八年级数学下册 第4章 平行四边形 4.1 多边形的有关概念及四边形的内角和(第1课时)
4.1多边形教学设计

4.1多边形教学设计教材分析本节课是浙教版八年级下册第四章第1节的内容,主要学习多边形的概念及探索多边形内角和以及外角和定理,并会用定理解决简单的图形问题.它是继《三角形》基础上的学习内容,多边形的学习不仅可以使学生对多边形有初步的认识,还可以为后续《平行四边形》等其他几何内容的学习作好必要的知识和方法准备.因此,本节课在《平行四边形》这章中具有承上启下的地位.学情分析学生已经在八年级上册学过三角形,具备三角形有关的概念以及内角和180°,外角和360°,外角和内角的关系以及边之间的关系等知识储备。
通过平行线、三角形等几何图形的学习有一定的几何直观、几何图形研究的能力,八年级上册第一章开始,几何学习已经进入了论证几何阶段,逻辑推理和概括能力日趋成熟,参与探索能力也已具备。
设计理念美国教育家杜威提出了“在做中学”的理论,希望通过活动使学生主动探索,让学生经历数学探究发现的过程,积累数学活动的经验,这真正体现了为发展数学核心素养而教的育人理念。
《课标(2011年版)》把数学的“基本活动经验”与“基础知识”“基本技能”“基本思想”一起作为显性目标提出是数学教育研究上一个重要进展。
基于这种理念下,对教材4.1多边形两个课时进行重组,第一个课时设计为探究四边形——多边形的内角和的数学活动课,第二课时重点外角和定理,和应用内角和外角和定理解决简单的图形问题。
本节课为第一课时,设计了基于“四基”和“四能”的数学探究活动,以问题驱动学生思考、感悟,经历“猜想——验证”“发现——论证”的过程,然后上升为理性认识,让学生亲身体验“如何思考”,“如何做数学”。
让学生体会数学的研究方法,领悟数学研究的基本思路,促进学生的核心素养的发展。
教学目标1.理解多边形的定义以及相关的概念,在学生定义以及概念形成过程中,有意识渗透类比的数学思想方法。
;2.经历四边形内角和以及多边形内角和定理的探索发现过程,通过动手操作、猜想、验证、推理、归纳,从不同角度、用不同方法证明四边形内角和定理,从中找出规律推理多边形的一般方法,体会数学转化、分类、类比、数形结合等解决问题的思想方法;3.经历用三角形、四边形、五边形拼镶嵌图等实践操作,用得出的多边形内角和解释原理,学会学以致用,获取解决几何问题的方法和经验.4. 在类比、归纳、推理等数学活动中积累一定的数学活动经验,体会从特殊到一般的研究问题的方法,发展推理能力,提升学生核心素养.教学重难点教学重点:本节教学的重点是四边形内角和以及多边形内角和计算公式.教学难点:四边形内角和定理的证明思路多样,不易形成,是本节教学的难点.教学方法教法:设计基于“四基”和“四能”的数学探究活动,以问题驱动学生主动探索思考,让学生经历数学探究的过程,积累数学活动的经验,感悟数学思想方法,促进学生数学核心素养的发展。
初二数学知识点:第四章

初二数学知识点:第四章初二数学知识点:第四章聪明出于勤奋,天才在于积累。
我们要振作精神,下苦功学习。
小编准备了初二数学知识点:第四章,希望能帮助到大家。
一、四边形的相关概念1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。
2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360。
四边形的外角和定理:四边形的外角和等于360。
推论:多边形的内角和定理:n边形的内角和等于 180多边形的外角和定理:任意多边形的外角和等于360。
6、设多边形的边数为n,则多边形的对角线共有条。
从n 边形的一个顶点出发能引(n-3)条对角线,将n边形分成(n-2)个三角形。
二、平行四边形1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质(1)平行四边形的对边平行且相等。
2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。
3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长宽=ab四、菱形1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行(2)菱形的相邻的角互补,对角相等(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长高=两条对角线乘积的一半五、正方形 (3~10分)1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
北师大版八年级数学下册《多边形的内角和与外角和》平行四边形PPT(第2课时)

∴∠3+∠4=90°
∴∠4=60°
∵AE∥CF
∴∠DCF=∠4=60°.
第十四页,共二十三页。
强化训练
1. 一个多边形截去一个角后,形成的另一个多边形的内角和是1 620°,则原来多边形的边数是多 少?
