锁定新高考新课标文科数学一轮总复习练习4.1平面向量的概念及其线性运算(含答案详析)
高考数学一轮复习定时检测 4.1平面向量的概念及线性运算(带详细解析)文 新人教A版

高考数学一轮复习定时检测 4.1平面向量的概念及线性运算(带详细解析)文 新人教A 版一、填空题(本大题共9小题,每小题6分,共54分)1.(2010·苏州模拟)如图所示,在平行四边形ABCD 中,下列结论中正确的是________.①AB →=DC →②AD →+AB →=AC →③AB →-AD →=BD →④AD →+CB →=0解析 ①显然正确;由平行四边形法则知②正确;AB →-AD →=DB →故③不正确;④中AD →+CB →=AD →+DA →=0答案 ①②④2.(2010·徐州模拟)设四边形ABCD 中,有,AB DC 21=且|,|||BC AD =则这个四边形是 .解析 由AB 21DC =知四边形ABCD 是梯形,又|,|||BC AD =所以四边形ABCD 是等腰梯形. 答案 等腰梯形3.(2008·全国Ⅰ理)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则A D →= ____________(用b ,c 表示).解析 如图所示,在△ABC 中,A D →=AB →+BD →. 又.32,2=∴=,c b -=-=∴+=∴23BC →=c +23(b -c )=23b +13c . 答案 23b +13c4.(2010·泰州模拟)如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ、Ⅱ、Ⅲ、Ⅳ(不包括边界).若,21OP b a +=且点P 落在第Ⅲ部分,则实数a ,b 满足a ______0,b ______0(用“>”,“<”或“=”填空).解析 由于点P 落在第Ⅲ部分,且,21OP b a +=则根据实数与向量的积的定义及平行四边形法则知a >0,b <0.第四编 平面向量§4.1 平面向量的概念及线性运算答案 > <5.(2009·江苏南京二模)设OB →=xOA →+yOC →,且A 、B 、C 三点共线(该直线不过端点O ),则x +y =________.解析 ∵A 、B 、C 三点共线,∴存在一个实数λ,AB →=λAC →,即OB →-OA →=λ(OC →-OA →).OB →=(1-λ)OA →+λOC →.又∵OB →=xOA →=xOA →+yOC →,∴x +y =(1-λ)+λ=1.答案 16.(2009·广东茂名一模)在△ABC 中,已知D 是AB 边上的一点,若,2=,31λ=则λ=________. 解析 由图知+=+= 且A D →+2BD →=0.①+②×2得3CD →=CA →+2CB →,∴CD →=13CA →+23CB →,∴λ=23. 答案 237.(2009·浙江改编)设向量a ,b 满足:|a |=3,|b |=4,a ·b =0,以a ,b ,a -b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为________.解析 由|a |=3,|b |=4及a ·b =0知a ⊥b ,故a ,b ,a -b 构成直角三角形,且|a -b |=5.又其内切圆半径为.12543=-+如图所示.将内切圆向 上或向下平移可知该圆与该直角三角形最多有4个交点.答案 48.(2009·北京改编)设D 是正△P 1P 2P 3及其内部的点构成的集合,点P 0是△P 1P 2P 3的中心.若集合S ={P |P ∈D ,|PP 0|≤|PP i |,i =1,2,3},则集合S 表示的平面区域是________.解析 如图所示,AB 、CD 、EF 分别为P 0P 1、P 0P 2、P 0P 3的垂直平分线,且AB 、CD 、EF 分别交P 1P 2、P 2P 3、P 3P 1于点A 、C 、D 、E 、F 、B .若|PP 0|=|PP 1|,则点P 在线段AB 上,若|PP 0|≤|PP 1|,则点P 在梯形ABP 3P 2中.同理,若|PP 0|≤|PP 2|,则点P 在梯形CDP 3P 1中.若|PP 0|≤|PP 3|,则点P 在梯形EFP 1P 2中.综上可知,若|PP 0|≤|PP i |,i =1,2,3,则点P 在六边形ABFEDC 中.答案 六边形区域9.(2009·山东改编)设P 是△ABC 所在平面内的一点,BC →+BA →+BA →=2BP →,则PC →+P A →=________.解析 因为BC →+BA →+BA →=2BP →,所以点P 为线段AC 的中点,即PC →+P A →=0.答案 0二、解答题(本大题共3小题,共46分)10.(14分)(2010·南京调研)在△OAB 中,延长BA 到C ,使AC →=BA → ① ②在OB 上取点D ,使DB →=13OB →.DC 与OA 交于E ,设OA →=a ,OB →=b , 用a ,b 表示向量OC →,DC →.解 因为A 是BC 的中点,所以OA →=12(OB →+OC →), 即OC →=2OA →-OB →=2a -b ;DC →=OC →-OD →=OC →-23OB → =2a -b -23b =2a -53b . 11.(16分)(2010·江苏苏州调研)已知:任意四边形ABCD 中,E 、F 分别是AD 、BC 的 中点,求证:).(21DC AB EF += 证明 方法一 如图,∵E 、F 分别是AD 、BC 的中点,∴EA →+ED →=0,FB →+FC →=0, 又∵BF →+BF →+FE →+EA →=0,∴EF →=A B →+BF →+EA → ①同理EF →=ED →+DC →+CF → ②由①+②得,2EF →=AB →+DC →+(EA →+ED →)+(BF →+CF →)=AB →+DC →.).(21DC AB EF +=∴ 方法二 连结,, 则,DC ED EC +=)(21)(21+++=+=∴).(21+= 12.(16分)(2009·上海宝山模拟)已知点G 为△ABC 的重心,过点G 作直线与AB 、AC两边分别交于M 、N 两点,且,,y x ==求1x +1y的值. 解 根据题意G 为三角形的重心,AG →=13(AB →+AC →), MG →=AG →-AM →=13(AB →+AC →)-xAB →,31)31()(31,31)31(y AC AB AC y y x --=+-=-=-=+-= 由于MG 与GN 共线,根据共线向量基本定理知,存在实数λ,使得 ,λ=即⎝⎛⎭⎫13-x AB →+13AC →,31)31(⎥⎦⎤⎢⎣⎡--y λ即⎩⎨⎧ 13-x =-13λ13=λ⎝⎛⎭⎫y -13,因此13-x-13=13y -13即x +y -3xy =0两边同除以xy 整理得1x +1y =3.。
(新课改)2020版高考数学一轮复习 平面向量、复数第一节平面向量的概念及线性运算讲义(含解析)

第一节 平面向量的概念及线性运算突破点一 平面向量的有关概念[基本知识] 名称 定义备注向量 既有大小又有方向的量叫做向量;向量的大小叫做向量的长度(或称模) 平面向量是自由向量,平面向量可自由平移 零向量 长度为0的向量;其方向是任意的记作0单位向量长度等于1个单位的向量 非零向量a 的单位向量为±a |a|平行向量 方向相同或相反的非零向量,又叫做共线向量0与任一向量平行或共线 相等向量 长度相等且方向相同的向量 两向量只有相等或不等,不能比较大小 相反向量长度相等且方向相反的向量0的相反向量为0一、判断题(对的打“√”,错的打“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( ) (2)若a 与b 不相等,则a 与b 一定不可能都是零向量.( ) 答案:(1)× (2)√ 二、填空题1.如果对于任意的向量a ,均有a ∥b ,则b 为________. 答案:零向量2.若e 是a 的单位向量,则a 与e 的方向________. 解析:∵e =a|a |,∴e 与a 的方向相同. 答案:相同3.△ABC 中,点D ,E ,F 分别为BC ,CA ,AB 的中点,在以A ,B ,C ,D ,E ,F 为端点的有向线段所表示的向量中,与EF ―→共线的向量有________个.答案:7个[典例感悟]1.(2018·海淀期末)下列说法正确的是( )A .方向相同的向量叫做相等向量B .共线向量是在同一条直线上的向量C .零向量的长度等于0D .AB ―→∥CD ―→就是AB ―→所在的直线平行于CD ―→所在的直线解析:选C 长度相等且方向相同的向量叫做相等向量,故A 不正确;方向相同或相反的非零向量叫做共线向量,但共线向量不一定在同一条直线上,故B 不正确;显然C 正确;当AB ―→∥CD ―→时,AB ―→所在的直线与CD ―→所在的直线可能重合,故D 不正确.2.(2019·辽宁实验中学月考)有下列命题: ①若|a|=|b|,则a =b ;②若|AB ―→|=|DC ―→|,则四边形ABCD 是平行四边形; ③若m =n ,n =k ,则m =k ; ④若a ∥b ,b ∥c ,则a ∥c . 其中,假命题的个数是( ) A .1 B .2 C .3D .4解析:选C 对于①,|a |=|b |,a ,b 的方向不确定,则a ,b 不一定相等,所以①错误;对于②,若|AB ―→|=|DC ―→|,则AB ―→,DC ―→的方向不一定相同,所以四边形ABCD 不一定是平行四边形,②错误;对于③,若m =n ,n =k ,则m =k ,③正确;对于④,若a ∥b ,b ∥c ,则b =0时,a ∥c 不一定成立,所以④错误.综上,假命题的是①②④,共3个,故选C.3.(2019·赣州崇义中学模拟)向量AB ―→与CD ―→共线是A ,B ,C ,D 四点共线的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由A ,B ,C ,D 四点共线,得向量AB ―→与CD ―→共线,反之不成立,可能AB ∥CD ,所以向量AB ―→与CD ―→共线是A ,B ,C ,D 四点共线的必要不充分条件,故选B.[方法技巧]关于平面向量的3个易错提醒(1)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小; (2)大小与方向是向量的两个要素,分别是向量的代数特征与几何特征; (3)向量可以自由平移,任意一组平行向量都可以移到同一直线上.突破点二 平面向量的线性运算[基本知识]1.向量的线性运算 向量运算定义法则(或几何意义)运算律 加法求两个向量和的运算交换律:a +b =b +a ; 结合律: (a +b)+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算a -b =a +(-b)数乘求实数λ与向量a 的积的运算|λa|=|λ||a|,当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0λ(μ a)=(λ μ)a ;(λ+μ)a =λa +μa ;λ(a +b)=λa +λb向量b 与a(a ≠0)共线的充要条件是有且只有一个实数λ,使得b =λa. 3.向量的中线公式及三角形的重心 (1)向量的中线公式:若P 为线段AB 的中点,O 为平面内一点,则OP ―→=12(OA ―→+OB ―→).(2)三角形的重心:已知平面内不共线的三点A ,B ,C ,PG ―→=13(PA ―→+PB ―→+PC ―→)⇔G 是△ABC 的重心.特别地,PA ―→+PB ―→+PC ―→=0⇔P 为△ABC 的重心.[基本能力]一、判断题(对的打“√”,错的打“×”) (1)a ∥b 是a =λb(λ∈R)的充要条件.( )(2)△ABC 中,D 是BC 的中点,则AD ―→=12(AC ―→+AB ―→).( )答案:(1)× (2)√ 二、填空题1.在如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP ―→+OQ ―→=________.答案:FO ―→2.化简:(AB ―→-CD ―→)-(AC ―→-BD ―→)=________.解析:(AB ―→-CD ―→)-(AC ―→-BD ―→)=AB ―→-CD ―→-AC ―→+BD ―→=(AB ―→-AC ―→)+(DC ―→-DB ―→)=CB ―→+BC ―→=0.答案:03.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为________.答案:-12[全析考法]考法一 平面向量的线性运算应用平面向量的加法、减法和数乘运算的法则即可.(1)加法的三角形法则要求“首尾相接”,加法的平行四边形法则要求“起点相同”; (2)减法的三角形法则要求“起点相同”且差向量指向“被减向量”; (3)数乘运算的结果仍是一个向量,运算过程可类比实数运算. [例1] (1)(2019·湖北咸宁联考)如图,在△ABC 中,点M 为AC 的中点,点N 在AB 上,AN ―→=3NB ―→,点P 在MN 上,MP ―→=2PN ―→,那么AP ―→=( )A.23AB ―→-16AC ―→B.13AB ―→-12AC ―→C.13AB ―→-16AC ―→ D.12AB ―→+16AC ―→ (2)如图,在直角梯形ABCD 中,DC ―→=14AB ―→,BE ―→=2EC ―→,且AE―→=r AB ―→+s AD ―→,则2r +3s =( )A .1B .2C .3D .4[解析] (1)AP ―→=AM ―→+MP ―→=AM ―→+23MN ―→=AM ―→+23(AN ―→-AM ―→)=13AM ―→+23AN ―→=16AC ―→+12AB ―→.故选D.(2)根据图形,由题意可得AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23(BA ―→+AD ―→+DC ―→)=13AB ―→+23(AD ―→+DC ―→)=13AB ―→+23⎝ ⎛⎭⎪⎫AD ―→+14AB ―→=12AB ―→+23AD ―→.因为AE ―→=r AB ―→+s AD ―→,所以r =12,s =23,则2r +3s =1+2=3.[答案] (1)D (2)C [方法技巧]1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.2.利用平面向量的线性运算求参数的一般思路 (1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式. (3)比较、观察可知所求.考法二 平面向量共线定理的应用求解向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.(3)直线的向量式参数方程:A ,P ,B 三点共线⇔OP ―→=(1-t )·OA ―→+t OB ―→(O 为平面内任一点,t ∈R).[例2] (1)(2019·南昌莲塘一中质检)已知a ,b 是不共线的向量,AB ―→=λa +b ,AC ―→=a +μb(λ,μ∈R),若A ,B ,C 三点共线,则λ,μ的关系一定成立的是( )A .λμ=1B .λμ=-1C .λ-μ=-1D .λ+μ=2(2)(2019·郑州模拟)设e 1与e 2是两个不共线向量,AB ―→=3e 1+2e 2,CB ―→=k e 1+e 2,CD ―→=3e 1-2k e 2,若A ,B ,D 三点共线,则k 的值为________.[解析] (1)∵AB ―→与AC ―→有公共点A ,∴若A ,B ,C 三点共线,则存在一个实数t 使AB―→=t AC ―→,即λa +b =t a +μt b ,则⎩⎪⎨⎪⎧λ=t ,μt =1,消去参数t 得λμ=1;反之,当λμ=1时,AB ―→=1μa +b ,此时存在实数1μ使AB ―→=1μAC ―→,故AB ―→和AC ―→共线.∵AB ―→与AC ―→有公共点A ,∴A ,B ,C 三点共线.故选A.(2)由题意,A ,B ,D 三点共线,故必存在一个实数λ,使得AB ―→=λBD ―→. 又AB ―→=3e 1+2e 2,CB ―→=k e 1+e 2,CD ―→=3e 1-2ke 2, 所以BD ―→=CD ―→-CB ―→=3e 1-2ke 2-(ke 1+e 2) =(3-k )e 1-(2k +1)e 2,所以3e 1+2e 2=λ(3-k )e 1-λ(2k +1)e 2, 又e 1与e 2不共线,所以⎩⎪⎨⎪⎧3=λ3-k ,2=-λ2k +1,解得k =-94.[答案] (1)A (2)-94[方法技巧] 平面向量共线定理的3个应用 证明向量共线 对于非零向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线 证明三点共线 若存在实数λ,使AB ―→=λAC ―→,AB ―→与AC ―→有公共点A ,则A ,B ,C 三点共线 求参数的值利用向量共线定理及向量相等的条件列方程(组)求参数的值1.[考法一]在等腰梯形ABCD 中,AB ―→=-2CD ―→,M 为BC 的中点,则AM ―→=( ) A.12AB ―→+12AD ―→ B.34AB ―→+12AD ―→C.34AB ―→+14AD ―→ D.12AB ―→+34AD ―→ 解析:选B 因为AB ―→=-2CD ―→,所以AB ―→=2DC ―→.又M 是BC 的中点,所以AM ―→=12(AB―→+AC ―→)=12(AB ―→+AD ―→+DC ―→)=12⎝ ⎛⎭⎪⎫AB ―→+AD ―→+12 AB ―→ =34AB ―→+12AD ―→,故选B.2.[考法一]在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO ―→=λAB ―→+μBC ―→,其中λ,μ∈R ,则λ+μ等于( )A .1 B.12 C.13D.23解析:选D 由题意易得AD ―→=AB ―→+BD ―→=AB ―→+13BC ―→,则2AO ―→=AB ―→+13BC ―→,即AO ―→=12AB ―→+16BC ―→.故λ+μ=12+16=23.3.[考法二]设两个非零向量a 与b 不共线.(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b),求证:A ,B ,D 三点共线; (2)试确定实数k ,使ka +b 和a +kb 共线.解:(1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b), ∴BD ―→=BC ―→+CD ―→=2a +8b +3(a -b)=5(a +b)=5AB ―→, ∴AB ―→,BD ―→共线,又它们有公共点B , ∴A ,B ,D 三点共线. (2)∵ka +b 与a +kb 共线,∴存在实数λ,使ka +b =λ(a +kb),即(k -λ)a =(λk -1)b. 又a ,b 是两个不共线的非零向量,∴⎩⎪⎨⎪⎧k -λ=0,λk -1=0.∴k 2-1=0.∴k =±1.。
浙江新高考数学理一轮复习限时集训:4.1平面向量的概念及其线性运算(含答案详析)

