最新整理高三数学复数的向量表示.docx
复数知识点总结向量

复数知识点总结向量一、复数的形成规则1. 在大多数情况下,名词的复数形式可通过在单数形式的末尾加上-s或-es来表示。
例如: - cat → cats- bus → buses- box → boxes2. 对于以-s、-ss、-sh、-ch、-x、-z等结尾的名词,其复数形式通常在词尾加上-es。
例如: - class → classes- match → matches- box → boxes3. 对于以辅音字母+y结尾的单词,将y变为i并加-es。
例如:- baby → babies- city → cities4. 一些单词的复数形式与单数形式完全相同。
例如:- deer → deer- sheep → sheep5. 一些名词的复数形式需要进行特殊变化。
例如:- man → men- woman → women- child → children- foot → feet- tooth → teeth6. 复数形式还有一些不规则的变化,需要特殊记忆。
例如:- mouse → mice- person → people- ox → oxen二、特殊情况1. 复合名词的复数形式通常将主要部分变为复数形式。
例如:- mother-in-law → mothers-in-law- son-in-law → sons-in-law2. 一些名词在其单数形式及复数形式中发生形态或音变。
例如:- man → men- mouse → mice- goose → geese3. 一些外来语的名词在其复数形式中不遵循英语的复数形式规则。
例如:- cactus → cacti- fungus → fungi4. 对于某些名词,它们只有复数形式而没有单数形式。
例如:- trousers- scissors- glasses三、单复数一致性1. 当主语是单数时,动词的形式也应该是单数形式。
例如:- The cat chases the mouse.2. 当主语是复数时,动词的形式也应该是复数形式。
复数的向量表示

例2.复数z
sin
3
i cos
6
,则 z
6
__2___
例3.复数z=4+ti的模小于5,则实数t的取值范围是_________. -3 < t < 3
例4.已知实数m满足不等式│log2m+4i│≤5,
则m的取值范围是_________. 1 m 8 8
Copyright © Sino-i Technology Limited All rights reserved
(1)|z|=4;
(2)2<|z|<4.
y
y
o
x
Copyright © Sino-i Technology Limited All rights reserved
o
x
Sino-i Technology Ltd.
1.IT复SM平/ IT面IL 问题
例1.当实数m为何值时,复数
(m2-
8m+15)+(m2+3m-28)i 在复平面中的对应点: (1)位于第四象限;
5.2 复数的向量表示 ITSM / ITIL
任何一个复数z = a + bi ,都可以由一个有序实数对( a , b) 唯一确 定;有序实数对( a , b) 与平面直角坐标系中的点是一一对应的.
复数z = a + bi 可用点Z(a,b)表示,这个建
y
立了直角坐标系来表示复数的平面叫做复
平面, x 轴叫做实轴, y 轴叫做虚轴.
(1)若z1 z2 ,求的值;
6
(2)若z1 z2 ,求的值. Copyright © Sino-i Technology Limited All rights reserved
高考复数知识点总结

高考复数知识点总结一、复数的概念1. 定义:在数学中,复数是由一个实数和一个虚数单位i构成的数,表示为a+bi,其中a 和b都是实数,而i是虚数单位,满足i²=-1。
2. 实部和虚部:复数a+bi中,a称为实部,bi称为虚部,其中a和b都是实数。
二、复数的表示形式1. 代数形式:a+bi2. 幅角形式:r(cosθ+isinθ),其中r为复数的模,θ为复数的幅角。
3. 指数形式:re^(iθ),其中e^(iθ)为指数函数。
三、复数的运算1. 加法与减法:实部相加,虚部相加2. 乘法:根据分配律和虚数单位i的性质计算3. 除法:乘以共轭复数,然后根据除法的定义计算4. 幂运算:通过指数形式进行计算四、复数的性质1. 共轭复数:a+bi的共轭复数是a-bi2. 模:复数a+bi的模是√(a²+b²)3. 幅角:复数a+bi的幅角是θ=tan^(-1)(b/a)五、复数的应用1. 代数方程式:一元二次方程的解2. 三角函数:通过复数的幅角形式可以求解三角函数的和差角公式3. 电路学:用复数解决交流电路中的问题六、复数的解析几何1. 复数的几何意义:复平面上的点2. 复数的模和幅角:向量的模和方向3. 复数的乘法和除法:向量的缩放和旋转七、复数的解1. 一元二次方程的解:通过求根公式得到解2. 复数的根:开方运算的应用总结:复数是数学中的一个重要概念,它由一个实部和一个虚部构成,可以通过代数形式、幅角形式和指数形式进行表示。
复数的运算包括加法、减法、乘法、除法和幂运算,通过这些运算可以得到复数的性质如共轭复数、模和幅角。