解:设新形成的多边形的边数为n,则有(n-2)×180=1 620,解得n=11. 若只截去多边形的一个顶点,则新多边形会多出一个顶点,此时原多边形是十边形; 若截到两个顶点,则边数未变,此时原多边形为十一边形; 若截到三个顶点,则少了一个顶点,此时原多边形为十二边形; 综上可知,原多边形的边数可以为10或11或12.
问题1:小明沿一个五边形广场周围的小跑,按逆时针方向跑步. (1)小明每从一条街道转到下一条街道时,跑步方向改变的哪个角?在图中标出.
第七页,共二十三页。
活动探究
探究点一
问题1:小明沿一个五边形广场周围的小跑,按逆时针方向跑步. (1)小明每从一条街道转到下一条街道时,跑步方向改变的哪个角?在图中标出. (2)他每跑完一圈,身体转过的角度之和是多少?
北师大版八年级数学下册《多边形的内角和与外角和》平行四边形 PPT(第2课时)
科 目:数学
适用版本:北师大版
适用范围:【教师教学】
6.4 多边形的内角和与外角和
第2课时
八年级下册
第一页,共二十三页。
学习目标
1 理解和掌握多边形外角和定理的推导过程; 2 能进行多边形内角和、外角和定理的综合运用.
活动探究
探究点三:
问题1:已知一个多边形,它的内角和等于外角和的3倍,求这个多边形的边数和对角线的条数?
解:设这个多边形的边数为n,则
(n-2)•180°=3×360°
四边形和多边形内角和讲义

四边形,多边形的内角和重点:多边形的内角和定理和外角和定理难点:多边形内角和定理的证明;多边形内角和定理和外角和定理的灵活运用1、知识讲解1. 多边形(包括四边形)的定义:在同一平面内,不在同一直线上的一些线段首尾顺次相接组成的图形叫做多边形。
这里所说的多边形都是凸多边形,即该多边形完全处在其任何一边所在直线的同侧。
反之就称为凹多边形。
各边相等,各角也相等的多边形叫做正多边形。
2. 多边形(包括四边形)的对角线:在多边形中,连结不相邻两个顶点的线段叫做多边形的对角线。
n边形共有条对角线。
连结多边形的对角线是一种常见的辅助线3. 多边形的内角和定理:n边形的内角和为(n-2)·180°。
定理证明的基本思路是要把问题转化为三角形的内角和问题。
4. 多边形外角和定理:n边形的外角和为360°。
5. n边形的内角中最多有3个是锐角2、例题分析例1已知:四边形的四个内角度数为1:2:3:4,求各内角的度数。
解:设四个内角的度数分别为x,2x,3x,4x,根据题意得:x+2 x+3x+4 x=360°解得:x=36,∴2x=72,3x=108,4x=144答:四边形各内角度数分别为36°,72°,108°,144°例2如图:四边形ABCD中,∠B=90°,AB:BC:CD:DA=2:2:3:1,求∠BAD的度数。
解:连结AC∵AB:BC:CD:DA=2:2:3:1∴设AB=BC=2K,CD=3K,DA=K∵∠B=90°,AB=BC=2K∴AC2=AB2+BC2=8K2(勾股定理)∠BAC=∠BCA=45°(等边对等角)∵AC2+AD2=9K2,CD2=9K2∴AC2+AD2=CD2∴∠CAD=90°(勾股定理的逆定理)∴∠CAD=90°∴∠BAD=∠BAC+∠CAD=135°例3一个多边形的内角和是720°,求这个多边形的边数。
2023八年级数学下册第4章平行四边形4.1多边形(1)教案(新版)浙教版

此外,我还将引导学生将多边形的知识应用于实际问题中,使其能够运用数学建模的方法,将实际问题抽象为多边形模型,并运用多边形的性质解决问题,从而提升其数学建模的能力。总之,通过本章节的教学,我希望学生能够提升其几何直观、逻辑推理和数学建模的核心素养。
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与多边形相关的主题进行深入讨论。
小组内讨论该主题的现状、挑战以及可能的解决方案。
每组选出一名代表,准备向全班展示讨论成果。
5.课堂展示与点评(15分钟)
目标:锻炼学生的表达能力,同时加深全班对多边形的认识和理解。
过程:
各组代表依次上台展示讨论成果,包括主题的现状、挑战及解决方案。
布置课后作业:让学生撰写一篇关于多边形的短文或报告,以巩固学习效果。
学生学习效果
1.知识与技能:
-学生能够准确地定义多边形,理解多边形的概念和基本性质。
-学生能够识别和分类不同类型的多边形,并掌握它们的特征。
-学生能够运用多边形的性质解决一些实际问题,如计算多边形的面积、周长等。
2.过程与方法:
-学生能够通过观察、分析和推理,探索多边形的性质和规律。
重点难点及解决办法
本章节的重点是理解并掌握多边形的概念、性质及其分类,以及能够运用多边形的知识解决实际问题。难点主要是学生对于多边形的性质的理解和运用,以及如何将多边形的知识应用于实际问题的解决中。
为了解决这些重点难点,我将采用以下方法:
初中数学北师大八年级下册平行四边形-多边形的内角和PPT

练习 • 1、正八边形的内角为(135)度,
• 2它、为一(个六正)多边边形形。的内角都等于120度,则
思维升华
议一议: 有一张长方形纸片, 剪掉(沿直线
)一个角后,剩下的纸片是一个几边形?它 的内角和是多少度?与同伴交流.