限时集训(二十三) 平面向量的概念及其线性运算(限时:50分钟 满分:106分)一、选择题(本大题共8个小题,每小题5分,共40分)1.如图,已知AB =a ,AC =b ,BD =3DC ,用a ,b 表示AD,则AD=( )A .a +34bB.14a +34b C.14a +14bD.34a +14b 2.设P 是△ABC 所在平面内的一点,BC +BA =2BPB ,则( )A .PA +PB =0 B .PC +PA=0C .PB +PC =0D .PA +PB +PC=03.(2013·杭州模拟)已知向量a ,b 不共线,c =ka +b (k ∈R),d =a -b ,如果c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向4.已知向量p =a |a |+b|b |,其中a 、b 均为非零向量,则|p |的取值范围是( )A .[0,2]B .[0,1]C .(0,2]D .[0,2]5.在△ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD=13CA +λCB ,则λ=( )A.23B.13 C .-13D .-236.已知四边形ABCD 中,DC =AB ,|AC |=|BD|,则这个四边形的形状是( )A .平行四边形B .矩形C .等腰梯形D .菱形7.(2013·保定模拟)如图所示,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM =x AB ,AN=y AC ,则x ·yx +y 的值为( ) A .3B.13 C .2D.128.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且DC =2BD ,CE =2EA,AF =2FB ,则AD +BE +CF与BC ( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直二、填空题(本大题共6个小题,每小题4分,共24分)9.已知m ,n 是实数,a ,b 是不共线的向量,若m (3a -2b )+n (4a +b )=2a -5b ,则m =________,n =________.10.在▱ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN=________.(用a ,b 表示)11.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC =λAE +μAF,其中λ、μ∈R ,则λ+μ=________.12.设a ,b 是两个不共线的非零向量,若8a +kb 与ka +2b 共线,则实数k =________.13.(2013·淮阴模拟)已知△ABC 和点M 满足MA +MB +MC =0.若存在实数m 使得AB +AC =m AM成立,则m =________.14.如图,在等腰直角三角形ABC 中,点O 是斜边BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB =m AM ,AC=n AN(m >0,n >0),则mn 的最大值为________.三、解答题(本大题共3个小题,每小题14分,共42分)15.已知P 为△ ABC 内一点,且3AP +4BP+5CP =0,延长AP 交BC 于点D ,若AB =a ,AC =b ,用a 、b 表示向量AP ,AD.16.设两个非零向量e 1和e 2不共线.(1)如果AB=e 1-e 2,BC =3e 1+2e 2,CD =-8e 1-2e 2,求证:A 、C 、D 三点共线;(2)如果AB=e 1+e 2,BC =2e 1-3e 2,CD =2e 1-ke 2,且A 、C 、D 三点共线,求k的值.17.设点O 在△ABC 内部,且有4OA +OB +OC=0,求△ABC 的面积与△OBC 的面积之比.答 案[限时集训(二十三)]1.B 2.B 3.D 4.D 5.A 6.B 7.B 8.A9.解析:由题意知,(3m +4n -2)a +(-2m +n +5)b =0,∴⎩⎪⎨⎪⎧3m +4n -2=0,-2m +n +5=0, 解得⎩⎪⎨⎪⎧m =2,n =-1.答案:2 -110.解析:由AN=3NC 得4AN=3AC =3(a +b ), AM =a +12b ,所以MN =34(a +b )-⎝⎛⎭⎫a +12b =-14a +14b .答案:-14a +14b11.解析:∵AC =AB +AD, AE =12AB +AD ,∴λAE =12λAB +λAD .AF =AB +12AD , ∴μAF =μAB +12μAD ,∴AC =AB +AD =⎝⎛⎭⎫12λ+μAB +⎝⎛⎭⎫λ+12μAD ,则⎩⎨⎧12λ+μ=1,λ+12μ=1.∴λ+μ=43.答案:4312.解析:因为8a +kb 与ka +2b 共线,所以存在实数λ,使8a +kb =λ(ka +2b ),即(8-λk )a +(k -2λ)b =0.又a ,b 是两个不共线的非零向量,故⎩⎪⎨⎪⎧8-λk =0,k -2λ=0,解得k =±4.答案:±413.解析:由题目条件可知,M 为△ABC 的重心,连接AM 并延长交BC 于D ,则AM=23AD,因为AD 为中线,则AB +AC =2AD =3AM ,所以m =3. 答案:314.解析:以A 为原点,线段AC 、AB 所在直线分别为x 轴、y 轴建立直角坐标系,设三角形ABC 的腰长为2,则B (0,2),C (2,0),O (1,1).∵AB =m AM ,AC =n AN,∴M ⎝⎛⎭⎫0,2m ,N ⎝⎛⎭⎫2n ,0,∴直线MN 的方程为nx 2+my 2=1,∵直线MN 过点O (1,1),∴m 2+n2=1,得m +n =2,∴mn ≤(m +n )24=1,当且仅当m =n =1时取等号,∴mn 的最大值为1.答案:115.解:∵BP =AP -AB =AP-a , CP =AP -AC =AP-b ,又3AP +4BP+5CP =0.∴3AP +4(AP -a )+5(AP-b )=0. ∴AP =13a +512b .设AD =t AP(t ∈R), 则AD =13ta +512tb .①又设BD=k BC (k ∈R), 由BC =AC -AB=b -a , 得BD=k (b -a ). 而AD =AB +BD =a +BD .∴AD=a +k (b -a )=(1-k )a +kb .②由①②得⎩⎨⎧13t =1-k ,512t =k ,解得t =43.代入①得AD =49a +59b .∴AP =13a +512b ,AD =49a +59b .16.解:(1)证明:∵AB=e 1-e 2, BC=3e 1+2e 2, CD=-8e 1-2e 2, ∴AC =AB +BC=4e 1+e 2=-12(-8e 1-2e 2)=-12CD,∴AC 与CD共线.又∵AC 与CD有公共点C ,∴A 、C 、D 三点共线.(2) AC =AB +BC=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴AC 与CD 共线,从而存在实数λ使得AC =λCD,即3e 1-2e 2=λ(2e 1-ke 2),得⎩⎪⎨⎪⎧3=2λ,-2=-λk ,解得λ=32,k =43.17.解:取BC 的中点D ,连接OD ,则OB +OC =2OD ,又4OA =-(OB +OC )=-2OD , 即OA =-12OD ,∴O 、A 、D 三点共线,且|OD |=2|OA|,∴O 是中线AD 上靠近A 点的一个三等分点, ∴S △ABC ∶S △OBC =3∶2.。
高考数学《平面向量的基本定理及坐标表示》一轮复习练习题(含答案)

高考数学《平面向量的基本定理及坐标表示》一轮复习练习题(含答案)一、单选题1.已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2B .3C .4D .52.已知在平行四边形ABCD 中,()2,6AD =,()4,4AB =-,对角线AC 与BD 相交于点M ,AM =( )A .()2,5--B .()1,5--C .2,5D .()1,5-3.已知ABC 中,G 是BC 的中点,若2AB =,10AC =,则AG BC ⋅的值为( ) A .2B .3C .2-D .3-4.在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( ) A .32m n -B .23m n -+C .32m n +D .23m n +5.已知a ,b 是不共线的向量,且2AB a b =+,2AC a b =+,33CD a b =-,则( ) A .A ,B ,C 三点共线 B .A ,C ,D 三点共线 C .B ,C ,D 三点共线D .A ,B ,D 三点共线 6.若M 为△ABC 的边AB 上一点,且52AB AM =,则CB =( ) A .3522CA CM --B .3522CA CM -C .3522CA CM +D .3522CA CM -+7.如图,在斜棱柱1111ABCD A B C D -中,AC 与BD 的交点为点M ,AB a =,AD b =,1AA c =,则1MC =( )A .1122a b c ++B .1122---a b cC .1122-++a b cD .1122a b c --+8.如图,在ABC 中,4BD DC =,则AD =( )A .3144ABAC B .1455AB AC +C .4155AB AC +D .1344ABAC 9.已知正三角形ABC 的边长为4,点P 在边BC 上,则AP BP ⋅的最小值为( ) A .2B .1C .2-D .1-10.在ABC 中,AD 是BC 边上的中线,点M 满足2AM MD =,则CM =( )A .1233AB AC -+B .2133AB AC -+ C .1233AB AC -D .2133AB AC -11.在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记AB ,BC 分别为a ,b ,则AH =( )A .2455a b -B .2455a b +C .2455a b -+D .25a b --12.在△ABC 中,点D 在边BC 上,且2CD BD =,E 是AD 的中点,则BE =( ) A .2136AB AC -B .2136AB AC +C .2136AB AC -- D .2136AB AC -+二、填空题13.已知平面向量()2,1a =-,(),2b k =-,若ab ,则+=a b ________.14.锐角ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,3tan tan aB C =+,若3c =,D 为AB 的中点,则中线CD 的范围为______________.15.已知向量()22OC =,,()2cos CA αα= ,则向量OA 的模的最大值是________.16.在ABC 中,M 为AB 的中点,N 为线段CM 上一点(异于端点),AN xAB yAC =+,则11x y+的最小值为______.三、解答题17.已知向量(),1a m =,()1,2b =-,()2,3c = (1)若a b +与c 垂直, 求实数m 的值; (2)若a b -与c 共线, 求实数m 的值.18.设向量()1,2a =-,()1,1b =-,()4,5c =-. (1)求2a b +;(2)若c a b λμ=+,,λμ∈R ,求λμ+的值;(3)若AB a b =+,2BC a b =-,42CD a b =-,求证:A ,C ,D 三点共线.19.已知()1,2,2a m m =-,()3,21,1b n =-. (1)若a b ∥,求m 与n 的值; (2)若()3,,3c m =-且a c ⊥,求a .20.已知O 是平面直角坐标系的原点,()1,2A -,()1,1B ,记OA a =,OB b =. (1)求a 在b 上的投影数量;(2)若四边形OABC 为平行四边形,求点C 的坐标;21.已知向量(1,2),(,1),()//(2)a b x a b a b ==+-. (1)求x 的值;(2)若ka b +与ka b -相互垂直,求k 的值.22.在△ABC 中,P 为AB 的中点,O 在边AC 上,BO 交CP 于R ,且|AO |=2|OC |,设AB a =,AC b =.(1)试用a ,b 表示AR ;(2)若H 在BC 上,且RH ⊥BC ,设|a |=2,|b |=1,a θ∈<,b >,若θ=[3π,23π],求CH CB 的取值范围.23.在①2cos cos cos a A b C c B =+;②tan tan 33tan B C B C +=这两个条件中任选一个,补充在下面的问题中,并加以解答.在ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知______. (1)求角A 的大小;(2)若ABC 3G 为ABC 重心,点M 为线段AC 的中点,点N 在线段AB 上,且2AN NB =,线段BM 与线段CN 相交于点P ,求GP 的取值范围. 注:如果选择多个方案分别解答,按 第一个方案解答计分。
高考数学大一轮复习配套课时训练:第四篇 平面向量 第1节 平面向量的概念及线性运算(含答案)

第四篇平面向量(必修4)第1节平面向量的概念及线性运算课时训练练题感提知能【选题明细表】A组一、选择题1.(2013泉州模拟)已知P,A,B,C是平面内四点,且++=,那么一定有( D )(A)=2(B)=2(C)=2(D)=2解析:∵++=,∴+=-=+=,∴=2.故选D.2.如图所示,D、E、F分别是△ABC的边AB、BC、CA的中点,则( A )(A)++=0(B)-+=0(C)+-=0(D)--=0解析: ++=++=(++)=0.故选A.3.给出下列命题:①两个具有公共终点的向量,一定是共线向量.②两个向量不能比较大小,但它们的模能比较大小.③λa=0(λ为实数),则λ必为零.④λ,μ为实数,若λa=μ b,则a与b共线.其中错误的命题的个数为( C )(A)1 (B)2 (C)3 (D)4解析:①错误,两向量共线要看其方向而不是起点或终点.②正确,因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误,当a=0时,不论λ为何值,λa=0.④错误,当λ=μ=0时,λa=μ b=0,此时,a与b可以是任意向量.故选C.4.(2013广东深圳中学阶段测试)在四边形ABCD中,AB∥CD,AB=3DC,E 为BC的中点,则等于( A )(A)+(B)+(C)+(D)+解析:=++=-+,=+=+=+(-)=+.故选A.5.设a、b都是非零向量,下列四个条件中,使=成立的充分条件是( D )(A)|a|=|b|且a∥b (B)a=-b(C)a∥b (D)a=2b解析:∵表示与a同向的单位向量,表示与b同向的单位向量, ∴a与b必须方向相同才能满足=.故选D.6.已知向量a,b,且=a+2b,=-5a+6b,=7a-2b,则一定共线的三点是( A )(A)A、B、D (B)A、B、C(C)B、C、D (D)A、C、D解析:=++=3a+6b=3.因为与有公共点A,所以A、B、D三点共线.故选A.7.已知向量a,b不共线,c=ka+b(k∈R),d=a-b,如果c∥d,那么( D )(A)k=1且c与d同向(B)k=1且c与d反向(C)k=-1且c与d同向(D)k=-1且c与d反向解析:由题意可设c=λd,即ka+b=λ(a-b).(λ-k)a=(λ+1)b.∵a, b不共线,∴∴k=λ=-1.∴c与d反向.故选D.二、填空题8.(2013广东茂名一中模拟)如图所示,正六边形ABCDEF中,++等于.解析:++=+-=-=.答案:9.(2013年高考四川卷)如图,在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ= .解析:因为O为AC的中点,所以+==2,即λ=2.答案:210.在▱ABCD中,=a,=b,=3,M为BC的中点,则=(用a,b表示).解析:=+=-=b-(a+b)=-a+b.答案:-a+b11.如图所示,在△ABC中,点O是BC的中点.过点O的直线分别交直线AB、AC于不同的两点M、N,若=m,=n,则m+n的值为.解析:∵O是BC的中点,∴=(+).又∵=m,=n,∴=+.∵M、O、N三点共线,∴+=1.∴m+n=2.答案:2三、解答题12.设点O 在△ABC 内部,且有4++=0,求△ABC 与△OBC 的面积之比.解:取BC 的中点D,连接OD,则+=2,∵4++=0,∴4=-(+)=-2,∴=-.∴O 、A 、D 三点共线,且||=2||, ∴O 是中线AD 上靠近A 点的一个三等分点, ∴S △ABC ∶S △OBC =3∶2.13.如图所示,在△ABC 中,D,F 分别是BC,AC 的中点,=,=a,=b.用a,b 表示向量,,,,.解:延长AD到G,使=,连接BG,CG,得到▱ABGC,所以=a+b,==(a+b),==(a+b),==b,=-=(a+b)-a=(b-2a),=-=b-a=(b-2a).B组14.(2013石家庄二模)如图,在△ABC中,=,P是BN上的一点,若=m+,则实数m的值为( C )(A)3 (B)1 (C)(D)解析:设=λ(λ∈R),则=+=+λ=+λ(-)=+λ-=(1-λ)+λ,则解得m=,故选C.15.(2013长春市第四次调研改编)如图,平面内有三个向量,,,其中与的夹角为120°,与的夹角为30°,且||=2,||=,||=2,若OC=λ+μ(λ,μ∈R),则= .解析:过C作CD∥OB交OA延长线于D,在△OCD中,∠COD=30°,∠OCD=90°,OC=2,∴OD=4,CD=2∴=2,=.∴=+=2+.∴λ=2,μ=,∴=.答案:16.设e1,e2是两个不共的线向量,已知=2e1-8e2,=e1+3e2,=2e1-e2.(1)求证:A、B、D三点共线;(2)若=3e1-ke2,且B、D、F三点共线,求k的值.(1)证明:由已知得=-=(2e1-e2)-(e1+3e2)=e1-4e2,∵=2e1-8e2,∴=2.又∵与有公共点B,∴A、B、D三点共线.(2)解:由(1)可知=e1-4e2,∵=3e1-ke2,且B、D、F三点共线,∴=λ(λ∈R),即3e1-ke2=λe1-4λe2, 得解得k=12.。
2019届高三一轮文科数学课件:4.1-平面向量的概念及其线性运算(含答案)

答案:b-a -a-b
3
考点疑难突破
平面向量的有关概念
[题 组 训 练] 1.设 a0 为单位向量,下列命题中:①若 a 为平面内的某个向量,则 a=|a|· a0; ②若 a 与 a0 平行, 则 a=|a|a0; ③若 a 与 a0 平行且|a|=1, 则 a=a0.假命题的个数是( A.0 C.2 B.1 D.3 )
备注 平面向量是自由向量
0 记作___
单位向量 长度等于
的向量
a 非零向量 a 的单位向量为± |a|
平行向量 方向 相同 或 相反的非零向量 共线向量
方向相同或相反 的非零向 _________________
0 与任一向量 平行 或 共线
量又叫做共线向量
相等向量
长度 相等 且方向 相同 的向 两向量只有相等或不 量 等,不能比较大小 0 的相反向量为 0
答案:①②
向量有关概念的 5 个关键点 (1)向量:方向、长度. (2)非零共线向量:方向相同或相反. (3)单位向量:长度是一个单位长度. (4)零向量:方向没有限制,长度是 0. (5)相等相量:方向相同且长度相等.