复数还具有广泛的应用,包括代数方程式、三角函数和电路学等方面。
此外,复数还可以通过解析几何的方式进行理解,它在平面上对应着一个点,并且具有向量的性质。
复数的解可以用于一元二次方程的求解以及复数的根的求解。
通过学习和掌握复数的知识,可以更好地理解数学中的各种概念和问题,并且对于后续的学习和应用具有重要的意义。
高考复数知识点总结

高考复数知识点总结复数是高中数学中的一个重要内容,也是高考数学中的常考知识点。
理解和掌握复数的相关知识,对于提高数学成绩和解决数学问题具有重要意义。
下面我们就来对高考中复数的知识点进行一个全面的总结。
一、复数的定义形如 a + bi(a,b∈R)的数叫做复数,其中 a 叫做复数的实部,b 叫做复数的虚部。
当 b = 0 时,复数 a + bi 为实数;当b ≠ 0 时,复数a + bi 为虚数;当 a = 0,b ≠ 0 时,复数 a + bi 为纯虚数。
二、复数的表示形式1、代数形式:z = a + bi(a,b∈R)2、几何形式:在复平面内,复数z =a +bi 对应点的坐标为(a,b),其中实轴上的点表示实数,虚轴上的点(除原点外)表示纯虚数。
3、三角形式:z = r(cosθ +isinθ),其中 r =√(a²+ b²),cosθ = a/r,sinθ = b/r。
4、指数形式:z = re^(iθ)三、复数的运算1、复数的加法:(a + bi)+(c + di)=(a + c)+(b +d)i2、复数的减法:(a + bi)(c + di)=(a c)+(b d)i3、复数的乘法:(a + bi)(c + di)=(ac bd)+(ad + bc)i4、复数的除法:(a + bi)÷(c + di)=(ac + bd)/(c²+ d²) +(bc ad)/(c²+ d²)i在进行复数运算时,要注意将复数的实部和虚部分别进行运算。
四、复数的模复数 z = a + bi 的模记作|z|,|z| =√(a²+ b²)。
复数的模表示复数在复平面上对应的点到原点的距离。
五、共轭复数两个实部相等,虚部互为相反数的复数互为共轭复数。
若 z = a +bi,则其共轭复数为z= a bi。
共轭复数的性质:1、 z +z= 2a(实部的 2 倍)2、 z z= 2bi(虚部的 2 倍)3、 z·z= a²+ b²=|z|²六、复数的方程1、实系数一元二次方程 ax²+ bx + c = 0(a ≠ 0)在复数范围内的根的判别式:△= b² 4ac当△>0 时,方程有两个不相等的实数根;当△= 0 时,方程有两个相等的实数根;当△<0 时,方程有两个共轭虚根。
复数的向量表示

复数的向量表示教学目标(1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;(2)理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系;(3)掌握复数的模的定义及其几何意义;学习数学学习教学建议一、知识结构物理二、重点、难点分析本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.三、教学建议学习物理2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系如图所示,建立复平面以后,复数与复平面内的点形成—一对应关系,而点又与复平面的向量构成—一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形成—一对应关系.因此,我们常把复数说成点Z或说成向量.点、向量是复数的另外两种表示形式,它们都是复数的几何表示.相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与复平面上以原点为起点的向量集合构成—一对应关系.2.这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创造了条件.3.向量的模,又叫向量的绝对值,也就是其有向线段的长度.它的计算公式是,当实部为零时,根据上面复数的模的公式与以前关于实数绝对值及算术平方根的规定一致.这些内容必须使学生在理解的基础上牢固地掌握.4.讲解教材第182页上例2的第(1)小题建议.在讲解教材第182页上例2的第(1)小题时.如果结合提问的图形,可以帮助学生正确理解教材中的“圆”是指曲线而不是指圆面(曲线所包围的平面部分).对于倒2的第(2)小题的图形,画图时周界(两个同心圆)都应画成虚线.5.讲解复数的模.讲复数的模的定义和计算公式时,要注意与向量的有关知识联系,结合复数与复平面内以原点为起点,以复数所对应的点为终点的向量之间的一一对应关系,使学生在理解的基础上记忆。
高中数学复数与向量的运算与应用

高中数学复数与向量的运算与应用高中数学-复数与向量的运算与应用引言:高中数学学科涉及到众多的数学知识与概念,其中复数与向量的运算与应用是其中一项重要内容。
复数与向量的概念与运算在现代数学和物理学中有着广泛的应用。
本文将详细阐述高中数学中复数与向量的基本概念、运算法则以及它们在问题求解中的实际应用。