发散思维 解决问题
一个多边形截去一个角后,形成另一 个多边形的内角和为720°,那么原多边 形的边数为( )
创设情境
第24届冬季奥运会将于2022年在北京 举行,小明想为奥运会设计一枚内角和 为2022度的多边形徽章,这个想法可行 吗?
?
探究一:完成下面的表格:
0 1 2 3
(n-3)
1
180°
2
2 × 180°
3
3 × 180°
4
4 × 180°
(n-2) (n-2) × 180°
你还有其他的方法得出 多边形的内角和吗?
认真观察
你能看出下图中的这些多边形他们的边、角有什么特点吗?
在平面内,内角都相等,边也都相等的多 边形叫做正多边形。
问题
1、一个多边形的边都相等,他的内角一定都 相等吗?举例说明
2、一个多边形的内角都相等,它的边一定都 相等吗?举例说明
探究
正多边形的每个内角都等于多少度?
180 0( n - 2) n
知识小结
1.通过本节课的学习,你学到了哪些知识? 有何体会?
2.在学习多边形的有关概念时,我们使用了 由特殊到一般的数学方法,并运用了类比、转 化的思想方法。
作 业:
155页习题6.7 1,2.3题; 探究五角星的五个角的度数之和;
发散思维 解决问题
小明在计算某个多边形的内角和时, 由于粗心他漏掉了一个内角,求得的内 角和是1680° ,请问:这是一个几边形? 漏掉的这个角是多少度?
8年级数学下 多边形与平行四边形
例3、求的度数。
例4、 己知一个凸十一边形由若干个边长为1的等边三角形和边长为1的正方形无重叠,无间隙拼成,求该凸十一边形的各内角的大小。
例5、小亮从A 点出发前进10米向右转15°,再前进10米又向右转15°……这样一直走下去,他第一次回到出发点时,一共走了_____米例6、过m 边形的一个顶点有7条对角线,n 边形没有对角线,k 边形共有k 条对角线,求(m -k )n 的值。
例7、某宾馆会议室的地面是由三种正多边形的小木块铺成的地板,设这三种正多边形的边数分别为a 、b 、c ,试求a 、b 、c 之间应满足的关系.O B E C D AF例13、已知:如图,四边形ABCD是平行四边形,且∠=∠EA D BA F。
(1)说明∆CEF是等腰三角形。
(2)∆CEF的哪两边之和等于平行四边形ABCD的周长,为什么?EA DF B C例14、如图,已知的周长为60 cm,对角线AC、BD相交于点O,△AOB的周长比△BOC的周长长8cm,求这个四边形各边长.例15、如图,如果△AOB与△AOD的周长之差为8,而AB∶AD=3∶2,那么的周长为多少?三、课堂诊断一、填空题1、在中,∠A:∠B=2:3,则∠B=,∠C=,∠D=.2. 一个凸n边形的外角中,最多有个钝角。
3. 已知凸n边形的n个内角与某一个外角之和为,则n=______.4. 一个六边形的六个内角都是连续四边的长度依次是1,3,3,2, 则这个六边形的周长是_____.5. 一个多边形有三个内角为钝角,这样的多边形边数的最大值是_______。
6、四边形ABCD中∠1、∠2、∠3、∠4分别是∠A、∠B、∠C、∠D的外角,若∠A:∠B:∠C:∠D=1:2:3:4则∠1:∠2:∠3:∠4=____7、如果一个多边形的每个内角都相等,且每个内角的度数是与它相邻的外角的度数的5倍,那么这个多边形的每个内角的度数是,它是一个_____边形。
人教版八年级四边形知识点归纳 很实用
人教版八年级四边形知识点归纳很实用八年级四边形知识点归纳一、基本定义1.四边形的内角和与外角和定理:1)四边形的内角和等于360°;2)四边形的外角和等于360°。
2.多边形的内角和与外角和定理:1)n边形的内角和等于(n-2)180°;2)任意多边形的外角和等于360°。
3.平行四边形的性质:1)两组对边分别平行;2)两组对边分别相等;3)两组对角分别相等;4)对角线互相平分;5)邻角互补。
4.平行四边形的判定:1)两组对边分别平行;2)两组对边分别相等;3)两组对角分别相等;4)一组对边平行且相等;5)对角线互相平分。
5.矩形的性质:1)具有平行四边形的所有通性;2)四个角都是直角;3)对角线相等。
6.矩形的判定:1)平行四边形加一个直角;2)三个角都是直角;3)对角线相等的平行四边形。
7.菱形的性质:1)具有平行四边形的所有通性;2)四个边都相等;3)对角线垂直且平分对角。
8.菱形的判定:1)平行四边形加一组邻边相等;2)四个边都相等;3)对角线垂直的平行四边形。
9.正方形的性质:1)具有平行四边形的所有通性;2)四个边都相等,四个角都是直角;3)对角线相等垂直且平分对角。