向量的线性运算
[题 组 训 练] 1. (2018 届河南中原名校 3 月联考)如图, 在直角梯形 ABCD 中, AB=2AD=2DC, → → → E 为 BC 边上一点,BC=3EC,F 为 AE 的中点,则BF=(
1
考 情 分 析
考点分布
考纲要求
考点频率
命题趋势
1.平面向量的实际背景及基本概念 (1)了解向量的实际背景. (2)理解平面向量的概念,理解两个向量相等的 含义. 平面向量的 (3)理解向量的几何表示. 5年11考 线性运算及 2.向量的线性运算 几何意义 (1)掌握向量加法、减法的运算,并理解其几何 意义. (2)掌握向量数乘的运算及其几何意义,理解两 个向量共线的含义. (3)了解向量线性运算的性质及其几何意义.
新高考数学一轮复习考点知识专题讲解与练习 19 平面向量的概念及线性运算
新高考数学一轮复习考点知识专题讲解与练习第四章平面向量、复数考点知识总结19平面向量的概念及线性运算高考概览高考在本考点的常考题型为选择题和填空题,分值为5分,中、低等难度考纲研读1.了解向量的实际背景2.理解平面向量的概念,理解两个向量相等的含义3.理解向量的几何表示4.掌握向量加法、减法的运算,并理解其几何意义5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义6.了解向量线性运算的性质及其几何意义一、基础小题1.给出下列等式:①0-a=-a;②-(-a)=a;③a+(-a)=0;④a+0=a;⑤a -b=a+(-b).其中正确的个数是()A.2 B.3 C.4 D.5答案D解析 由零向量和相反向量的性质,知①②③④⑤均正确.2. 如图,在正六边形ABCDEF 中,BA →+CD →+EF →=( )A .0 B.BE → C.AD → D.CF →答案 D解析 由图知BA →+CD →+EF →=BA →+AF →+CB →=CB →+BF →=CF →.3.给出下列命题:①向量AB →的长度与向量BA →的长度相等;②向量a 与b 平行,则a 与b 的方向相同或相反;③|a |+|b |=|a +b |⇔a 与b 方向相同;④若非零向量a ,b 的方向相同或相反,则a +b 与a ,b 之一的方向相同.其中叙述错误的命题的个数为( )A .1B .2C .3D .4答案 C解析 对于②,当a =0时,不成立;对于③,当a ,b 之一为零向量时,不成立;对于④,当a +b =0时,a +b 的方向是任意的,它可以与a ,b 的方向都不相同.故选C.4.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 反向共线,则实数λ的值为( )A .1B .-12C .1或-12D .-1或-12答案 B解析 由于c 与d 反向共线,则存在实数k 使c =k d (k <0),于是λa +b =k [a +(2λ-1)b ].整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎨⎧ λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.5.已知a ,b 是不共线的向量,AB →=λa +2b ,AC →=a +(λ-1)b ,λ,μ∈R ,若A ,B ,C 三点共线,则λ=( )A .1B .-2C .-2或1D .-1或2答案 D解析 ∵A ,B ,C 三点共线,∴AB →∥AC →,∴存在实数m 使得AB →=m AC →,则λa +2b =m [a +(λ-1)b ],∵a ,b 不共线,∴⎩⎨⎧λ=m ,2=m (λ-1),解得λ=2或-1.故选D. 6.已知在四边形ABCD 中,O 是四边形ABCD 内一点,OA →=a ,OB →=b ,OC →=c ,OD →=a -b +c ,则四边形ABCD 的形状为( )A .梯形B .正方形C .平行四边形D .菱形答案 C解析 因为OD →=a -b +c ,所以AD →=c -b ,又BC →=c -b ,所以AD →∥BC →且|AD →|=|BC→|,所以四边形ABCD 是平行四边形.故选C.7.已知△ABC 中,AD →=2DC →,E 为BD 的中点,若BC →=λAE →+μAB →,则λ-2μ的值为( )A .2B .6C .8D .10答案 C解析 由已知得,BC →=BA →+AC →=BA →+32AD →=BA →+32(AE →+ED →)=BA →+32(2AE →+BA →)=3AE →-52AB →,所以λ=3,μ=-52,所以λ-2μ=8.8.设e 1,e 2是平面内两个不共线的向量,AB →=(a -1)e 1+e 2,AC →=b e 1-2e 2(a >0,b >0),若A ,B ,C 三点共线,则1a +2b 的最小值是( )A .2B .4C .6D .8答案 B解析 因为a >0,b >0,若A ,B ,C 三点共线,设AB →=λAC →,即(a -1)e 1+e 2=λ(b e 1-2e 2),因为e 1,e 2是平面内两个不共线向量,所以⎩⎨⎧a -1=λb ,1=-2λ,解得λ=-12,a -1=-12b ,即a +12b =1,则1a +2b =⎝ ⎛⎭⎪⎫1a +2b ⎝ ⎛⎭⎪⎫a +12b =1+1+b 2a +2a b ≥2+2b 2a ·2a b =2+2=4,当且仅当b 2a =2a b ,即a =12,b =1时取等号,故1a +2b 的最小值为4.故选B.9.(多选)已知向量a ,b 是两个非零向量,在下列四个条件中,一定能使a ,b 共线的是( )A .2a -3b =4e 且a +2b =-2eB .存在相异实数λ,μ,使λa -μb =0C .x a +y b =0(其中实数x ,y 满足x +y =0)D .已知梯形ABCD ,其中AB →=a ,CD →=b答案 AB解析 对于A ,∵向量a ,b 是两个非零向量,2a -3b =4e ,且a +2b =-2e ,∴a =27e ,b =-87e ,此时能使a ,b 共线,故A 正确;对于B ,存在相异实数λ,μ使λa -μb =0,要使非零向量a ,b 是共线向量,由共线定理可知成立,故B 正确;对于C ,x a +y b =0(其中实数x ,y 满足x +y =0),如果x =y =0,则不能使a ,b 共线,故C 错误;对于D ,已知梯形ABCD 中,AB →=a ,CD →=b ,如果AB ,CD 是梯形的上下底,则正确,否则错误.故选AB.10.(多选)已知等边三角形ABC 内接于⊙O ,E 为边BC 的中点,D 为线段OA 的中点,则BD →=( )A.23BA →+16BC →B.43BA →-16BC →C.BA →+13AE →D.23BA →+13AE →答案 AC解析 如图所示,BD →=BA →+AD →=BA →+13AE →=BA →+13(AB →+BE →)=BA →-13BA →+13×12BC→=23BA →+16BC →.故选AC.11.(多选)已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则( )A .△ABC 是直角三角形B .△ABC 是等腰三角形C .△ABC 的面积为23D .△ABC 的面积为3答案 AC解析 由|PB →|=|PC →|得,△PBC 是等腰三角形,取BC 的中点D ,连接PD ,则PD⊥BC ,又AB →+PB →+PC →=0,所以AB →=-(PB →+PC →)=-2PD →,所以PD =12AB =1,且PD∥AB ,故AB ⊥BC ,即△ABC 是直角三角形,由|PB →|=2,|PD →|=1可得|BD →|=3,则|BC→|=23,所以△ABC 的面积为12×2×23=2 3.12.已知A 1,A 2,A 3为平面上三个不共线的定点,平面上点M 满足A 1M →=λ(A 1A 2→+A 1A 3→)(λ是实数),且MA 1→+MA 2→+MA 3→是单位向量,则这样的点M 有________个.答案 2解析 由题意得,MA 1→=-λ(A 1A 2→+A 1A 3→),MA 2→=MA 1→+A 1A 2→,MA 3→=MA 1→+A 1A 3→,所以MA 1→+MA 2→+MA 3→=(1-3λ)(A 1A 2→+A 1A 3→),设D 为A 2A 3的中点,则(1-3λ)·(A 1A 2→+A 1A 3→)为与A 1D →共起点且共线的一个向量,显然直线A 1D 与以A 1为圆心的单位圆有两个交点,故这样的点M 有2个,即符合题意的点M 有2个.二、高考小题13.(2022·全国Ⅰ卷)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A.34AB →-14AC → B.14AB →-34AC →C.34AB →+14AC →D.14AB →+34AC →答案 A解析 如图,在△ABC 中,根据向量的运算法则,可得EB →=AB →-AE →=AB →-12AD →=AB →-14(AB →+AC →)=34AB →-14AC →.故选A.14.(2015·全国Ⅰ卷)设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 AD →=AB →+BD →=AB →+BC →+CD →=AB →+43BC →=AB →+43(AC →-AB →)=-13AB →+43AC →.故选A.15.(2015·北京高考)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________;y =________.答案 12 -16解析 如图,在△ABC 中,MN →=MA →+AB →+BN →=-23AC →+AB →+12BC →=-23AC →+AB →+12(AC →-AB →)=12AB →-16AC →.∴x =12,y =-16.三、模拟小题16.(2022·辽宁东北育才学校三模)在△ABC 中,若AB →+AC →=4AP →,则CP →=( ) A.34AB →-14AC → B .-34AB →+14AC →C.14AB →-34AC → D .-14AB →+34AC →答案 C解析 由题意得AB →+AC →=4AP →=4(AC →+CP →),解得CP →=14AB →-34AC →.故选C.17.(2022·广东茂名市高三期中)已知向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ为( )A .2B .1 C.12 D.14答案 C解析 因为λa +b 与a +2b 平行,则存在k ∈R ,使得λa +b =k (a +2b ),因为向量a ,b 不平行,则⎩⎨⎧k =λ,2k =1,解得λ=12.故选C. 18.(2022·山西太原高三模拟)平面向量a ,b 共线的充要条件是( )A .a ·b =|a ||b |B .a ,b 两向量中至少有一个为零向量C .∃λ∈R ,b =λaD .存在不全为零的实数λ1,λ2,λ1a +λ2b =0答案 D解析 对于A ,a ·b =|a ||b |成立时,说明两个非零向量的夹角为零度,但是两个非零向量共线时,它们的夹角可以为平角,故A 错误;对于B ,两个非零向量也可以共线,故B 错误;对于C ,只有当a 不是零向量时才成立,故C 错误;对于D ,当平面向量a ,b 共线时,若a =0,则存在λ1≠0,λ2=0,λ1a +λ2b =0,若a ≠0,则存在一个λ,使得b =λa 成立,令λ=-λ1λ2(λ2≠0),则b =-λ1λ2a ,所以λ1a +λ2b =0,因此存在不全为零的实数λ1,λ2,λ1a +λ2b =0;当存在不全为零的实数λ1,λ2,λ1a +λ2b =0成立时,若实数λ1,λ2都不为零,则有a =-λ2λ1b 成立,显然a ,b 共线,若实数λ1,λ2有一个为零,不妨设λ1=0,则有λ2b =0⇒b =0,所以平面向量a ,b 共线,所以D 正确.故选D.19.(2022·安徽高三二模)△ABC 中,D 是BC 的中点,点E 在边AC 上,且满足3AE →=AC →,BE 交AD 于点F ,则BF →=( )A .-34AB →+14AC → B.34AB →-14AC →C .-13AB →+23AC →D .-23AB →+13AC →答案 A解析 由题设画出几何示意图,设BF →=λBE →,AF →=μAD →,∵BE →=AE →-AB →=13AC →-AB →,∴BF →=λBE →=λ3AC →-λAB →,∵AD →=12(AB →+AC →),∴AF →=μAD →=μ2(AB →+AC →).由AB →+BF →=AF→知(1-λ)AB →+λ3AC →=μ2(AB →+AC →),∴⎩⎪⎨⎪⎧ 1-λ=μ2,λ3=μ2,得⎩⎪⎨⎪⎧λ=34,μ=12,∴BF →=34BE →=14AC →-34AB →.故选A.20. (2022·滨海县八滩中学高三期中)如图,在△ABC 中,D 是BC 的中点,H 是AD 的中点,过H 作一直线分别与边AB ,AC 交于M ,N 两点,若AM →=xAB →,AN →=yAC →,则x +4y 的最小值为( )A.52B.73C.94D.14 答案 C解析 因为D 是BC 中点,所以AD →=12AB →+12AC →,由题知,AB →=1x AM →,AC →=1y AN →,AD →=2AH →, 所以2AH →=12x AM →+12y AN →,AH →=14x AM →+14y AN →,因为M ,H ,N 三点在同一直线上,所以14x +14y =1.x +4y =(x +4y )⎝ ⎛⎭⎪⎫14x +14y =14⎝ ⎛⎭⎪⎫5+x y +4y x ,因为x >0,y >0,所以由基本不等式得x y +4yx ≥2x y ·4y x =4,所以x +4y ≥94,当且仅当x =34,y =38时等号成立.故选C.21.(2022·湖南天心长郡中学高三月考)在△ABC 中,D 为三角形所在平面内一点,且AD →=13AB →+12AC →,则S △BCDS △ACD=( )A.16B.12C.13D.23 答案 B解析 如图,设AD 交BC 于E ,且AE →=xAD →=x 3AB →+x 2AC →,由B ,E ,C 三点共线可得 x 3+x 2=1⇒x =65,∴AE →=25AB →+35AC →,∴25(AE →-AB →)=35(AC →-AE →)⇒2BE →=3EC →.设S △CED =2y ,则S △BED =3y ,∴S △BCD =5y .又AE →=65AD →⇒AD →=5DE →,∴S △ACD =10y ,∴S △BCDS △ACD =5y 10y =12.故选B.22.(多选)(2022·福建龙岩高三月考)瑞士数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上,而且外心和重心的距离是垂心和重心距离之半.”这就是著名的欧拉线定理.设△ABC 中,点O ,H ,G 分别是外心、垂心、重心,BC 边的中点为D ,则下列四个结论中错误的是( )A.GH →=2OG →B.GA →+GB →+GC →=0 C.AH →=3OD → D.OA →=OB →=OC → 答案 CD解析 如图,由题意,得GH →=2OG →,故A 正确;∵D 为BC 的中点,G 为△ABC 的重心,∴AG →=2GD →,GB →+GC →=2GD →=-GA →,∴GA →+GB →+GC →=0,故B 正确;∵AG →=2GD →,GH →=2OG →,∠AGH =∠DGO ,∴△AGH ∽△DGO ,∴AH →=2OD →,故C 错误;向量OA →,OB →,OC →的模相等,方向不同,故D 错误.故选CD.23.(2022·江苏省高三一模)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1CB →+λ2CA →(λ1,λ2为实数),则λ1+λ2=________.答案 -23解析 因为AD =12AB ,BE =23BC ,所以DE →=DB →+BE →=12AB →+23BC →=12(CB →-CA →)-23CB →=-16CB →-12CA →,所以λ1=-16,λ2=-12,则λ1+λ2=-23.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2022·银川摸底)已知向量a =2e 1-3e 2,b =2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数λ,μ,使向量d =λa +μb 与c 共线?