一、复数的基本概念与运算法则1.1 复数的定义复数是由实数和虚数构成的数,通常用符号 "a+bi" 表示,其中 a 和b 分别是实部和虚部,i 是虚数单位,满足 i^2 = -1。
复数可以表示为实部与虚部的和。
1.2 基本运算法则复数的运算法则包括加法、减法、乘法和除法。
1.2.1 加法和减法:复数的加法和减法遵循实部相加或相减,虚部相加或相减的原则。
例如,(a+bi) + (c+di) = (a+c) + (b+d)i。
1.2.2 乘法:复数的乘法可以通过分配律和虚数单位的平方,即 i^2 = -1,来计算。
例如,(a+bi)(c+di) = (ac-bd) + (ad+bc)i。
1.2.3 除法:复数的除法可以通过乘以共轭复数,即将分母的虚部取相反数,然后进行乘法计算。
例如,(a+bi)/(c+di) = [(ac+bd)/(c^2+d^2)] + [(bc-ad)/(c^2+d^2)]i。
二、向量的基本概念与运算法则2.1 向量的定义向量是具有大小和方向的量,是由一组有序的数表示的。
向量通常用字母加箭头表示,例如,→AB 表示从点 A 到点 B 的向量。
2.2 向量的表示方式向量可以通过坐标表示或者用起点终点表示。
坐标表示是将向量的起点与终点在坐标系中表示出来,然后利用坐标差值表示向量。
起点终点表示是通过指定向量的起点和终点来表示向量。
2.3 向量的运算法则向量的运算法则包括加法、减法以及数量乘法。
2.3.1 加法和减法:向量的加法和减法遵循平行四边形法则,即将两个向量的起点连接起来形成一个平行四边形,然后连接平行四边形的对角线得到运算结果。
数学中的复数与向量
数学中的复数与向量复数与向量作为数学中的两个重要概念,被广泛运用于各个领域,尤其在数学分析、力学和电磁学等学科中具有重要地位。
本文将从定义、基本运算及应用角度探讨复数与向量的关系和特性。
一、复数的定义与运算复数是由实数与虚数构成的数,通常用a+bi的形式表示,其中a为实部,bi为虚部。
实部与虚部可以是任意实数。
复数的运算包括加法、减法、乘法和除法。
复数的加法与减法遵循实数的运算规律,即实部相加(减),虚部相加(减)。
例如:(2+3i)+(4+2i)=6+5i复数的乘法按照分配律进行运算,通过展开得到结果。
例如:(2+3i)*(4+2i)=8+12i+6i-6=2+18i复数的除法涉及到分母的共轭复数,通过将分子与分母同乘以共轭复数的结果进行简化。
例如:(2+3i)/(4+2i)=(2+3i)*(4-2i)/(4^2-(2i)^2)=...二、向量的定义与运算向量是数学中用于表示大小与方向的量,常用箭头表示,例如A B⃗。
向量有长度、方向和初始点,可以通过在坐标系中标定起点和终点来表示。
向量的加法与减法遵循平行四边形法则,即将向量首尾相接形成的平行四边形的对角线即为向量和的结果。
例如:A B⃗+B C⃗=A C⃗向量的乘法有数量积和矢量积两种运算方式。
数量积(内积):两个向量之间的数量积等于两个向量的模长乘积与夹角的余弦值的乘积。
例如:A B⃗·B C⃗=|A B⃗|·|B C⃗|·cosθ矢量积(外积):两个向量之间的矢量积等于两个向量的模长乘积与夹角的正弦值的乘积,结果是一个新的向量。
例如:A B⃗×B C⃗=|A B⃗|·|B C⃗|·sinθ·n⃗三、复数与向量的联系与应用复数与向量之间存在着密切的联系,复数可以看作是二维平面上的向量,实部为x轴的分量,虚部为y轴的分量。
在复平面中,复数与点的坐标完全对应,实部和虚部分别表示点的横坐标和纵坐标。
高考微点二 复数与平面向量
等高考微点二 复数与平面向量牢记概念公式,避免卡壳1.复数z =a +b i(a ,b ∈R )概念(1)分类:当b =0时,z ∈R ;当b ≠0时,z 为虚数;当a =0,b ≠0时,z 为纯虚数.(2)z 的共轭复数z -=a -b i. (3)z 的模|z |=a 2+b 2. 2.复数的四则运算法则(a +b i)±(c +d i)=(a ±c )+(b ±d )i ; (a +b i)(c +d i)=(ac -bd )+(bc +ad )i ; (a +b i)÷(c +d i)=ac +bd c 2+d 2+bc -adc 2+d 2i(a ,b ,c ,d ∈R ,c +d i ≠0). 3.平面向量的有关运算(1)两个非零向量平行(共线)的充要条件:a ∥b ⇔a =λb . 两个非零向量垂直的充要条件:a ⊥b ⇔a ·b =0⇔|a +b |=|a -b |. (2)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (3)若A (x 1,y 1),B (x 2,y 2), 则|AB →|=(x 2-x 1)2+(y 2-y 1)2. (4)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 活用结论规律,快速抢分1.复数的几个常用结论 (1)(1±i)2=±2i ; (2)1+i 1-i =i ,1-i 1+i=-i ; (3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.2.复数加减法可按向量的三角形、平行四边形法则进行运算.3.z ·z -=|z |2=|z -|2. 4.