10.正方形的判定:1)平行四边形加一组邻边相等加一个直角;2)菱形加一个直角;3)矩形加一组邻边相等。
11.等腰梯形的性质:1)两底平行,两腰相等;2)同一底上的底角相等;3)对角线相等。
12.等腰梯形的判定:1)梯形加两腰相等。
2.四边形ABCD是等腰梯形,因为它的梯形性质和底角相等的条件都被满足了。
3.四边形ABCD是等腰梯形,因为它的梯形性质和对角线相等的条件都被满足了。
4.四边形ABCD是等腰梯形,因为它的梯形性质和对角线AC和BD相等的条件都被满足了。
14.三角形的中位线定理指出,三角形的中位线平行于第三边,且等于第三边长度的一半。
15.梯形的中位线定理指出,梯形的中位线平行于两底,且等于两底长度之和的一半。
多边形与平行四边形知识点归纳
第 部分 四边形第一单元第1课时 多边形与平行四边形二、知识梳理(一) 多边形1.多边形的概念:(1)多边形:在平面内,由若干条不在同一直线上 的线段首尾顺次相连接组成的封闭图形叫做多边形。
(2)正多边形:在平面内,各内角 都相等, 各边 也都相等的多边形叫正多边形。
各角相等的多边形不一定是正多边形,如矩形;各边相等的多边形不一定是正多边形,如菱形。
正多边形都是轴对称图形,边数为偶数的正多边形是中心对称图形。
2.多边形的内角和与外角和:(1)内角和:n 边形的内角和等于(n ─2)∙180 ;正n 边形的一个内角等于nn180)2( .(2)外角和:多边形的外角和等于360°.(注:多边形的外角和是定值,与边数无关). 3.多边形的对角线:(1)概念:在多边形中,连接 互不相邻 的两个顶点的线段叫做多边形的对角线. (2) n 边形有2)3( n n 条对角线 4.平面图形的镶嵌:(1)概念:用形状 、大小 完全相同的一种或几种 平面图形 进行拼接,彼此之间不留空隙、不重叠地铺成一片,就是平面图形的 镶嵌 . (2)镶嵌的条件:在同一顶点的几个角的和等于360°. (二) 平行四边形1.平行四边形的概念: 两组对边分别平行 的四边形是平行四边形。
2.平行四边形的性质:(1)边:平行四边形的两组对边分别 平行且相等 . (2)角:平行四边形的对角 相等 ,邻角 互补 。
图1图2图4 (3)对角线:平行四边形的对角线 互相平分 。
(4)平行四边形对称性:平行四边形是中心对称图形,其对称中心是 对角线交点 ;经过对称中心的任意一条直线将平行四边形面积平分. 3.平行四边形的判定方法:(1)边:①两组对边分别 平行 的四边形是平行四边形(平行四边形的概念);②一组对边 平行且相等 的四边形是开行四边形; ③两组对边分别 相等 的四边形是平行四边形.(2)角:两组对角分别 相等 的四边形是平行四边形. (3)对角线:对角线 互相平分 的四边形是平行四边形. 4.平行四边形面积:平行四边形面积=底×高.三、课堂训练考查目标:多边形的内角和与外角和 1.已知一个多边形的内角和是外角和的23,则这个多边形的边数是 5 . [举一反三]一个多边形的内角和是720°,则这个多有的边数为 6 . [举一反三]矩形的外角和等于 360° 考查目标:正多边形的概念2.一个正多边形的每一个外角都是40°,这个多边形的边数是 9 .[举一反三]一个正多边形的一个内角是144°,它是一个 10 边形. 考查目标:平面图形的镶嵌3.下列多边形中,不能单独铺满地面的是( C ) (A )正三角形 (B )正方形 (C )正五边形 (D )正六边形[举一反三]现有四种地砖,它们的形状分别为正三角形、正方形、正六边形、正八边形,且它们的边长都相等,同时选择其中两种地砖密铺地面.选择的方式有( B ) (A )2种 (B )3种 (C )4种 (D )5种 考查目标:平行四边形的性质4.如图1.在□ABCD 中,过点C 的直线CE ⊥AB .垂足为E ,若∠EAD =53°,则∠BCE 的度数为( B )(A )53° (B )37° (C )47° (D )123°[举一反三] 如图2.在□ABCD 中,对角线AC 、BD 相交于点O ,且AB ≠AD ,则下列式子不正确的是( A )(A )AC ⊥BD (B )AB =CD (C )BO =OD (D )∠BAD =∠BCD5.如图3.在□ABCD 中,AC 平分∠DAB ,AB =3.则□ABCD 的周长( C ) (A )6 (B )9 (C )12 (D )15图5图5 第3题第6题第7题[举一反三]如图4在□ABCD 中,已知AB =6cm ,AD =8cm , DE 平分∠ADC 交BC 边于点E ,则BE 等于( A )(A )2cm (B )4cm (C )6cm (D )8cm 考查目标:平行四边形的判定6.