解 ∵d =λ(2e 1-3e 2)+μ(2e 1+3e 2) =(2λ+2μ)e 1+(-3λ+3μ)e 2,要使d 与c 共线,则应有实数k ,使d =k c , 即(2λ+2μ)e 1+(-3λ+3μ)e 2=2k e 1-9k e 2, 即⎩⎨⎧2λ+2μ=2k ,-3λ+3μ=-9k ,得λ=-2μ. 故存在这样的实数λ,μ,只要λ=-2μ,就能使d 与c 共线.2. (2022·内江市市中区天立学校高三月考)如图所示,在▱ABCD 中,AB →=a ,AD →=b ,BM =23BC ,AN =14AB .(1)试用向量a ,b 来表示DN →,AM →; (2)AM 交DN 于O 点,求AO ∶OM 的值.解 (1)∵AN =14AB ,∴AN →=14AB →=14a ,DN →=AN →-AD →=14a -b ,∵BM =23BC ,∴BM →=23BC →=23b ,∴AM →=AB →+BM →=a +23b .(2)∵A ,O ,M 三点共线,设AO →=λAM →=λa +2λ3b ,∵D ,O ,N 三点共线, ∴DO →=μDN →,AO →-AD →=μAN →-μAD →,∴AO →=μAN →+(1-μ)AD →=μ4a +(1-μ)b .∵a ,b 不共线,∴⎩⎪⎨⎪⎧λ=μ4,2λ3=1-μ,解得⎩⎪⎨⎪⎧λ=314,μ=67,∴AO →=314AM →,OM →=1114AM →,∴AO ∶OM =3∶11.3. (2022·河南安阳模拟)如图,已知△ABC 的面积为14,D ,E 分别为边AB ,BC 上的点,且AD ∶DB =BE ∶EC =2∶1,AE 与CD 交于点P .设存在λ和μ,使AP →=λAE →,PD →=μCD →,AB →=a ,BC →=b .(1)求λ及μ; (2)用a ,b 表示BP →; (3)求△P AC 的面积. 解 (1)由于AB →=a ,BC →=b ,则AE →=a +23b ,DC →=13a +b ,AP →=λAE →=λ⎝ ⎛⎭⎪⎫a +23b ,DP →=μDC →=μ⎝ ⎛⎭⎪⎫13a +b ,AP →=AD →+DP →=23AB →+DP →,∴23a +μ⎝ ⎛⎭⎪⎫13a +b =λ⎝ ⎛⎭⎪⎫a +23b , ∴λ=23+13μ,① 23λ=μ,②由①②,得λ=67,μ=47.(2)BP →=BA →+AP →=-a +67×⎝ ⎛⎭⎪⎫a +23b =-17a +47b .(3)由|PD →|∶|CD →|=μ=47, 得S △P AB =47S △ABC =8,由|PE →|∶|AE →|=1-λ=17, 得S △PBC =17S △ABC =2,∴S △P AC =S △ABC -S △P AB -S △PBC =14-8-2=4.。
高三数学一轮专题复习----平面向量的概念与线性运算(有详细答案)
⾼三数学⼀轮专题复习----平⾯向量的概念与线性运算(有详细答案)平⾯向量的概念与线性运算1. (必修4P 63练习第1题改编)如图在平⾏四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →=________.答案:b -12a解析:BE →=BA →+AD →+12DC →=-a +b +12a =b -12a.2. (必修4P 65例4改编)在△ABC 中,AB →=c ,AC →=b .若点D 满⾜BD →=2DC →,则AD →=________.(⽤b 、c 表⽰)答案:23b +13c解析:因为BD →=2DC →,所以AD →-AB →=2(AC →-AD →),即3AD →=AB →+2AC →=c +2b ,故AD →=23b +13c . 3. (必修4P 63练习第6题改编)设四边形ABCD 中,有12DC →=AB →且|AD →|=||BC →,则这个四边形是________.答案:等腰梯形解析:AB →=12DC →AB →∥DC →,且|AB →|=12|DC →|,∴ ABCD 为梯形.⼜|AD →|=|BC →|,∴四边形ABCD 的形状为等腰梯形.4. (必修4P 66练习第2题改编)设a 、b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a -2b .若A 、B 、D 三点共线,则实数p =________.答案:-1解析:∵ BD →=BC →+CD →=2a -b ,⼜A 、B 、D 三点共线,∴存在实数λ,使AB →=λBD →.即?2=2λ,p =-λ,∴ p =-1.1. 向量的有关概念(1) 向量:既有⼤⼩⼜有⽅向的量叫做向量,向量AB →的⼤⼩叫做向量的长度(或模),记作|AB →|.(2) 零向量:长度为0的向量叫做零向量,其⽅向是任意的. (3) 单位向量:长度等于1个单位长度的向量叫做单位向量.(4) 平⾏向量:⽅向相同或相反的⾮零向量叫做平⾏向量.平⾏向量⼜称为共线向量,任⼀组平⾏向量都可以移到同⼀直线上.规定:0与任⼀向量平⾏.(5) 相等向量:长度相等且⽅向相同的向量叫做相等向量.(6) 相反向量:与向量a 长度相等且⽅向相反的向量叫做a 的相反向量.规定零向量的相反向量仍是零向量.2. 向量加法与减法运算 (1) 向量的加法①定义:求两个向量和的运算,叫做向量的加法.②法则:三⾓形法则;平⾏四边形法则.③运算律:a +b =b +a ;(a +b )+c =a +(b +c ). (2) 向量的减法①定义:求两个向量差的运算,叫做向量的减法.②法则:三⾓形法则.3. 向量的数乘运算及其⼏何意义(1) 实数λ与向量a 的积是⼀个向量,记作λa ,它的长度与⽅向规定如下:① |λa |=|λ||a|;②当λ>0时,λa 与a 的⽅向相同;当λ<0时,λa 与a 的⽅向相反;当λ=0时,λa =0.(2) 运算律:设λ、µ∈R ,则:①λ(µa )=(λµ)a ;② (λ+µ)a =λa +µa ;③λ(a +b )=λa +λb .4. 向量共线定理向量b 与a (a ≠0)共线的充要条件是有且只有⼀个实数λ,使得b =λa .[备课札记]题型1 平⾯向量的基本概念例1 给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同;②若|a |=|b |,则a =b ;③若AB →=DC →,则A 、B 、C 、D 四点构成平⾏四边形;④在ABCD 中,⼀定有AB →=DC →;⑤若m =n ,n =p ,则m =p ;⑥若a ∥b ,b ∥c ,则a ∥c .其中错误的命题有________.(填序号) 答案:①②③⑥解析:两向量起点相同,终点相同,则两向量相等;但两相等向量,不⼀定有相同的起点和终点,故①不正确;|a |=|b |,由于a 与b ⽅向不确定,所以a 、b 不⼀定相等,故②不正确;AB →=DC →,可能有A 、B 、C 、D 在⼀条直线上的情况,所以③不正确;零向量与任⼀向量平⾏,故a ∥b ,b ∥c 时,若b =0,则a 与c 不⼀定平⾏,故⑥不正确.备选变式(教师专享)设a 0为单位向量,①若a 为平⾯内的某个向量,则a =|a |·a 0;②若a 与a 0平⾏,则a =|a |·a 0;③若a 与a 0平⾏且|a |=1,则a =a 0.上述命题中,假命题个数是________.答案:3解析:向量是既有⼤⼩⼜有⽅向的量,a 与|a |a 0模相同,但⽅向不⼀定相同,故①是假命题;若a 与a 0平⾏,则a 与a 0⽅向有两种情况:⼀是同向,⼆是反向,反向时a =-|a |a 0,故②、③也是假命题,填3.题型2 向量的线性表⽰例2 平⾏四边形OADB 的对⾓线交点为C ,BM →=13BC →,CN →=13CD →,OA →=a ,OB →=b ,⽤a 、b 表⽰OM →、ON →、MN →.解:BA →=a -b ,BM →=16BA →=16a -16b ,OM →=OB →+BM →=16a +56b .OD →=a +b ,ON →=OC →+CN →=12OD →+16OD →=23OD →=23a +23b .MN →=ON →-OM →=12a -16b .变式训练在△ABC 中,E 、F 分别为AC 、AB 的中点,BE 与CF 相交于G 点,设AB →=a ,AC →=b ,试⽤a ,b 表⽰AG →.解:AG →=AB →+BG →=AB →+λBE →=AB →+λ2(BA →+BC →)=1-λ2AB →+λ2(AC →-AB →)=(1-λ)AB →+λ2AC →=(1-λ)a +λ2b . ⼜AG →=AC →+CG →=AC →+mCF →=AC →+m 2(CA →+CB →)=(1-m)AC →+m 2AB →=m2a +(1-m)b ,∴ 1-λ=m2,1-m =λ2,解得λ=m =23,∴ AG →=13a +13b .题型3 共线向量例3 设两个⾮零向量a 与b 不共线.(1) 若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线; (2) 试确定实数k ,使k a +b 和a +k b 共线.(1) 证明:∵ AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),∴ BD →=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →. ∴ AB →,BD →共线.⼜它们有公共点B ,∴ A 、B 、D 三点共线. (2) 解:∵ k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ),即(k -λ)a =(λk -1)b .⼜a 、b 是两不共线的⾮零向量,∴ k -λ=λk -1=0. ∴ k 2-1=0.∴ k =±1. 备选变式(教师专享)已知a 、b 是不共线的向量,AB →=λa +b ,AC →=a +µb (λ、µ∈R ),当A 、B 、C 三点共线时λ、µ满⾜的条件为________.答案:λµ=1解析:由AB →=λa +b ,AC →=a +µb (λ、µ∈R )及A 、B 、C 三点共线得AB →=tAC →,所以λa+b =t(a +µb )=t a +tµb ,即可得?λ=t ,1=tµ,所以λµ=1.题型4 向量共线的应⽤例4 如图所⽰,设O 是△ABC 内部⼀点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的⾯积之⽐为________.答案:12解析:如图所⽰,设M 是AC 的中点,则 OA →+OC →=2OM →. ⼜OA →+OC →=-2OB →,∴ OM →=-OB →,即O 是BM 的中点,∴ S △AOB =S △AOM =12S △AOC ,即S △AOB S △AOC =12. 备选变式(教师专享)如图,△ABC 中,在AC 上取⼀点N ,使AN =13AC ;在AB 上取⼀点M ,使得AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解:∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+CN →)=12BC →, QA →=MA →-MQ →=12BM →+λMC →,⼜∵AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →,∴λ=12.1. 如图,在四边形ABCD 中,AC 和BD 相交于点O ,设AD →=a ,AB →=b ,若AB →=2DC →,则AO →=________.(⽤向量a 和b 表⽰)答案:23a +13b解析:因为AC →=AD →+DC →=AD →+12AB →=a +12b ,⼜AB →=2DC →,所以AO →=23AC →=23a +12b =23a +13b . 2. (2013·四川)如图,在平⾏四边形ABCD 中,对⾓线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.答案:2解析:AB →+AD →=AC →=2AO →,则λ=2.3. (2013·江苏)设D 、E 分别是△ABC 的边AB 、BC 上的点,AD =12AB ,BE =23DC ,若DE →=λ1AB →+λ2AC →(λ1、λ2为实数),则λ1+λ2=________.答案:12解析:DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →=λ1AB →+λ2AC →,故λ1=-16,λ2=23,则λ1+λ2=12.4. 已知点P 在△ABC 所在的平⾯内,若2PA →+3PB →+4PC →=3AB →,则△PAB 与△PBC 的⾯积的⽐值为__________.答案:45解析:由2PA →+3PB →+4PC →=3AB →,得2PA →+4PC →=3AB →+3BP →,∴ 2PA →+4PC →=3AP →,即4PC →=5AP →.∴ |AP →||PC →|=45,S △PAB S △PBC =|AP →||PC →|=45.1. 在平⾏四边形ABCD 中,对⾓线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.答案:2解析:因为四边形ABCD 为平⾏四边形,对⾓线AC 与BD 交于点O ,所以AB →+AD →=AC →,⼜O 为AC 的中点,所以AC →=2AO →,所以AB →+AD →=2AO →,因为AB →+AD →=λAO →,所以λ=2.2. 已知平⾯内O ,A ,B ,C 四点,其中A ,B ,C 三点共线,且OC →=xOA →+yOB →,则x +y =________.答案:1解析:∵ A ,B ,C 三点共线,∴ AC →=λAB →,即OC →-OA →=λOB →-λOA →,∴ OC →=(1-λ)OA →+λOB →,即x =1-λ,y =λ,∴ x +y =1.3. 设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB→+λ2AC →(λ1,λ2为实数),则λ1+λ2=________.答案:12解析:易知DE =12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,所以λ1+λ2=12.4. 已知点G 是△ABO 的重⼼,M 是AB 边的中点. (1) 求GA →+GB →+GO →;(2) 若PQ 过△ABO 的重⼼G ,且OA →=a ,OB →=b ,OP →=m a ,OQ →=n b ,求证:1m +1n =3.(1) 解:因为GA →+GB →=2GM →,⼜2GM →=-GO →,所以GA →+GB →+GO →=-GO →+GO →=0. (2) 证明:因为OM →=12(a +b ),且G 是△ABO 的重⼼,所以OG →=23OM →=13(a +b ).由P 、G 、Q 三点共线,得PG →∥GQ →,所以有且只有⼀个实数λ,使PG →=λGQ →.⼜PG →=OG →-OP →=13(a+b )-m a =13-m a +13b ,GQ →=OQ →-OG →=n b -13(a +b )=-13a +n -13b ,所以13-m a +13b =λ-13a +n -13b . ⼜a 、b 不共线,所以?13-m =-13λ,13=λn -13,消去λ,整理得3mn =m +n ,故1m +1n=3.1. 解决与平⾯向量的概念有关的命题真假的判定问题,其关键在于透彻理解平⾯向量的概念,还应注意零向量的特殊性,以及两个向量相等必须满⾜:①模相等;②⽅向相同.2. 在进⾏向量线性运算时要尽可能转化到平⾏四边形或三⾓形中,运⽤平⾏四边形法则、三⾓形法则,利⽤三⾓形中位线,相似三⾓形对应边成⽐例得平⾯⼏何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.3. 平⾏向量定理的条件和结论是充要条件关系,既可以证明向量共线,也可以由向量共线求参数.利⽤两向量共线证明三点共线要强调有⼀个公共点.。
高考数学一轮复习第四章 第一讲平面向量的概念及其线性运算学案含解析新人教版