三点共线的判定三个点A ,B ,C 共线⇔AB→,AC →共线; 向量P A →,PB →,PC →中三终点A ,B ,C 共线⇔存在实数α,β使得P A →=αPB →+βPC →,且α+β=1.5.向量的几个常用结论(1)在△ABC 中,P A →+PB →+PC →=0⇔P 为△ABC 的重心. (2)在△ABC 中,P A →·PB →=PB →·PC →=PC →·P A →⇔P 为△ABC 的垂心. (3)在△ABC 中,向量λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|(λ≠0)所在直线过△ABC 的内心. (4)在△ABC 中,|P A →|=|PB→|=|PC →|⇔P 为△ABC 的外心.高效微点训练,完美升级1.1+2i1-2i等于( ) A.-45-35i B.-45+35i C.-35-45iD.-35+45i解析 1+2i1-2i =(1+2i )2(1-2i )(1+2i )=1-4+4i1-(2i )2=-3+4i 5=-35+45i.答案 D2.在四边形ABCD 中,AB →=DC →,且AC →·BD →=0,则四边形ABCD 为( )A.矩形B.菱形C.直角梯形D.等腰梯形解析 因为AB →=DC →,即一组对边平行且相等,AC →·BD →=0,即对角线互相垂直;所以该四边形ABCD 为菱形. 答案 B3.已知复数z 满足1z =iz +1,则|z |=( )A.12B.1C.22D.12解析 由题设得z +1=z i ,∴z =1i -1=-1-i(-1+i )(-1-i )=-1-i2,则|z |=⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫-122=22.答案 C4.已知向量a =(2,1),b =(3,4),c =(1,m ),若实数λ满足a +b =λc ,则λ+m 等于( ) A.5 B.6 C.7D.8解析 由平面向量的坐标运算法则可得a +b =(5,5), λc =(λ,λm ),据此有⎩⎪⎨⎪⎧λ=5,λm =5,解得⎩⎪⎨⎪⎧λ=5,m =1,∴λ+m =6.答案 B5.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件D.既不充分也不必要条件解析 由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,所以m =-6,则“m =-6”是“a ∥(a +b )”的充要条件. 答案 A6.已知e 1,e 2是两个单位向量,且夹角为π3,则e 1+t e 2与t e 1+e 2数量积的最小值为( ) A.-32B.-36C.12D.33解析 (e 1+t e 2)·(t e 1+e 2)=t e 21+e 1·e 2+t 2e 1·e 2+t e 22=t +|e 1||e 2|cos π3+t 2|e 1||e 2|cos π3+t =12t 2+2t +12=12(t +2)2-32≥-32,所以e 1+t e 2与t e 1+e 2数量积的最小值为-32,故选A. 答案 A7.已知向量a =(1,-3),b =(-2,6),若向量c 与a 的夹角为π3,且c ·(2a -b )=410,则|c |=( ) A.1 B.2 C.4D.3解析 由题意可得,|a |=10,|b |=210,b =-2a ,则由c ·(2a -b )=410可得4c ·a =410,即c ·a =10.因为向量c 与a 的夹角为π3,所以|a |·|c |cos π3=10,又|a |=10,所以|c |=2.故选B. 答案 B8.图中网格纸的小正方形的边长是1,复平面内点Z 所表示的复数z 满足(z 1-i)·z =1,则复数z 1=( )A.-25+45iB.25+45iC.25-45iD.-25-45i解析 由图得z =2+i ,则(z 1-i)(2+i)=1,所以z 1=i +12+i =25+45i.答案 B9.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( )A.34AB →-14AC →B.14AB →-34AC →C.34AB →+14AC →D.14AB →+34AC →解析如图所示,EB→=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →)=34AB →-14AC →.答案 A 10.已知复数z =4+b i1-i(b ∈R )的实部为-1,则b =( ) A.-5 B.5 C.6D.-6解析 由z =4+b i1-i =(4+b i )(1+i )(1-i )(1+i )=4-b +(4+b )i 2的实部为-1,得4-b2=-1,得b =6. 答案 C11.已知i 为虚数单位,复数z =3+2i2-i,则以下为真命题的是( ) A.z 的共轭复数为75-4i5 B.z 的虚部为85 C.|z |=3D.z 在复平面内对应的点在第一象限解析 ∵z =3+2i 2-i=(3+2i )(2+i )(2-i )(2+i )=45+7i 5,∴z 的共轭复数为45-7i 5,z 的虚部为75,|z |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫752=655,z 在复平面内对应的点为⎝ ⎛⎭⎪⎫45,75,在第一象限.