不能判定一个四边形是平行四边形的条件是( B )(A )两组对边分别平行 (B )一组对边平行另一组对边相等 (C )一组对边平等且相等 (D )两组对边分别相等 [举一反三]在四边形ABCD 中,已知AB =CD ,再添加一个条件:_AD =BC (答案不唯一)______,使四边形ABCD 成为平行四边形 考查目标:平行四边形的面积 7.平行四边形花坛的底是6m ,高是4m ,则它的面积是 24cm 2[举一反三].如图5,A 、B 、C 为一个平行四边形的三个顶点, 且A 、B 、C 三点的坐标分别为(3,3)、(6,4)、(4、6).(1)请直接写出这个平行四边形的第四个顶点的坐标;(2)求此平行四边形的面积. 解:(1)第四个顶点的坐标为(7,7)或(5,1)或(1,5)(2)把⊿ABC 补成正方形,面积为9,减去三个小直角三角形 的面积可得S ⊿ABC =4,∴平行四边形的面积为8 【达标训练】1.(2013.长沙市)下列多边形中,内角和与外角和相等的是( A ) .(A )四边形 (B )五边形 (C )六边形 (D )八边形 2.(2013.梅州市)已知一个多边形的内角和小于它的外角和.则这个多边形的边数是( A ) (A )3 (B )4 (C )5 (D )63.(2013.襄阳市)如图□ABCD 的对角线相交于点O ,且AB =5, ⊿OCD 的周长为23,则□ABCD 的两条对角线的和是( C ) (A )18 (B )28 (C )36 (D )464.(2013.杭州市)在□ABCD 中,下列结论一定正确的是( B ) .(A )AC ⊥BD (B )∠A +∠B =180° (C )AB =CD (D )∠A ≠∠C5.(2011.泰州)四边形ABCD 中,对角线AC 、BD 相交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC .其中一定能判定这个四边形是平行四边形的条件有( C ) (A )1组 (B )2组 (C )3组 (D )4组6.(2013.江西省)如图. □ABCD 与□DCEF 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 25° .7.(2013.安徽省)如图.P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点.⊿PEF 、⊿PDC 、⊿P AB 的面积分别为S 、S 1、S 2.若S =2.则S 1+S 2= 8 .8.(2013.烟台市)如图.□ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BC =12,则⊿DOE 的周长为 15 .C 9.(2013.北京市)如图.在□ABCD中,F是AD的中点,延长BC到点E,使CE=12BC,连接DE、CF.(1)求证:四边形CEDF是平行四边形.(2)若AB=4,AD=6,∠B=60°.求DE的长答案:(1)证明:在□ABCD中AD∥BC,AD=BC.∵F是AD的中点,∴DF=12AD.又∵CE=12BC,∴DF=CE且DF∥CE,∴四边形CEDF为平行四边形.(2)解:过点D作DH⊥BE于H,在□ABCD,AB∥CD.∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=4.∴在Rt⊿CDH中,CH=12CD=2,DH=32.在□CEDF中,CE=DF=12AD=3,∴EH=CE-CH=3-2=1.在Rt⊿DHE中,DE=22HEDH =221)32( =13.10.(2011.常德)如图.已知四边形ABCD是平行四边形(1)求证:⊿MEF∽⊿MBA(2)若AF、BE分别是∠DAB和∠CBA的平分线,求证DF=EC.【答案】(1)证明:在□ABCD中,∵CD∥AB,∴∠MEF=∠MBA,∠MFE=∠MAB,∴⊿MEF∽⊿MBA.(2)证明:在□ABCD中,CD∥AB,∠DF A=∠F AB,又∵AF是∠DAB的平分线,∴∠DAF=∠F AB∴∠DAF=∠DF A,∴AD=DF,同理可得EC=BC,∵在□ABCD中,AD=BC,∴DF=EC.。
初二数学八下平行四边形所有知识点总结和常考题型练习题
平行四边形知识点一、四边形相关1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的外角和定理:。
推论:多边形的内角和定理:多边形的外角和定理:。
2、多边形的对角线条数的计算公式设多边形的边数为n ,则多边形的对角线条数为___________。