第四章平面向量、数系的扩充与复数的引入第一讲平面向量的概念及其线性运算知识梳理·双基自测知识梳理知识点一向量的有关概念(1)向量:既有__大小__又有__方向__的量叫做向量,向量的大小叫做向量的__长度__(或称__模__).(2)零向量:__长度为0__的向量叫做零向量,其方向是__任意__的,零向量记作__0__.(3)单位向量:长度等于__1__个单位的向量.(4)平行向量:方向相同或__相反__的__非零__向量;平行向量又叫__共线__向量.规定:0与任一向量__平行__.(5)相等向量:长度__相等__且方向__相同__的向量.(6)相反向量:长度__相等__且方向__相反__的向量.知识点二向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算__三角形__法则__平行四边形__法则(1)交换律:a+b=__b+a__;(2)结合律:(a+b)+c=__a+(b+c)__减法向量a加上向量b的__相反向量__叫做a与b的差,即a+(-b)=a-b__三角形__法则a-b=a+(-b)数乘实数λ与向量a的积是一个__向量__记作λa(1)模:|λa|=|λ||a| ;(2)方向:当λ>0时,λa与a的方向__相同__;当λ<0时,λa与a的方向__相反__;设λ,μ是实数.(1)__λ(μa)__=(λμ)a(2)(λ+μ)a=__λa+μa__(3)λ(a+b)=__λa+λb__.向量a (a ≠0)与b 共线,当且仅当存在唯一一个实数λ,使__b =λa __.归纳拓展1.零向量与任何向量共线.2.与向量a (a ≠0)共线的单位向量±a|a |.3.若存在非零实数λ,使得AB →=λAC →或AB →=λBC →或AC →=λBC →,则A ,B ,C 三点共线. 4.首尾相连的一组向量的和为0.5.若P 为AB 的中点,则OP →=12(OA →+OB →).6.若a 、b 不共线,且λa =μb ,则λ=μ=0.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( × ) (2)若a ∥b ,b ∥c ,则a ∥c .( × )(3)若向量a 与向量b 平行,则a 与b 的方向相同或相反.( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( × ) 题组二 走进教材2.(必修4P 91A 组T4改编)化简AB →+BD →-AC →-CD →=( B ) A .AD → B .0 C .BC →D .DA →[解析] AB →+BD →-AC →-CD →=AD →-(AC →+CD →)=AD →-AD →=0.3.(必修4P 84T4改编)向量e 1,e 2,a ,b 在正方形网格中的位置如图所示,向量a -b 等于( C )A .-4e 1-2e 2B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2[解析] 由图可知a =-4e 2,b =-(e 1+e 2),∴a -b =e 1-3e 2,故选C .4.(必修4P 91A 组T3改编)如图所示,在平行四边形ABCD 中,下列结论中错误的是( C )A .AB →=DC → B .AD →+AB →=AC → C .AB →-AD →=BD → D .AD →+CB →=0[解析] 由AB →-AD →=DB →=-BD →,故C 错误. 题组三 走向高考5.(2020·新高考Ⅱ,3,5分)若D 为△ABC 的边AB 的中点,则CB →=( A ) A .2CD →-CA → B .2CA →-CD → C .2CD →+CA →D .2CA →+CD →[解析] ∵D 为△ABC 的边AB 的中点,∴CD →=12(CA →+CB →),∴CB →=2CD →-CA →.故选A .6.(2015·新课标2)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=__12__.[解析] ∵a 、b 不平行,∴a +2b ≠0,由题意可知存在唯一实数m ,使得λa +b =m (a +2b ),即(λ-m )a =(2m -1)b ,∴⎩⎪⎨⎪⎧λ-m =02m -1=0,解得λ=12.考点突破·互动探究考点一 向量的基本概念——自主练透例1 (1)给出下列命题,正确的是( B ) A .若两个向量相等,则它们的起点相同,终点相同B .若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形 C .a =b 的充要条件是|a |=|b |且a ∥bD .已知λ,μ为实数,若λa =μb ,则a 与b 共线(2)若a 0为单位向量,a 为平面内的某个向量,下列命题中: ①若a 为平面内的某个向量,则a =|a |·a 0; ②若a 与a 0平行,则a =|a |a 0; ③若a 与a 0平行且|a |=1,则a =a 0, 假命题的个数是( D ) A .0 B .1 C .2D .3[解析] (1)A 错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;B 正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;C 错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;D 错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线.故选B .(2)①②③均为假命题.名师点拨(1)相等向量具有传递性,非零向量的平行也具有传递性. (2)共线向量即为平行向量,它们均与起点无关.(3)平行向量就是共线向量,二者是等价的;但相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量.(4)非零向量a 与a |a|的关系是:a|a|是a 方向上的单位向量.考点二 向量的线性运算——师生共研例2 (1)(2021·武汉调研)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA →+OB →+OC →+OD →等于( D )A .OM →B .2OM →C .3OM →D .4OM →(2)(2018·全国Ⅰ理,6)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( A ) A .34AB →-14AC →B .14AB →-34AC →C .34AB →+14AC →D .14AB →+34AC →[解析] (1)如图,在△OAC 中,M 为AC 中点,所以OA →+OC →=2OM →,在△OBD 中,OB →+OD →=2OM →,故选D .(2)如图,由E 为AD 的中点,得AE →=12AD →,∴EB →=AB →-AE →=AB →-12AD →.又∵D 为BC 的中点,∴AD →=12AB →+12AC →.∴EB →=AB →-14AB →-14AC →=34AB →-14AC →.故选A .名师点拨平面向量线性运算问题的常见类型及解题策略 (1)考查向量加法或减法的几何意义.(2)求已知向量的和或差.一般共起点的向量求和用平行四边形法则,求差用三角形法则;求首尾相连的向量的和用三角形法则.(3)与三角形综合,求参数的值.求出向量的和或差,与已知条件中的式子比较,求得参数.(4)与平行四边形综合,研究向量的关系.画出图形,找出图中的相等向量、共线向量,将所求向量转化到同一个平行四边形或三角形中求解.〔变式训练1〕(1)已知三角形ABC 是等边三角形,D 为AB 的中点,点E 满足2CE →+BE →=0,则AE →=( A ) A .23AB →-23CD →B .23AB →+23CD →C .23AB →-13CD →D .13AB →+23CD →(2)如图所示,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=( D )A .a -12bB .12a -bC .a +12bD .12a +b[解析] (1)由2CE →+BE →=0知CE →=13CB →,BE →=23BC →,所以AE →=AB →+BE →=AB →+23BC →=AB →+23(BD →+DC →)=AB →+23⎝⎛⎭⎫-12AB →-CD →=23AB →-23CD →.(2)连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB ,且CD →=12AB →=12a ,所以AD →=AC→+CD →=b +12a .考点三 共线向量定理及其应用——师生共研例3 设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.[分析] (1)利用向量证明三点共线时,首先要证明两个非零向量共线,然后再说明两向量有公共点,这时才能说明三点共线;(2)利用共线向量定理求解.[解析] (1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →,BD →共线, 又∵它们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b . ∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量,∴⎩⎪⎨⎪⎧k -λ=0,λk -1=0,解得k =±1. [引申] 本例(2)中,若k a +b 与a +k b 反向,则k =__-1__;若k a +b 与a +k b 同向,则k =__1__.[解析] 由本例可知k a +b 与a +k b 反向时λ<0,从而k =-1;k a +b 与a +k b 同向时λ>0,从而k =1.名师点拨平面向量共线的判定方法(1)向量b 与非零向量a 共线的充要条件是存在唯一实数λ,使b =λa .要注意通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.〔变式训练2〕(1)(2021·济南模拟)已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为( B )A .1B .-12C .1或-12D .-1或-12(2)已知向量a ,b ,c 中任意两个都不共线,并且a +b 与c 共线,b +c 与a 共线,那么a +b +c 等于( D )A .aB .bC .cD .0[解析] (1)由于c 与d 共线反向,则存在实数k 使c =k d (k <0), 于是λa +b =k [a +(2λ-1)b ], 整理得λa +b =k a +(2λk -k )b .由于a ,b 不共线,所以有⎩⎪⎨⎪⎧λ=k ,2λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.又因为k <0,所以λ<0,故λ=-12.故选B .(2)∵a +b 与c 共线,∴a +b =λ1c .① 又∵b +c 与a 共线,∴b +c =λ2a .② 由①得:b =λ1c -a .∴b +c =λ1c -a +c =(λ1+1)c -a =λ2a .∴⎩⎪⎨⎪⎧ λ1+1=0,λ2=-1,即⎩⎪⎨⎪⎧λ1=-1,λ2=-1.∴a +b +c =-c +c =0.故选D .名师讲坛·素养提升易错警示——都是零向量“惹的祸”例4 下列命题正确的是( D )A .向量a ,b 共线的充要条件是有且仅有一个实数λ,使b =λaB .在△ABC 中,AB →+BC →+CA →=0C .不等式||a |-|b ||≤|a +b |≤|a |+|b |中两个等号不可能同时成立D .若向量a ,b 不共线,则向量a +b 与向量a -b 必不共线 [解析] 易知ABC 错误.对于D .∵向量a 与b 不共线, ∴向量a ,b ,a +b 与a -b 均不为零向量. 若a +b 与a -b 共线,则存在实数λ使a +b =λ(a -b ), 即(λ-1)a =(1+λ)b ,所以⎩⎪⎨⎪⎧λ-1=0,1+λ=0,此时λ无解,故假设不成立,即a +b 与a -b 不共线.故D 正确.名师点拨在向量的有关概念中,定义长度为0的向量叫做零向量,其方向是任意的,并且规定:0与任一向量平行.由于零向量的特殊性,在两个向量共线或平行问题上,如果不考虑零向量,那么往往会得到错误的判断或结论.在向量的运算中,很多学生也往往忽视0与0的区别,导致结论错误.〔变式训练3〕下列叙述正确的是( D )A .若非零向量a 与b 的方向相同或相反,则a +b 与a ,b 其中之一的方向相同B .|a |+|b |=|a +b |⇔a 与b 的方向相同C .AB →+BA →=0D .若λ≠0,λa =λb ,则a =b[解析] 对于A ,当a +b =0时,其方向任意,它与a ,b 的方向都不相同;对于B ,当a ,b 中有一个为零向量时结论不成立;对于C ,因为两个向量之和仍是一个向量,所以AB →+BA →=0;对于D ,λ(a -b )=0时,∵λ≠0,∴此时一定有a =b .故选D .。
2023年新高考数学大一轮复习专题21 平面向量的概念、线性运算及坐标表示(解析版)
专题21平面向量的概念、线性运算及坐标表示【考点预测】 一.向量的有关概念(1)定义:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)向量的模:向量AB 的大小,也就是向量AB 的长度,记作||AB . (3)特殊向量:①零向量:长度为0的向量,其方向是任意的. ②单位向量:长度等于1个单位的向量.③平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行. ④相等向量:长度相等且方向相同的向量. ⑤相反向量:长度相等且方向相反的向量. 二.向量的线性运算和向量共线定理 (1)向量的线性运算①交换律b b a =+②结合律 )a b c ++=(a b c ++a 与b 的相反向量b -的和的运算叫做a b 的差 ()a b a b -=+-求实数λ与a 的积的运算(|||||a a λ=(0λ>时,a λ与a 的方向相同;当λ<a λ与a 的方向相同;时,0a λ=()()a a λμλμ=)a a a λμλμ+=+(1)向量表达式中的零向量写成0,而不能写成0.(2)两个向量共线要区别与两条直线共线,两个向量共线满足的条件是:两个向量所在直线平行或重合,而在直线中,两条直线重合与平行是两种不同的关系.(3)要注意三角形法则和平行四边形法则适用的条件,运用平行四边形法则时两个向量的起点必须重合,和向量与差向量分别是平行四边形的两条对角线所对应的向量;运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件.(4)向量加法和减法几何运算应该更广泛、灵活如:OA OB BA -=,AM AN NM -=,+OA OB CA OA OB CA BA CA BA AC BC =⇔-=⇔-=+=.三.平面向量基本定理和性质 1.共线向量基本定理如果()a b R λλ=∈,则//a b ;反之,如果//a b 且0b ≠,则一定存在唯一的实数λ,使a b λ=.(口诀:数乘即得平行,平行必有数乘).2.平面向量基本定理如果1e 和2e 是同一个平面内的两个不共线向量,那么对于该平面内的任一向量a ,都存在唯一的一对实数12,λλ,使得1122a e e λλ=+,我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为{}12,e e ,1122e eλλ+叫做向量a 关于基底{}12,e e 的分解式.注意:由平面向量基本定理可知:只要向量1e 与2e 不共线,平面内的任一向量a 都可以分解成形如1122a e e λλ=+的形式,并且这样的分解是唯一的.1122e e λλ+叫做1e ,2e 的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.推论1:若11223142a e e e e λλλλ=+=+,则1324,λλλλ==. 推论2:若11220a e e λλ=+=,则120λλ==. 3.线段定比分点的向量表达式如图所示,在ABC △中,若点D 是边BC 上的点,且BD DC λ=(1λ≠-),则向量1AB ACAD λλ+=+.在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.4.三点共线定理平面内三点A ,B ,C 共线的充要条件是:存在实数,λμ,使OC OA OB λμ=+,其中1λμ+=,O 为平面内一点.此定理在向量问题中经常用到,应熟练掌握.A 、B 、C 三点共线⇔存在唯一的实数λ,使得AC AB λ=; ⇔存在唯一的实数λ,使得OC OA AB λ=+;⇔存在唯一的实数λ,使得(1)OC OA OB λλ=-+; ⇔存在1λμ+=,使得OC OA OB λμ=+.5.中线向量定理如图所示,在ABC △中,若点D 是边BC 的中点,则中线向量1(2AD AB =+)AC ,反之亦正确.