答案 D12.在如图的平面图形中,已知OM =1,ON =2,∠MON =120°,BM →=2MA →,CN →=2NA →,则BC →·OM→的值为( )A.-15B.-9C.-6D.0解析 连接OA .在△ABC 中,BC →=AC →-AB →=3AN →-3AM →=3(ON →-OA →)-3(OM →-OA →)=3(ON →-OM →),∴BC →·OM →=3(ON →-OM →)·OM →=3(ON →·OM →-OM →2)=3×(2×1×cos 120°-12)=3×(-2)=-6. 答案 C13.已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=________. 解析 由题意得a ·b =|a |×1×12=|a |2, 又|2a -b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1, 即4|a |2-2|a |=0,又|a |≠0, 解得|a |=12.答案 1214.已知z =1+i ,则2z -z 2的共轭复数是________. 解析 ∵z =1+i ,∴2z -z 2=21+i -(1+i)2=2(1-i )(1+i )(1-i )-2i=1-i -2i =1-3i , ∴2z -z 2的共轭复数是1+3i. 答案 1+3i15.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是________.解析 因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB→=x 2+y 2, ∴x 2+y 2=1,则2xy ≤x 2+y 2=1.又(x +y )2=x 2+y 2+2xy ≤2,故x +y 的最大值为 2. 答案216.(多填题)直角△ABC 中,AB =AC =2,D 为AB 边上的点,且AD DB =2,则CD →·CA →=________;若CD→=xCA →+yCB →,则xy =________. 解析 以A 为原点,分别以AB→,AC →的方向为x 轴、y 轴的正方向建立平面直角坐标系,则A (0,0),B (2,0),C (0,2),D ⎝ ⎛⎭⎪⎫43,0,则CD →=⎝ ⎛⎭⎪⎫43,-2,CA →=(0,-2),CB →=(2,-2),则CD →·CA →=⎝ ⎛⎭⎪⎫43,-2·(0,-2)=43×0+(-2)×(-2)=4.由CD→=xCA →+yCB →=x (0,-2)+y (2,-2)=(2y ,-2x -2y )=⎝ ⎛⎭⎪⎫43,-2得⎩⎨⎧2y =43,-2x -2y =-2,解得⎩⎪⎨⎪⎧x =13,y =23,则xy =29.答案 4 29。
平面向量与复数全集(学生版)
1第一节平面向量的线性运算及共线定理知识梳理一向量的有关概念名称内容向量既有大小又有方向的量叫做向量向量的模向量的大小叫做向量的长度(或称模)零向量长度为0的向量叫做零向量,其方向是任意的,零向量记作0单位向量长度等于1个单位的向量平行(共线)向量方向相同或相反的非零向量;平行向量又叫共线向量.规定:0与任一向量平行.相等向量长度相等且方向相同的向量相反向量长度相等且方向相反的向量平面向量有个重要特点,即可以自由平移,平移过程中不改变方向和大小,因此平行向量又叫共线向量.向量可以平移,但在几何中,具体的点、线、面相对位置固定,这是向量与几何的一个重要区别.二向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则交换律:a +b =b +a 结合律:(a+b )+c =a +(b +c )减法向量a 加上向量b 的相反向量叫做a 与b 的差,即a +(-b )=a -b三角形法则a -b =a +(-b )数乘实数λ与向量a 的积是一个向量记作λa(1)模:|λa |=|λ||a |;(2)方向:当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0设λ,μ是实数.(1)λ(μa )=(λμ)a (2)(λ+μ)a =λa +μa (3)λ(a +b )=λa +λb .三平面向量共线定理向量共线定理:向量a (a ≠0)与b 共线,当且仅当存在唯一一个实数λ,使b =λa .若A ,B ,C 三点共线,则存在实数λ,使得AB =λAC (或BC =λAB等).推论:若OA =λOB +μOC(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.2题型探究一向量的基本概念与线性运算一向量的基本概念1(多选题)(2021·临沂模拟)下列命题中的真命题是( )A.若|a|=|b|,则a=bB.若A,B,C,D是不共线的四点,则“AB=DC”是“四边形ABCD为平行四边形”的充要条件C.