二、平行四边形1.定义: 2.平行四边形的性质: 平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的.(1)角:(2)边:(3)对角线:(4)面积:①_________________; ②平行四边形的对角线将四边形分成_____个面积相等的三角形.3.平行四边形的判别方法三、矩形1. 矩形定义:2. 矩形性质3. 矩形的判定:4. 矩形的面积四、菱形 1. 菱形定义:2. 菱形性质3. 菱形的判定:.4. 菱形的面积五、正方形1. 正方形定义:它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形。
2. 正方形性质3. 正方形的判定:4. 正方形的面积平行四边形练习2.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是( )A .75º B.115º C.65º D.105ºA BDO C C DB A O 12(第2题图) 第3题图 第4题图B (第7题图)3.如图3,在□ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,▱ABCD 的周长是在14,则DM 等于)是( )6.过□ABCD 对角线交点O 作直线m ,分别交直线AB 于点E ,交直线CD 于点F ,若AB=4,AE=6,则DF 的长是 .7. 如图7,□ABCD 中,∠ABC=60°,E 、F 分别在CD 、BC 的延长线上,AE∥BD,EF⊥BC ,DF=2,则EF= .8. 在□ABCD 中,AD=BD ,BE 是AD 边上的高,∠EBD=20°,则∠A 的度数为 .9. 在□ABCD 中,AB <BC ,已知∠B=30°,AB=2,将△ABC 沿AC 翻折至△AB ′C ,使点B ′落在□ABCD 所在的平面内,连接B ′D .若△AB ′D 是直角三角形,则BC 的长为.10.如图,已知:□ABCD 中,∠BCD 的平分线CE 交AD 于点E ,∠ABC 的平分线BG 交CE 于点F ,交AD 于点G .求证:AE=DG .11.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE=∠BAD ,AE ⊥AC .(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.C . 36D . 3613.如图,将矩形纸带ABCD ,沿EF 折叠后,C 、D 两点分别落在C ′、D′的位置,经测量得∠EFB=65°,第12题图 第14题图 第5题图 第13题图 第15题图A B C DEF G14.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则的16.如图,已知在梯形ABCD 中,AD ∥BC ,BC=2AD ,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作S 1、S 2、S 3、S 4,那么下列结论中,不正确的是( )A .S 1=S 3B .S 2=2S 4C .S 2=2S 1 D.S 1•S 3=S 2•S 417.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE=1,F 为AB 上一点,AF=2,P 为AC 上一点,则PF+PE 的最小值为 .18.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为 或 秒时.△ABP 和△DCE 全等.19.已知,如图,在四边形ABCD 中,AB∥CD,E ,F 为对角线AC 上两点,且AE=CF ,DF∥BE,AC平分∠BAD.求证:四边形ABCD 为菱形.20.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB ,AD=CD .对角线AC ,BD 相交于点O ,OE⊥AB,OF⊥CB,垂足分别是E ,F .求证OE=OF .21. 如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,第17题图 第16题图 第18题图然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.22. 如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.。