四.平面向量的坐标表示及坐标运算 (1)平面向量的坐标表示.在平面直角坐标中,分别取与x 轴,y 轴正半轴方向相同的两个单位向量,i j 作为基底,那么由平面向量基本定理可知,对于平面内的一个向量a ,有且只有一对实数,x y 使a xi yj =+,我们把有序实数对(,)x y 叫做向量a 的坐标,记作(,)a x y =.(2)向量的坐标表示和以坐标原点为起点的向量是一一对应的,即有 向量(,)x y 一一对应向量OA一一对应点(,)A x y .(3)设11(,)a x y =,22(,)b x y =,则1212(,)a b x x y y +=++,1212(,)a b x x y y -=--,即两个向量的和与差的坐标分别等于这两个向量相应坐标的和与差.若(,)a x y =,λ为实数,则(,)a x y λλλ=,即实数与向量的积的坐标,等于用该实数乘原来向量的相应坐标.(4)设11(,)A x y ,22(,)B x y ,则AB OB OA =-=12(,x x -12)y y -,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标.五.平面向量的直角坐标运算①已知点11()A x y ,,22()B x y ,,则2121()AB x x y y =--,,||(AB x = ②已知11(,)a x y =,22(,)b x y =,则a b ±1212()x x y y =±±,,11(,)a x y λλλ=, =a b ⋅1212x x y y +,21||a x y =+.a b ∥⇔12210x y x y -=,a b ⊥⇔12120x x y y +=【方法技巧与总结】(1)向量的三角形法则适用于任意两个向量的加法,并且可以推广到两个以上的非零向量相加,称为多边形法则.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量.即122311n n n A A A A A A A A -+++=.(2)||||||||||||a b b a a b -≤±≤+,当且仅当,b a 至少有一个为0时,向量不等式的等号成立.(3)特别地:||||||||b b a a -≤±或||||||a a b b ±≤+当且仅当,b a 至少有一个为0时或者两向量共线时,向量不等式的等号成立.(4)减法公式:AB AC CB -=,常用于向量式的化简.(5)A 、P 、B 三点共线⇔(1)OP t OA tOB =-+()t R ∈,这是直线的向量式方程.【题型归纳目录】题型一:平面向量的基本概念 题型二:平面向量的线性表示 题型三:向量共线的运用 题型四:平面向量基本定理及应用 题型五:平面向量的直角坐标运算【典例例题】题型一:平面向量的基本概念例1.(2022·全国·高三专题练习)已知平面四边形ABCD 满足AB DC =,则四边形ABCD 是( ) A .正方形 B .平行四边形C .菱形D .梯形【答案】B 【解析】 【分析】根据平面向量相等的概念,即可证明AB DC =,且//AB DC ,由此即可得结论. 【详解】在四边形ABCD 中, AB DC =,所以AB DC =,且//AB DC , 所以四边形ABCD 为平行四边形. 故选:B例2.(2022·全国·高三专题练习)给出如下命题: ①向量AB 的长度与向量BA 的长度相等; ②向量a 与b 平行,则a 与b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同; ④两个公共终点的向量,一定是共线向量;⑤向量AB 与向量CD 是共线向量,则点A ,B ,C ,D 必在同一条直线上. 其中正确的命题个数是( ) A .1 B .2C .3D .4【答案】B【解析】 【分析】根据向量的基本概念,对每一个命题进行分析与判断,找出正确的命题即可. 【详解】对于①,向量AB 与向量BA ,长度相等,方向相反,故①正确;对于②,向量a 与b 平行时,a 或b 为零向量时,不满足条件,故②错误; 对于③,两个有共同起点且相等的向量,其终点也相同,故③正确; 对于④,两个有公共终点的向量,不一定是共线向量,故④错误;对于⑤,向量AB 与CD 是共线向量,点A ,B ,C ,D 不一定在同一条直线上,故⑤错误. 综上,正确的命题是①③. 故选:B .例3.(2022·全国·高三专题练习)下列说法:①若两个空间向量相等,则表示它们有向线段的起点相同,终点也相同;②若向量AB →,CD →满足AB CD →→>,且AB →与CD →同向,则AB CD →→>;③若两个非零向量AB →与CD →满足0AB CD →→→+=,则AB →,CD →为相反向量; ④AB CD →→=的充要条件是A 与C 重合,B 与D 重合. 其中错误的个数为( ) A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】①错误. 两个空间向量相等,但与起点和终点的位置无关;②错误. 向量不能比较大小;③正确. AB →,CD →为相反向量;④错误. A 与C ,B 与D 不一定重合.【详解】①错误.两个空间向量相等,其模相等且方向相同,但与起点和终点的位置无关. ②错误.向量的模可以比较大小,但向量不能比较大小.③正确. 0AB CD →→→+=,得AB CD →→=-,且AB →,CD →为非零向量,所以AB →,CD →为相反向量.④错误. 由AB CD →→=,知AB CD →→=,且AB →与CD →同向,但A 与C ,B 与D 不一定重合.故选:C 【点睛】易错点睛:向量是一个既有大小,又有方向的矢量,考虑向量的问题时,一定要注意这一点.例4.(2022·江苏江苏·一模)平面内三个单位向量a ,b ,c 满足230a b c ++=,则( ) A .a ,b 方向相同 B .a ,c 方向相同 C .b ,c 方向相同 D .a ,b ,c 两两互不共线【答案】A 【解析】 【分析】根据230a b c ++=,得32c a b =--,两边利用单位向量的平方等于1,即可求出a,b 0<>=,解得a ,b 方向相同.【详解】因为230a b c ++=, 所以32c a b =--, 所以22(3)(2)c a b =--, 所以222944?c a b a b =++, 所以9144cos ,a b a b =++<>, 所以4411cos ,a b =⨯⨯<>, 所以cos ,1a b <>= 所以a,b 0<>=, 所以a ,b 方向相同, 故选:A.例5.(2022·吉林吉林·模拟预测(文))已知向量()4,3a =,则与向量a 垂直的单位向量的坐标为( ) A .43,55⎛⎫ ⎪⎝⎭B .34,55⎛⎫- ⎪⎝⎭C .43,55⎛⎫-- ⎪⎝⎭或43,55⎛⎫ ⎪⎝⎭D .34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭【答案】D 【解析】 【分析】先写出与之垂直的一个向量,然后再求得与此垂直向量平行的单位向量即得. 【详解】易知(3,4)b =-是与a 垂直的向量,5b =,所以与b 平行的单位向量为134(,)555b =-或134(,)555b -=-,故选:D .例6.(多选题)(2022·全国·高三专题练习)下列命题中正确的是( ) A .若a b =,则32a b > B .0BC BA DC AD ---=C .若向量,a b 是非零向量,则a b a b a +=+⇔与b 方向相同D .向量a 与()0b b ≠共线的充要条件是:存在唯一的实数λ,使λa b 【答案】CD 【解析】 【分析】利用向量的知识对选项逐一分析,由此确定正确选项. 【详解】向量不等比较大小,故A 选项错误.向量加法、减法的结果仍为向量,故B 选项错误. a b a b a +=+⇔与b 方向相同,C 选项正确.根据向量共线的知识可知D 选项正确. 故选:CD例7.(多选题)(2022·全国·高三专题练习)下列有关四边形ABCD 的形状,判断正确的有( ) A .若AD BC =,则四边形ABCD 为平行四边形 B .若13AD BC =,则四边形ABCD 为梯形C .若AB AD AB AD +=-,则四边形ABCD 为菱形 D .若AB DC =,且AC BD ⊥,则四边形ABCD 为正方形 【答案】AB 【解析】 【分析】依据平行四边形判定定理判断选项A ;依据梯形判定定理判断选项B ;依据菱形判定定理判断选项C ;依据正方形判定定理判断选项D.【详解】选项A :若AD BC =,则//AD BC ,=AD BC ,则四边形ABCD 为平行四边形.判断正确; 选项B :若13AD BC =,则//AD BC ,AD BC ≠,则四边形ABCD 为梯形. 判断正确;选项C :若AB AD AB AD +=-,则2240AB AD AB AD AB AD -=+⋅=-,则AB AD ⊥,即90BAD ∠=.仅由90BAD ∠=不能判定四边形ABCD 为菱形.判断错误;选项D :若AB DC =,则//AB DC ,=AB DC ,则四边形ABCD 为平行四边形, 又由AC BD ⊥,可得对角线AC BD ⊥,则平行四边形ABCD 为菱形. 判断错误. 故选:AB例8.(多选题)(2022·全国·高三专题练习)下列说法错误的是( ) A .若a b =,则a b =或a b =- B .若ma mb =,m R ∈,则a b = C .若//a b , //c b ,则//a cD .若0ma =,m R ∈,则0m =或0a = 【答案】ABCD 【解析】 【分析】对于A ,模长相等的两个向量方向任意,不一定平行;对于B ,两个向量相等要求向量方向相同且模长相等,当0m =时,无法推出这两点,故B 不正确;对于C ,当0b =时,选项不正确;对于D ,00ma m =⇒=或0a =,即可得到D 错误.【详解】对于A ,若a b =,则两个向量的方向可以是任意的,不一定是平行的,故A 不正确; 对于B ,两个向量相等要求向量方向相同且模长相等,当0m =时,满足0ma mb ==, a 和b 的方向可以是任意的,且两者的模长也不一定相同,故B 不正确;对于C ,若//a b , //c b ,当0b =时,满足//a b , //c b ,但是不满足//a c ,故C 错误; 对于D ,00ma m =⇒=或者||0a =,即0m =或0a =,故D 错误; 故选:ABCD.【方法技巧与总结】准确理解平面向量的基本概念是解决向量题目的关键.共线向量即为平行向量,非零向量平行具有传递性,两个向量方向相同或相反就是共线向量,与向量长度无关,两个向量方向相同且长度相等,就是相等向量.共线向量或相等向量均与向量起点无关.题型二:平面向量的线性表示例9.(2022·山东潍坊·模拟预测)在平行四边形ABCD 中,,M N 分别是,AD CD 的中点,BM a =,BN b =,则BD =( )A .3243a b +B .2233ab C .2334a b +D .3344a b +【答案】B【解析】 【分析】设,AB m AD n ==,根据向量的线性运算,得到11()()22BD x y n x y m =+--,结合BD n m =-,列出方程组,求得,x y 的值,即可求解.【详解】如图所示,设,AB m AD n ==,且BD xa yb =+,则1111()()()()2222BD xa yb x n m y n m x y n x y m =+=⋅-+⋅-=+--,又因为BD n m =-,所以112112x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得22,33x y ==,所以2233BD a b =+.故选:B.例10.(2022·河南·平顶山市第一高级中学模拟预测(文))如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2EO AE =,则EB ( )A .1566AB AD - B.1566AB AD +C .5166AB AD -D .5166AB AD +【答案】C 【解析】 【分析】根据平面向量线性运算法则计算可得; 【详解】解:因为2EO AE =,所以()111366AE AO AC AB AD ===+, 所以()151666EB AB AE AB AB AD AB AD =-=-+=-. 故选:C.例11.(2022·吉林吉林·模拟预测(文))如图,ABCD 中,AB a =,AD b =,点E 是AC 的三等分点13⎛⎫=⎪⎝⎭EC AC ,则DE =( )A .1233a b -B .2133a b -C .1233a b +D .2133ab 【答案】B 【解析】 【分析】根据向量的加法法则和减法法则进行运算即可. 【详解】 2221()3333DE AE AD AC AD AB AD AD a b =-=-=⋅+-=- 故选:B.例12.(2022·安徽·合肥市第八中学模拟预测(文))在平行四边形ABCD 中,2233AE AB CF CD ==,,G 为EF 的中点,则DG =( )A .1122AD AB -B .1122AB AD -C .3142AD AB -D .3142AB AD -【答案】B 【解析】 【分析】根据题意和平面向量的线性运算即可得出结果. 【详解】 ()1111112111·2222323622DG DE DF DA AE DC AD AB AB AB AD ⎛⎫=+=++=-++=- ⎪⎝⎭.故选:B.例13.(2022·湖南师大附中三模)艺术家们常用正多边形来设计漂亮的图案,我国国旗上五颗耀眼的正五角星就是源于正五边形,正五角星是将正五边形的任意两个不相邻的顶点用线段连接,并去掉正五边形的边后得到的图形,它的中心就是这个正五边形的中心.如图,设O 是正五边形ABCDE 的中心,则下列关系错误的是( )A .AD DB OB OA +=-B .0AO BE ⋅=C .3AC AD AO +=D .AO AD BO BD ⋅=⋅【答案】C【解析】【分析】由平面向量的运算对选项逐一判断【详解】对于A ,,AD DB AB OB OA AB +=-=,故A 正确,对于B :因为AB AE =,OB OE =,所以AO BE ⊥,故B 正确,对于C :由题意O 是ACD △的外心,不是ACD △的重心设CD 中点为M ,则2||=||||||||cos36||2cos 18AM AO OM AO AO AO +=+︒=⋅︒,24cos 18AC AD AO +=︒,故C 错误, 对于D :2211||||22AO AD AD BD BO BD ⋅===⋅,故D 正确. 故选:C 例14.(2022·河北·石家庄二中模拟预测)数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,该直线被称为三角形的欧拉线,设点,,O G H 分别为任意ABC 的外心、重心、垂心,则下列各式一定正确的是( )A .12OG OH =B .23OH GH =C .23AO AH AG +=D .23BO BH BG += 【答案】D【解析】【分析】根据三点共线和长度关系可知AB 正误;利用向量的线性运算可表示出,AG BG ,知CD 正误.【详解】,,O G H 依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,12OG GH ∴=,13OG OH ∴=,32OH GH =,A 错误,B 错误; ()112333AO AH AG AO OG AO OH AO AH AO +=+=+=+-=,C 错误; ()112333BO BH BG BO OG BO OH BO BH BO +=+=+=+-=,D 正确. 故选:D.例15.(2022·全国·模拟预测)在平行四边形ABCD 中,设CB a =,CD b =,E 为AD 的中点,CE 与BD 交于F ,则AF =( )A .23a b +-B .23a b +-C .23a b --D .23a b -- 【答案】B【解析】【分析】 根据题意得()13AF AC AD =+,再分析求解即可. 【详解】如下图所示,连接AC 与BD 交于O ,则O 为AC 的中点,因为E 为AD 的中点,所以F 为三角形ACD 的重心,所以()()112333a b AF AC AD a b a +=+=---=-. 故选:B.例16.(2022·黑龙江·哈尔滨三中模拟预测(文))ABC 中,E 是边BC 上靠近B 的三等分点,则向量AE =( )A .1133AB AC + B .1233AB AC + C .2133AB AC + D .2233AB AC + 【答案】C【解析】【分析】利用向量的三角形法则以及线性运算法则进行运算,即可得出结论.