若a=b,b=c,则a=cD.a=b的充要条件是|a|=|b|且a∥b2设a,b都是非零向量,下列四个条件,使用a|a |=b|b|成立的充要条件是( )A.a=bB.a=2bC.a∥b且|a|=|b|D.a∥b且方向相同1(2022·湖北宜昌)已知a,b是两个非零向量,且|a+b|=|a|+|b|,则下列说法正确的是( )A.a+b=0B.a=bC.a与b共线反向D.存在正实数λ,使a=λb2(2022·全国·高三专题练习)给出如下命题:①向量AB的长度与向量BA的长度相等;②向量a与b平行,则a与b的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个公共终点的向量,一定是共线向量;⑤向量AB与向量CD是共线向量,则点A,B,C,D必在同一条直线上.其中正确的命题个数是()A.1B.2C.3D.4名师点拨(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)平行向量就是共线向量,二者是等价的;但相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量.(4)非零向量a与a|a |的关系是:a|a |是a方向上的单位向量.3二零向量的特殊性1下列命题正确的是( )A.向量a ,b 共线的充要条件是有且仅有一个实数λ,使b =λa B.在△ABC 中,AB +BC +CA=0C.不等式||a |-|b ||≤|a +b |≤|a |+|b |中两个等号不可能同时成立D.若向量a ,b 不共线,则向量a +b 与向量a -b 必不共线名师点拨在向量的有关概念中,定义长度为0的向量叫做零向量,其方向是任意的,并且规定:0 与任一向量平行.由于零向量的特殊性,在两个向量共线或平行问题上,如果不考虑零向量,那么往往会得到错误的判断或结论.在向量的运算中,很多学生也往往忽视0与0的区别,导致结论错误.1下列叙述正确的是( )A.若非零向量a 与b 的方向相同或相反,则a +b 与a ,b 其中之一的方向相同B.|a |+|b |=|a +b |⇔a 与b 的方向相同C.AB +BA =0D.若λ≠0,λa =λb ,则a =b 三向量的线性运算1如图,在梯形ABCD 中,BC =2AD ,DE =EC ,设BA =a ,BC =b ,则BE=( )A.12a +14b B.13a +56b C.23a +23b D.12a +34b 2如图,AB 是圆O 的一条直径,C ,D 是半圆弧的两个三等分点,则AB=( )A.AC -AD B.2AC -2ADC.AD -ACD.2AD -2AC41(滨州2020)已知在平行四边形ABCD中,点M、N分别是BC、CD的中点,如果AB=a ,AD=b,那么向量MN=()A.12a -12bB.-12a +12bC.a +12bD.-12a -12b2如图,在平行四边形ABCD中,对角线AC与BD交于点O,且EO=2AE,则EB=()A.16AB-56ADB.16AB+56ADC.56AB-16ADD.56AB+16AD四根据向量线性运算求参数1(2021·济南模拟)如图,在平行四边形ABCD中,F是BC的中点,CE=-2DE,若EF=xAB+yAD,则x+y=( )A.1B.6C.16D.132在△ABC中,AB=2,BC=3,∠ABC=60°,AD为BC边上的高,O为AD的中点,若AO=λAB+μBC,其中λ,μ∈R,则λ+μ等于( )A.1B.12C.13D.231(济宁2020)在平行四边形ABCD中,DE=3CE,若AE交BD于点M.且AM=λAB+μAD,则λμ=()A.23B.32C.34D.4352在△ABC 中,P 是BC 上一点,若BP =2PC ,AP =λAB +μAC,则2λ+μ=.名师点拨平面向量线性运算法则的选取原则(1)首先确定所选取基底的两个基向量,它们的公共起点是哪个点.(2)当所求的向量的起点和基底的公共起点相同时,用加法或数乘运算.(3)当所求的向量的起点和基底的公共起点不同时,用减法或数乘运算.(4)当所求向量是一整个线段的一部分时,用数乘运算.(5)与三角形综合,求参数的值.求出向量的和或差,与已知条件中的式子比较,求得参数.(6)与平行四边形综合,研究向量的关系.画出图形,找出图中的相等向量、共线向量,将所求向量转化到同一个平行四边形或三角形中求解.二共线向量定理及其应用一共线定理的基本应用1(2022·河南·平顶山市)已知向量e 1 ,e 2 不共线,且向量λe 1 +3e 2 与2e 1 -5e 2 平行,则实数λ=()A.-35B.-65C.-103D.-42已知向量e 1,e 2不共线,如果AB =e 1+2e 2,BC =-5e 1+6e 2,CD=7e 1-2e 2,则共线的三个点是.名师点拨平面向量共线的判定方法(1)向量b 与非零向量a 共线的充要条件是存在唯一实数λ,使b =λa .要注意通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.61设两个非零向量a与b不共线.(1)若AB=a+b,BC=2a+8b,CD=3(a-b),求证:A,B,D三点共线;(2)试确定实数k,使ka+b和a+kb共线.3引申上例中,若ka +b与a+kb反向,则k=;若ka+b与a+kb同向,则k=.2(2022·济南模拟)已知向量a,b不共线,且c=λa+b,d=a+(2λ-1)b,若c与d共线反向,则实数λ的值为( )A.1B.