB板间有一匀强电场,两板间距为d,所加电压为U,有一带电油滴以初速v竖直向上自M点飞入电场,到达N点时,速度方向恰好变为水平,大小等于初速v,试求:(1)油滴从M点到N点的时间.(2)MN两点间的电势差.20.如图13所示,一个半径为R的绝缘光滑半圆环,竖直放在场强为E 的匀强电场中,电场方向竖直向下.在环壁边缘处有一质量为m,带有正电荷q的小球,由静止开始下滑,求小球经过最低点时对环底的压力.带电粒子在匀强电场中的运动练习题答案一、选择题1.D 2.C 3.ACD 4.B 5.D6.ABD 7.AC 8.B 9.ABD 10.C二、填空题13.2h 14.1∶4∶9,1∶2∶3,1∶3∶515.3∶4 16.3017.2mv0/qt,v0t/2三、计算题19.v/g,Uv2/2gd20.3(mg+qE)11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理同步·选修3-1 学而不思则罔,思而不学则殆!
第 1 页
第07讲 匀强电场中的等效方法
基础知识
先求出重力与电场力的合力,将这个合力视为一个“等
效重力”,将m
F
a 合=视为“等效重力加速度”。

再将物体
在重力场中的运动规律迁移到等效重力场中分析求解即可。

解直线运动
1.如左图所示,在离坡底为L 的山坡上的C 点竖直固定一根直杆,杆高也是L 。

杆上端A 到坡底B 之间有一光滑细绳,一个带电量为q 、质量为m 的物体穿于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角
30=θ。

若物体从A 点由静止开始沿绳无摩擦的滑下,设细绳始终没有发生形变,求物体在细绳上滑行的时间。

(2/10s m g =,60.037sin =

80.037cos = )
解析 因细绳始终没有发生形变,故知在垂直绳的方向上没有压力存在,即带电小球受到的重力和电场力的合力方向沿绳的方向。

建立“等效重力场”如右图所示,“等效重力场”的“等效重
力加速度”,方向:与竖直方向的夹角
30,大小:
30cos g g ='带电小球沿绳做初速度为零,加速度为
g '的匀加速运动
30cos 2L S AB =①22
1t g S AB '=②
由①②两式解得g L t 3=
解抛类运动
2.如图所示,在电场强度为E 的水平匀强电场中,以
初速度为0v 竖直向上发射一个质量为m 、带电量为+q 的带电小球,求小球在运动过程中具有的最小速度。

解析 建立等效重力场如图所示,等效重力加速度g ',设g '与竖直方向的夹角为θ,则θ
cos g
g =' 其中2
2
arcsin )
()(mg qE qE +=
θ
则小球在“等效重力场”中做斜抛运动
θsin 0v v x =θcos 0v v y = 当小球在y 轴方向的速度减小到零, 即0=y v 时,两者的合速度即为运 动过程中的最小速度为
2
20
0min sin )()(qE mg qE
v v v v x +===θ
解圆周运动
3.如左图所示,在沿水平方向的匀强电场中有一固定点O ,用一根长度m L 40.0=的绝缘细绳把质量为kg m 10.0=、带有正电荷的金属小球悬挂在O 点,小
球静止在B 点时细绳与竖直方向的夹角为
37=θ。

现将小球拉至位置A 使细线水平后由静止释放,求: (1)小球通过最低点C 时的速度的大小;
(2)小球通在摆动过程中细线对小球的最大拉力。

(2
/10s m g =,60.037sin = ,80.037cos = )
解析 (1)建立“等效重力场”如右图所示,“等效重力
加速度”g ',方向:与竖直方向的夹角
30,大小:
g g
g 25.137
cos =
=
'
由A
、C 点分别做绳OB 的垂线,交点分别为A'、C',由动能定理得带电小球从A 点运动到C 点等效重力做
物理同步·选修3-1 学而不思则罔,思而不学则殆!
第 2 页
功22
1)sin (cos )(m C C O A O mv L g m L L g =-'=-'''θθ 代入数值得4.1≈C v m/s
(2)当带电小球摆到B 点时,绳上的拉力最大,设该时小球的速度为B v ,绳上的拉力为F ,则
2
21sin B mv L L g m =-')(θ①L
v m g m F B 2='-②
联立①②两式子得25.2=F N
4.如图,一条长为L 的细线上端固定,下端拴一个质量为m 的电荷量为q 的小球,将它置于方向水平向右的匀强电场中,使细线竖直拉直时将小球从A 点静止释放,当细线离开竖直位置偏角α=60°时,小球速度为0。

(1)求:①小球带电性质;②电场强度E 。

(2)若小球恰好完成竖直圆周运动,求从A 点释放小球时应有的初速度v A 的大小(可含根式)。

解析(1)①根据电场方向和小球受力分析可知小球带正电。

②小球由A 点释放到速度等于零,由动能定理有0=EqL sin α-mgL (1-cos α)
解得E =3mg
3q。

(2)将小球的重力和电场力的合力作为小球的等效重
力G ′,则G ′=23
3
mg ,竖直方向成30°角,偏向右下方。

若小球恰能做完整的圆周运动,在等效最高点。

m v 2L =233mg 12mv 2-12mv A 2=-233
mgL (1+cos 30°) 联立解得v A = 2gL 3+1
5.如左图所示的装置是在竖直的平面内放置光滑的绝缘轨道,一带负电荷的小球从高h 的A 处静止开始下滑,
进入水平向右的匀强电场中,沿轨道ABC 运动后进入圆环内做圆周运动,已知小球受到的电场力是其重力的
4
3
,圆环的半径为R ,小球得质量为kg m 1.0=,斜面的倾角为
45=θ,R S BC 2=,若使小球在圆环内能
做完整的圆周运动,h 至少是多少
解析 建立“等效重力场”如右所示,等效重力场加速度
g '与竖直方向的夹角为 37arctan ==mg qE
α,则等效
重力场加速度g '的大小g g g 4
5
cos ==
'α。

圆环上的D 点成为等效重力场中的最高点,要想小球在圆环内完成圆周运动,则小球通过D 点的速度的最小值为R g v '=
'①
小球由A 点运动到D 点,由动能定理得
22
1
)sin 2cot (43)cos (v m R R h mg R R h mg '=++---θθθ

代入数值,由①②两式解得
R R h 5.17)25.35.12(≈+=。

相关文档
最新文档