【详解】解:因为点E 是BC 边上靠近B 的三等分点,所以13BE BC =, 所以1121()3333AE AB BE AB BC AB BA AC AB AC =+=+=++=+; 故选:C.例17.(多选题)(2022·山东·烟台二中模拟预测)中华人民共和国的国旗图案是由五颗五角星组成,这些五角星的位置关系象征着中国共产党领导下的革命与人民大团结.如图,五角星是由五个全等且顶角为36°的等腰三角形和一个正五边形组成.已知当2AB =时,1BD =,则下列结论正确的为( )A .DE DH =B .0AF BJ ⋅=C .51AH AB +=D .CB CD JC JH +=- 【答案】AB【分析】连接DH ,AF ,CH ,BH ,利用五角星的结构特征逐项分析判断作答.【详解】对于A ,连接DH ,如图,由DF =FH ,108DFH ∠=得:36DHF E ∠==∠,DE DH =,A 正确;对于B ,连接AF ,由,AD AH FD FH ==得:AF 垂直平分DH ,而//BJ DH ,即AF BJ ⊥,则0AF BJ ⋅=,B 正确; 对于C ,AH 与AB 不共线,C 不正确;对于D ,连接CH ,BH ,由选项A 知,DH DE BC ==,而//BC DH ,则四边形BCDH 是平行四边形, CB CD CH JH JC +==-,D 不正确.故选:AB【方法技巧与总结】(1)两向量共线问题用向量的加法和减法运算转化为需要选择的目标向量即可,而此类问题又以“爪子型”为几何背景命题居多,故熟练掌握“爪子型”公式更有利于快速解题.(2)进行向量运算时,要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的基本向量或首尾相接的向量,运用向量加、减法运算及数乘运算来求解.(3)除了充分利用相等向量、相反向量和线段的比例关系外,有时还需要利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.题型三:向量共线的运用例18.(2022·陕西·西北工业大学附属中学模拟预测(文))设a 、b 都是非零向量,下列四个条件中,使a a b b=成立的充分条件是( )A .a b =且a b ∥B .a b =-C .a b ∥D .2a b = 【答案】D【解析】根据充分条件的定义以及平面向量的有关概念即可解出.【详解】对于A ,当a b =且a b ∥时,a a b b =或a b a b =-,A 错误; 对于B ,当a b =-时,a b a b =-,B 错误; 对于C ,当a b ∥时,a ab b =或a b a b =-,C 错误; 对于D ,当2a b =时,a a b b =,D 正确.故选:D . 例19.(2022·四川绵阳·二模(理))已知平面向量a ,b 不共线,46AB a b =+,3BC a b =-+,3CD a b =+,则( )A .A ,B ,D 三点共线B .A ,B ,C 三点共线 C .B ,C ,D 三点共线D .A ,C ,D 三点共线【答案】D【解析】 【分析】根据给定条件逐项计算对应三点确定的某两个向量,再判断是否共线作答.【详解】平面向量a ,b 不共线,46AB a b =+,3BC a b =-+,3CD a b =+,对于A ,3(3)6BD BC CD a b a b b =+=-+++=,与AB 不共线,A 不正确;对于B ,因46AB a b =+,3BC a b =-+,则AB 与BC 不共线,B 不正确;对于C ,因3BC a b =-+,3CD a b =+,则BC 与CD 不共线,C 不正确;对于D ,46(3)393AC AB BC a b a b a b CD =+=++-+=+=,即//AC CD ,又线段AC 与CD 有公共点C ,则A ,C ,D 三点共线,D 正确.故选:D 例20.(2022·全国·高三专题练习)已知1e ,2e 是不共线向量,则下列各组向量中,是共线向量的有( )①15a e =,17b e =;②121123a e e =-,1232b e e =-; ③12a e e =+,1233b e e =-.A .①②B .①③C .②③D .①②③【解析】【分析】 根据平面向量共线定理得到,对于①57a b =,故两向量共线;对于②16a b =,故两向量共线;对于③不存在实数λ满足λa b ,故不共线.【详解】对于①15a e =,17b e =,57a b =,故两向量共线; 对于②121123a e e =-,1232b e e =-,16a b =,故两向量共线; 对于③12a e e =+,1233b e e =-,假设存在,a b λλ=⇒()121233e e e e λ=-+()()123131e e λλ⇒-=+,因为1e ,2e 是不共线向量,故得到3131λλ-=+无解.故选:A.例21.(2022·内蒙古·包钢一中一模(文))已知向量1e ,2e 是两个不共线的向量,122a e e =-与12b e e λ=+共线,则λ=( )A .2B .2-C .12-D .12 【答案】C【解析】【分析】根据向量共线的充要条件建立方程直接求解. 【详解】因为122a e e =-与12b e e λ=+共线,所以ka b =,0k ≠,所以12121212()22=k k e e e e e e e e k λλ-+⇒-=+, 因为向量1e ,2e 是两个不共线的向量,所以21k k λ=⎧⎨-=⎩,解得12λ=-, 故选:C .例22.(2022·安徽·合肥市第六中学模拟预测(理))如图,在ABC 中,M ,N 分别是线段AB ,AC 上的点,且23AM AB =,13AN AC =,D ,E 是线段BC 上的两个动点,且(,)AD AE x AM y AN x y +=+∈R ,则12x y+的的最小值是( )A .4B .43C .94D .2【答案】B【解析】【分析】 根据平面向量共线定理可设AD mAB nAC =+,1m n +=,AE AB AC λμ=+,1λμ+=,再结合AD AE x AM y AN +=+得26x y +=,最后运用基本不等式可求解.【详解】设AD mAB nAC =+,1m n +=,AE AB AC λμ=+,1λμ+=,则AD AE mAB nAC AB AC λμ+=+++=3()()()3()2m AB n AC m AM n AN λμλμ+++=+++x AM y AN =+,3()2m x λ+=,3()n y m μλ+=⇒+=23x ,13n y μ+=,21222633m n x y x y λμ+++=⇒+=⇒+=.所以12112(2)6x y x y x y ⎛⎫+=++= ⎪⎝⎭14142222663y x x y ⎛⎛⎫+++≥++= ⎪ ⎝⎭⎝, 当且仅当32x =,3y =时等号成立. 所以12x y +的的最小值是43. 故选:B例23.(2022·全国·模拟预测)在ABC 中,点F 为线段BC 上任一点(不含端点),若()20,0AF xAB yAC x y =+>>,则12x y +的最小值为( ) A .9B .8C .4D .2【答案】A【解析】【分析】 根据向量共线定理得推论得到21x y +=,再利用基本不等式“1”的妙用求解最小值.【详解】因为点F 为线段BC 上任一点(不含端点),所以21x y +=,故()12122221459y x x y x y x y x y ⎛⎫+=++=+++≥+ ⎪⎝⎭, 当且仅当22y x x y =,即13x y ==时等号成立, 故选:A例24.(2022·山东泰安·模拟预测)已知向量m ,n 不共线,向量53OA m n =-,OB xm n =+,若O ,A ,B 三点共线,则x =( )A .53-B .53C .35D .35【答案】A【解析】【分析】根据O ,A ,B 三点共线,则OA OB ∥,R λ∃∈,OB OA λ=,代入整理.【详解】因为O ,A ,B 三点共线,则OA OB ∥所以R λ∃∈,OB OA λ=,即()53xm n m n λ+=-整理得:()()531x m n λλ-=+ 又∵向量m ,n 不共线,则5310x λλ-=+=,则53x =- 故选:A .例25.(2022·云南·昆明一中高三阶段练习(文))已知向量a ,b ,且2AB a b =+,BC 56a b =-+,72CD a b =-,则一定共线的三点是( )A .A ,B ,DB .A ,B ,C C .B ,C ,D D .A ,C ,D【答案】A【解析】【分析】 由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解.【详解】因为2AB a b =+,BC 56a b =-+,72CD a b =-,选项A ,2AB a b =+,(56)(72)24B a b D B D b C a C b a ++-+==-+=,若A ,B ,D 三点共线,则AB BD λ=,即2(24)a b a b λ+=+,解得12λ=,故该选项正确;选项B ,2AB a b =+,BC 56a b =-+,若A ,B ,C 三点共线,则AB BC λ=,即2(56)a b a b λ+=-+,解得λ不存在,故该选项错误;选项C ,BC 56a b =-+,72CD a b =-,若B ,C ,D 三点共线,则BC BD λ=,即56(72)a b a b λ-+=-,解得λ不存在,故该选项错误;选项D ,(2)(56)48a b a A b AB BC a b C ++=+=+-=-+,72CD a b =-,若A ,C ,D 三点共线,则AC CD λ=,即48(72)a b a b λ-+=-,解得λ不存在,故该选项错误;故选:A.例26.(2022·全国·高三专题练习)给出下列命题:①若||||a b =,则a b =;②若A B C D 、、、是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件;③若a b =,b c =,则a c =;④a b =的充要条件是||a ||b =且//a b ;⑤若//a b ,//b c ,则//a c .其中正确命题的序号是________ .【答案】②③##③②【解析】【分析】根据向量相等的概念及向量共线的概念即可判断.【详解】对于①,两个向量的长度相等,不能推出两个向量的方向的关系,故①错误;对于②,因为A ,B ,C ,D 是不共线的四点,且AB DC = 等价于//AB DC 且AB DC =,即等价于四边形ABCD 为平行四边形,故②正确;对于③,若a b =,b c =,则a c =,显然正确,故③正确;对于④,由a b =可以推出||||a b =且//a b ,但是由||||a b =且//a b 可能推出a b =-,故“||||a b =且//a b ”是“a b =”的必要不充分条件,故④不正确,对于⑤,当0b =时,//a b ,//b c ,但推不出//a c ,故⑤不正确.故答案为:②③例27.(2022·全国·高三专题练习)如图,在ABC 中,点P 满足2BP PC =,过点P 的直线与AB AC ,所在的直线分别交于点M N ,若AM AB λ=,,(0,0)AN AC μλμ=>>,则λμ+的最小值为__________.【答案】1+【解析】【分析】 先利用条件找到12133λμ+=,则12()33λμλμλμ⎛⎫+=+⋅+ ⎪⎝⎭,利用基本不等式求最小值即可. 【详解】 BP BA AP =+,PC PA AC =+,又2BP PC =, ∴()2AB AP AC AP -+=-, ∴12123333AP AB AC AM AN λμ=+=+, 又P 、M 、N 三点共线, ∴12133λμ+=,∴12122()113333333μλλμλμλμλμ⎛⎫⎛⎫⎛⎫+=+⋅+=+++≥+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当233μλλμ=,即λμ=∴λμ+的最小值为1故答案为:1例28.(2022·全国·高三专题练习)已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM =x AB ,AN =y AC ,求11x y+的值为________. 【答案】3【解析】【分析】以,AN AM 为基底,由G 是ABC ∆的重心和M ,G ,N 三点共线,可得11=133x y+,即求. 【详解】 根据条件:11,==AC AN AB AM y x,如图设D 为BC 的中点,则1122AD AB AC =+ 因为G 是ABC ∆的重心,211333AG AD AB AC ==+, 1133AG AM AN x y∴=+, 又M ,G ,N 三点共线,11=133x y ∴+,即113x y+=. 故答案为:3.例29.(2022·全国·高三专题练习)如图,ABC 中点,D E 是线段BC 上两个动点,且AD AE xAB y AC +=+,则9x yxy+的最小值为______.【答案】8 【解析】 【分析】设AD mAB nAC =+,AE AB AC λμ=+,由B ,D ,E ,C 共线可得2x y +=, 再利用乘“1”法求解最值. 【详解】设AD mAB nAC =+,AE AB AC λμ=+,B ,D ,E ,C 共线,1m n ∴+=,1λμ+=.AD AE xAB y AC +=+,则2x y +=,点D ,E 是线段BC 上两个动点,0x ∴>,0y >. ∴991191191()()(10)(10)8222x y y x y xx y xy x y x y x y x y+=+=++=+++= 则9x yxy+的最小值为8. 故答案为:8. 【点睛】由向量共线定理的推论得到2x y +=是解题关键,乘“1”法求解最值是基本不等式求最值的常用方法.. 例30.(2022·全国·高三专题练习)已知向量1223a e e =-,1223b e e =+,其中1e ,2e 不共线,向量1229c e e =-,问是否存在这样的实数λ,μ,使向量d a b λμ=+与c 共线?【答案】存在 【解析】 【分析】由已知得12(22)(33)d e e λμλμ=++-+,所以要使d 与c 共线,则应有实数k ,使d kc =,即()1212(22)(33)29e e k e e λμλμ++-+=-,从而得222339k k λμλμ+=⎧⎨-+=-⎩,进而可求得结果【详解】因为向量1223a e e =-,1223b e e =+, 所以1212(23)(23)d a b e e e e λμλμ=+=-++12(22)(33)e e λμλμ=++-+要使d 与c 共线,则应有实数k ,使d kc =, 即()1212(22)(33)29e e k e e λμλμ++-+=-,即222339kkλμλμ+=⎧⎨-+=-⎩得2λμ=-. 故存在这样的实数λ,μ,只要2λμ=-,就能使d 与c 共线.【方法技巧与总结】要证明A ,B ,C 三点共线,只需证明AB 与BC 共线,即证AB =λBC (R λ∈).若已知A ,B ,C 三点共线,则必有AB 与BC 共线,从而存在实数λ,使得AB =λBC .题型四:平面向量基本定理及应用例31.(2022·重庆八中模拟预测)如图,在平行四边形ABCD 中,E 是BC 的中点,2CF FD =,DE 与BF 相交于O .若2AD =,(32)7AO AD AB ⋅-=-,则AB 的长为( )A .2B .3C .4D .5【答案】C 【解析】 【分析】先以AB AD 、为基底表示AO ,再利用向量的数量积把(32)7AO AD AB ⋅-=-转化为关于AB 的方程,即可求得AB 的长【详解】在平行四边形ABCD 中,E 是BC 的中点,2CF FD =,DE 与BF 相交于O . 设(01)DO DE λλ=<<, (01)BO BF μμ=<<则11++122AD DO AD DE AD AB AD AD AB λλλλ⎛⎫⎛⎫+==-=-+ ⎪ ⎪⎝⎭⎝⎭22(1)33AB BO AB BF AB AD AB AB AD μμμμ⎛⎫+=+=+-=-+ ⎪⎝⎭由AO AD DO AB BO =+=+,可得2(1)3AB AD μμ-+112AD AB λλ⎛⎫=-+ ⎪⎝⎭则112213λμμλ⎧-=⎪⎪⎨⎪-=⎪⎩,解之得1234λμ⎧=⎪⎪⎨⎪=⎪⎩,则3142AO AD DO AD AB =+=+则22(32)(33194242)7AO AD AB AD AB AD A AD AB B ⎛⎫+⋅-= ⎪⎝⋅-=⎭-=-又2AD =,则279AB -=-,解之得4AB ,即AB 的长为4故选:C例32.