-12C.1或-12D.-1或-123已知向量a,b,c中任意两个都不共线,并且a+b与c共线,b+c与a共线,那么a+b+c等于( ) A.a B.bC.cD.0二向量共线定理的综合应用1(2022·全国·高三专题练习)在平行四边形ABCD中,E,F分别是BC,CD的中点,DE交AF于点G,则AG=()A.25AB-45BCB.25AB+45BCC.-25AB+45BCD.-25AB-BC72(2022·青海·海东市)已知在△ABC 中,AD =-3BD ,CD =λCE ,AE =μAB +23AC,则μ=()A.14 B.12C.34D.11(2022·河南郑州)在△ABC 中,D 是BC 上一点,BD =2DC ,M 是线段AD 上一点,BM =tBA+14BC,则t =()A.12B.23C.34D.582如图,△ABC 中,点M 是BC 的中点,点N 满足AN =23AB,AM 与CN 交于点D ,AD =λAM ,则λ等于()A.23B.34C.45D.568跟踪测验基础巩固1P是△ABC所在平面上一点,满足P A+PB+PC=2AB,△ABC的面积是S1,△P AB的面积是S2,则( )A.S1=4S2B.S1=3S2C.S1=2S2 D.S1=S22如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.AF=AD+12ABB.EF=12(AD+AB)C.AG=23AD-13ABD.BG=3GD3(多选题)设点M是△ABC所在平面内一点,则下列说法正确的是( )A.若AM=12AB+12AC,则点M是边BC的中点B.若AM=2AB-AC,则点M在边BC的延长线上C.若AM=-BM-CM,则点M是△ABC的重心D.若AM=xAB+yAC,且x+y=12,则△MBC的面积是△ABC面积的124(2022·全国·高三专题练习)若点G是△ABC的重心,点M、N分别在AB、AC上,且满足AG=xAM+yAN,其中x+y=1.若AM=35AB,则△AMN与△ABC的面积之比为.5设a,b是平面内两个向量,“|a|=|a+b|”是“|b|=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6已知向量a和b不共线,向量AB=a+mb,BC=5a+3b,CD=-3a+3b,若A,B,D三点共线,则m等于()A.3B.2C.1D.-27在边长为1的正方形ABCD中,设AB=a,AD=b,AC=c,则|a-b+c|等于()A.1B.2C.3D.48如图,BC,DE是半径为1的圆O的两条直径,BF=2FO,且FC=λFD+μFE,则λ+μ等于()A.1B.2C.3D.499已知△ABO 中,OA =OB =1,∠AOB =π3,若OC 与线段AB 交于点P ,且满足OC =λOA+μOB ,|OC|=3,则λ+μ的最大值为()A.23B.1C.3D.210(2022·广西玉林高中模拟)设D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,则DA +2EB+3FC=( D )A.12ADB.32ADC.12ACD.32AC能力提升11已知平面上不共线的四点O ,A ,B ,C ,若OA -4OB +3OC =0,则|AB||CA |等于()A.13B.34C.12D.4312已知M 为△ABC 的重心,D 为BC 的中点,则下列等式成立的是()A.|MA |=|MB |=|MC |B.MA +MB +MC =0C.BM =23BA +13BDD.S △MBC =13S △ABC13设P ,Q 为△ABC 内的两点,且AP =25AB+15AC ,AQ =14AB +23AC ,则△ABP 的面积与△ABQ 的面积之比为()A.45B.85C.43D.31014(2023·丽江模拟)在△ABC 中,点D 在线段AC 上,且满足|AD |=13|AC|,点Q 为线段BD 上任意一点,若实数x ,y 满足AQ =xAB +yAC ,则1x+1y的最小值为.15(多选)设点M 是△ABC 所在平面内一点,则下列说法正确的是()A.若BM =13BC ,则AM =13AC +23ABB.若AM =2AC -3AB ,则点M ,B ,C 三点共线C.若点M 是△ABC 的重心,则MA +MB +MC=0D.若AM =xAB +yAC 且x +y =13,则△MBC的面积是△ABC 面积的2316如图,已知正六边形ABCDEF ,M ,N 分别是对角线AC ,CE 上的点,使得AM AC=CN CE =r ,当r =时,B ,M ,N 三点共线.17(2022·全国·高三专题练习)直角三角形ABC中,P 是斜边BC 上一点,且满足BP =2PC,点M 、N 在过点P 的直线上,若AM=mAB ,AN =nAC ,m >0,n >0 ,则下列结论错误的是()A.1m+2n 为常数B.m +n 的最小值为169C.m +2n 的最小值为3D.m 、n 的值可以为m =12,n =21018如图,在△ABC 中,AQ =QC ,AR =13AB,BQ 与CR 相交于点I ,AI 的延长线与边BC 交于点P .