(2022·全国·高三专题练习)在等边ABC 中,O 为重心,D 是OB 的中点,则AD =( ) A .AB AC + B.2132AB AC +C .1124AB AC +D .2136AB AC +【答案】D 【解析】 【分析】根据给定条件,利用平面向量的线性运算计算作答. 【详解】O 为ABC 的重心,延长AO 交BC 于E ,如图,E 为BC 中点,则有2211()()3323AO AE AB AC AB AC ==⋅+=+,而D 是OB 的中点, 所以111121()222636AD AB AO AB AB AC AB AC =+=++=+. 故选:D例33.(2022·河南郑州·三模(理))在ABC 中,D 是BC 上一点,2BD DC =,M 是线段AD 上一点,14BM tBA BC =+,则t =( )A .12 B .23C .34 D .58【答案】D 【解析】 【分析】 求得1233AD AB AC =+,设1233AM AD AB AC λλλ==+,其中01λ≤≤,利用平面向量的线性运算可得出3144AM AB BM t AB AC ⎛⎫=+=-+ ⎪⎝⎭,根据平面向量的基本定理可得出关于λ、t 的方程组,即可解得t 的值.【详解】因为2BD DC =,则()2AD AB AC AD -=-,所以,1233AD AB AC =+, ()131444AM AB BM AB t AB AC AB t AB AC ⎛⎫=+=-+-=-+ ⎪⎝⎭, 因为M 是线段AD 上一点,设1233AM AD AB AC λλλ==+,其中01λ≤≤,所以,13342134t λλ⎧=-⎪⎪⎨⎪=⎪⎩,解得3858t λ⎧=⎪⎪⎨⎪=⎪⎩. 故选:D.例34.(2022·河南·模拟预测(理))如图,在ABCD 中,M 为BC 的中点,AC mAM nBD =+,则m +n =( )A .1B .43 C .53D .2【答案】C 【解析】 【分析】利用向量的线性运算可求,m n 的值. 【详解】1122AM AB BC AB AD =+=+,而BD AD AB =-,故()12AC m AB AD n AD AB ⎛⎫=++- ⎪⎝⎭()2m m n AB n AD ⎛⎫=-++ ⎪⎝⎭,而AC AB AD =+且,AB AD 不共线,故4153{13123m n m m n m n n ⎧-==⎪⎪⇒⇒+=⎨+=⎪=⎪⎩, 故选:C.例35.(2022·河南商丘·三模(理))如图,在ABC 中,点D ,E 分别在边AB ,BC 上,且均为靠近B 的四等分点,CD 与AE 交于点F ,若BF xAB yAC =+,则3x y +=( )A .1-B .34-C .12-D .14-【答案】A 【解析】 【分析】由题意推出DE AC ∥,可得14DF DE FC AC ==,推出15DF DC =,根据向量的加减运算,用基底,AB AC 表示出BF ,和BF xAB yAC =+比较,可得,x y ,即得答案.【详解】 连结DE ,由题意可知,14BD BE BA BC ==, 所以DE AC ∥,则14DE BD AC BA ==, 所以14DF DE FC AC ==,所以14BD AB =-,34DC AC AD AC AB =-=-, 则1135520DF DC AC AB ==-, 故11321452055BF BD DF AB AC AB AB AC =+=-+-=-+, 又BF xAB yAC =+,所以25x =-,15y =,则31x y +=-,故选:A例36.(2022·山东济宁·三模)在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP =________.【解析】 【分析】根据题意得34AP mAC AD =+,求出14m =,所以1142AP AC AB =+,即21142AP AC AB ⎛⎫=+ ⎪,求解即可.【详解】 因为23AD AB =,所以32AB AD =,又12AP mAC AB =+,即1324AP mAC AB mAC AD =+=+,因为点P 在线段CD 上, 所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形, 所以222211111cos60421644AP AC AB AC AC AB AB ⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故7AP =例37.(2022·湖南·模拟预测)在三角形ABC 中,点D 在边BC 上,若2BD DC =,AD AB ACλμ=+(),λμ∈R ,则λμ-=______.【答案】13-【解析】 【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD DC =,得()2233BD BC AC AB ==-, 所以()212333A A C AB D AB BD AB A A BC -+===++, 因为(),AD AB AC λμλμ=+∈R ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-【方法技巧与总结】应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加法、减法或数乘运算,基本方法有两种:(1)运用向量的线性运算法则对待求向量不断进行化简,直至用基底表示为止.(2)将向量用含参数的基底表示,然后列方程或方程组,利用基底表示向量的唯一性求解.(3)三点共线定理: A ,B ,P 三点共线的充要条件是:存在实数,λμ,使OP OA OB λμ=+,其中1λμ+=,O 为AB 外一点.题型五:平面向量的直角坐标运算例38.(2022·江苏·高三专题练习)在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
训练手册A组基础达标(时间:30分钟满分:50分)若时间有限,建议选讲3,5,9一、选择题(每小题5分,共25分)(2014·九江模拟)若a+b+c=0,则a,b,c(A)A. 都是非零向量时也可能无法构成一个三角形B. 一定不可能构成三角形C. 都是非零向量时能构成三角形D. 一定可构成三角形都是非零向量时,也有可能是共线向量满足a+b+c=0.(2013·怀化模拟)设a,b为不共线的非零向量,AB→=2a+3b,BC→=-8a-2b,CD→=-6a-4b,那么(A)A. AD→与BC→同向,且|AD→|>|BC→|B. AD→与BC→同向,且|AD→|<|BC→|C. AD→与BC→反向,且|AD→|>|BC→|D. AD→∥BD→∵AD→=AB→+BC→+CD→=2a+3b+(-8a-2b)+(-6a-4b)=-12a-3b,BC→=-8a-2b,∴AD→=32BC→,∴AD→与BC→同向,且|AD→|=32|BC→|.∴|AD→|>|BC →|. (2013·金华十校联考)已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC→+CB →=0,则OC →等于(A)A. 2OA→-OB → B. -OA →+2OB → C. 23OA →-13OB → D. -13OA →+23OB → ∵AC →=OC →-OA →,CB →=OB →-OC →,又2AC →+CB →=0,∴2OC→-2OA →+OB →-OC→=0.∴OC →=2OA →-OB →.(2014·皖南八校联考)在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB→,则λ等于(A) A. 23 B. 13 C. -13 D. -23∵AD →=CD →-CA →,DB →=CB →-CD →,AD →=2DB →,∴CD→-CA →=2CB →-2CD →,CD →=13CA →+23CB →.∴λ=23.(2013·张家界模拟)如图所示,已知AP →=43AB →,用OA →,OB →表示OP →,则OP→等于(A)A. -13OA →+43OB →B. 13OA →+43OB →C. 13OA →-43OB →D. -13OA →-43OB → OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.二、 填空题(每小题5分,共15分)(2014·锦州模拟)已知a ,b 是不共线的向量,若 AB →=λ1a +b ,AC →=a+λ2b (λ1,λ2∈R),则A ,B ,C 三点共线的充要条件为__λ1λ2=1__.A ,B ,C 三点共线⇔AB →∥AC →⇔λ1λ2-1×1=0⇔λ1λ2=1. (2013·和平模拟)设e 是与向量AB →共线的单位向量,AB →=3e ,又向量BC →=-5e ,若AB →=λAC →,则λ=__-32__.∵AC→=AB →+BC →=3e -5e =-2e ,由AB →=λ·AC →,得3e =λ·(-2)·e ,∴λ=-32.(2014·成都五校联考)在△ABC 中,点D 满足AD →=3DC →,BD →=λBA →+μBC →,则λμ=__316__.AD→=BD →-BA →,DC →=BC →-BD →.∵AD →=3DC →,∴BD →-BA →=3BC →-3BD →,∴4BD →=3BC →+BA →,BD →=34BC →+14BA →,∴λ=14,μ=34,故λμ=316.三、 解答题(共10分)已知点G 是△ABO 的重心,M 是AB 边的中点.(1)求GA→+GB →+GO →;(2)若PQ 过△ABO 的重心G ,且OA→=a ,OB →=b ,OP →=m a ,OQ →=n b ,求证:1m +1 n=3.(1)∵GA→+GB→=2GM→,又2GM→=-GO→,∴GA→+GB→+GO→=-GO→+GO→=0.(4分)(2)显然OM→=12(a+b).∵G是△ABO的重心,∴OG→=23OM→=13(a+b).(6分)由P,G,Q三点共线,得PG→∥GQ→.∴有且只有一个实数λ,使PG→=λGQ→.(7分)而PG→=OG→-OP→=13(a+b)-m a=⎝⎛⎭⎪⎪⎫13-m a+13b,GQ→=OQ→-OG→=n b-13(a+b)=-13a+⎝⎛⎭⎪⎪⎫n-13b,∴⎝⎛⎭⎪⎪⎫13-m a+13b=λ⎣⎢⎢⎡⎦⎥⎥⎤-13a+⎝⎛⎭⎪⎪⎫n-13b.(8分)又a,b不共线,∴⎩⎪⎨⎪⎧13-m=-13λ,13=λ⎝⎛⎭⎪⎪⎫n-13,消去λ,整理得3mn=m+n. 故1m+1n=3.(10分)B组提优演练(时间:30分钟满分:50分)若时间有限,建议选讲2,7,9一、选择题(每小题5分,共20分)(2013·汕头二模)如图,正六边形ABCDEF 中,BA→+CD →+EF →等于(D)A. 0B. BE →C. AD→ D. CF → 根据正六边形的性质,我们易得BA→+CD →+EF →=BA →+AF →+EF →=BF →+CB →=CF→.已知向量OA →=a ,OB →=b ,OC →=c ,A ,B ,C 在一条直线上,且 AC →=-3CB →,则(A)A. c =-12a +32b B. c =32a -12bC. c =-a +2bD. c =a +2b由AC→=-3CB →得OC →-OA →=-3(OB →-OC →),∴2OC →=-OA →+3OB →,即2c =-a +3b ,∴c =-12a +32b .(2014·济南模拟)在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形状是(C)A. 矩形B. 平行四边形C. 梯形D. 以上都不对由已知AD→=AB →+BC →+CD →=-8a -2b =2(-4a -b )=2BC →.∴AD →∥BC→,又AB →与CD →不平行,∴四边形ABCD 是梯形. 已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C)的充要条件是AP→=λ(AB →+AD →),则λ的取值范围是(A)A. λ∈(0,1)B. λ∈(-1,0)C. λ∈⎝ ⎛⎭⎪⎪⎫0,22D. λ∈⎝ ⎛⎭⎪⎪⎫-22,0 ∵点P 在对角线AC 上(不包括端点A ,C),∴AP→=λAC →=λ(AB →+AD →),由AP →与AC →同向知,λ>0.又|AP →|<|AC →|,∴|AP→||AC →|=λ<1,∴λ∈(0,1).二、 填空题(每小题5分,共15分)(2014·连云港模拟)在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=__-14a +14b __.(用a ,b 表示)由AN →=3NC →,知N 为AC 的四等分点.MN →=MC →+CN →=12AD →-14AC →=12AD →-14(AB →+AD →)=-14AB →+14AD →=-14a +14b . (2013·大庆模拟)已知O 为四边形ABCD 所在平面内一点,且向量OA →,OB →,OC →,OD →满足等式OA →+OC →=OB →+OD →,则四边形ABCD 的形状为__平行四边形__.∵OA→+OC→=OB→+OD→,∴OA→-OB→=OD→-OC→,∴BA→=CD→.∴四边形ABCD为平行四边形.设V是已知平面M上所有向量的集合.对于映射f:V→V,a∈V,记a的象为f(a).若映射f:V→V满足:对所有a,b∈V及任意实数λ,μ都有f(λa +μb)=λf(a)+μf(b),则f称为平面M上的线性变换.现有下列命题:①设f是平面M上的线性变换,则f(0)=0;②对a∈V,设f(a)=2a,则f是平面M上的线性变换;③若e是平面M上的单位向量,对a∈V,设f(a)=a-e,则f是平面M 上的线性变换;④设f是平面M上的线性变换,a,b∈V,若a,b共线,则f(a), f(b)也共线.其中的真命题是__①②④__.(写出所有真命题的编号)对于①,f(0)=f(0·0+0·0)=0·f(0)+0·f(0)=0,因此①正确;对于②,f(λa+μb)=2(λa+μb)=λ·(2a)+μ·(2b)=λf(a)+μf(b),因此②正确;对于③,f(λa+μb)=(λa+μb)-e,λf(a)+μf(b)=λ(a-e)+μ(b-e)=λa+μb-(λ+μ)e,显然(λ+μ)e与e不恒相等,因此③不正确;对于④,当a,b共线时,若a,b中有一个等于0,由于f(0)=0,即此时f(a),f(b)中有一个等于0, f(a), f(b)共线;若a,b中均不等于0,设b=λa,则有f(b)=f(λa)=f(λa+0×0)=λf(a)+0·f(0)=λf(a),此时f(a), f(b)共线,综上所述,当a,b共线时,f(a), f(b)也共线.故其中的真命题是①②④.三、解答题(共15分)(7分)已知O 为△ABC 内一点,且OA →+OB →+OC →=0,求证:O 为△ABC的重心.∵OA→+OB →+OC →=0,∴OA →=-(OB →+OC →),即OB →+OC →是与OA →方向相反且长度相等的向量,如图所示,以OB ,OC 为相邻两边作平行四边形OBDC. (3分)则OD→=OB →+OC →,∴OD →=-OA →.(5分)在平行四边形OBDC 中,设BC 与OD 相交于E ,则BE→=EC →,OE →=ED →,∴AE 是△ABC 的BC 边的中线,且|OA →|=2|OE →|,根据平面几何知识知O 是△ABC的重心.(7分)(8分)(2014·怀柔模拟)如图,点A1,A 2是线段AB 的三等分点.(1)求证:OA 1→+OA 2→=OA →+OB →;(2)一般地,如果点A 1,A 2,…,A n -1是AB 的n(n≥3)等分点,请写出一个结论,使(1)为所写结论的一个特例.并证明你写的结论.(1)∵AA1→=13AB →,∴OA 1→=OA →+AA 1→=OA →+13AB →=OA →+13(OB →-OA→)=OB →+2OA →3,同理OA 2→=2OB→+OA →3,则OA 1→+OA 2→=OB→+2OA →3+2OB→+OA →3=OA→+OB→.(4分) (2)一般结论为OA 1→+OA n -1=OA 2→+OA n -2=…=OA →+OB →.证明如下:∵AA k →=k n AB →,∴OA k →=OA →+AA k →=OA →+k nAB →,而OA n -k =OA →+AA n -k =OA →+n -k n AB →=OA →+AB →-k n AB →=OB →-k n AB →,∴OA k →+OA n -k =OA →+k n AB →+OB →-k n AB →=OA →+OB →.(8分)。