(1)用AB 和AC 分别表示BQ 和CR ;(2)如果AI =AB +λBQ =AC +μCR,求实数λ和μ的值;(3)确定点P 在边BC 上的位置.第五章平面向量复数第二节平面向量基本定理及坐标表示知识梳理一平面向量基本定理如果e1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ1e 1+λ2e 2.若e1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底.二平面向量的坐标表示在直角坐标系内,分别取与x 轴,y 轴正方向相同的两个单位向量i ,j 作为基底,对任一向量a ,有唯一一对实数x ,y ,使得:a =x i +y j ,那么(x ,y )叫做向量a 的直角坐标,记作a=(x ,y ),显然i =(1,0),j =(0,1),0 =(0,0).三平面向量的坐标运算1向量加法、减法、数乘向量及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.2向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB =(x 2-x 1,y 2-y 1),|AB|=(x 2-x 1)2+(y 2-y 1)2.四向量共线的坐标表示若a =(x1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.五常用结论1向已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则点P 的坐标为x 1+x 22,y 1+y 22;2已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为x 1+x 2+x 33,y 1+y 2+y 33 .第二节基本定理及坐标表示题型探究一平面向量基本定理一识别一组基底1下列各组向量中,可以作为基底的是()A.e 1=(0,0),e 2=(1,2)B.e 1=(2,-3),e 2=12,-34C.e 1=(3,5),e 2=(6,10)D.e 1=(-1,2),e 2=(5,7)二基本定理的应用1在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD =2DC ,CE =3EA ,若AB =a ,AC=b ,则DE 等于( )A.13a +512bB.13a -1312bC.-13a -512bD.-13a +1312b 2已知在△ABC 中,点O 满足OA +OB +OC=0,点P 是线段OC 上异于端点的任意一点,且OP =mOA+nOB ,则m +n 的取值范围是.名师点拨应用平面向量基本定理的关键(1)基底必须是两个不共线的向量.(2)选定基底后,通过构造平行四边形(或三角形)利用向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来.(3)注意几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等.易错提醒:在基底未给出的情况下,合理地选取基底会给解题带来方便.1如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且AE =2EO ,则ED等于()A.13AD -23AB B.23AD +13AB C.23AD -13AB D.13AD +23AB第五章平面向量复数2(2023·天津模拟)已知在△ABC 中,AB =a ,AC=b ,D ,F 分别为BC ,AC 的中点,P 为AD 与BF 的交点,若BP=xa +yb ,则x +y =.3(多选)下列命题中正确的是()A.若p =xa +yb ,则p 与a ,b 共面B.若p 与a ,b 共面,则存在实数x ,y 使得p =xa +ybC.若MP =xMA +yMB ,则P ,M ,A ,B 共面D.若P ,M ,A ,B 共面,则存在实数x ,y 使得MP =xMA +yMB二平面向量的坐标运算一坐标的基本运算1(1)已知A (-2,4),B (3,-1),C (-3,-4).设AB =a ,BC =b ,CA=c ,且CM =3c ,CN =-2b .①求3a +b -3c ;②求满足a =mb +nc 的实数m ,n ;③求M ,N 的坐标及向量MN的坐标.(2)设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为.2(2015·新课标全国Ⅰ卷)已知点A (0,1),B (3,2),向量AC=(-4,-3),则向量BC =()A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)名师点拨平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解,并注意方程思想的应用.第二节基本定理及坐标表示1如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA =λCE+μDB(λ,μ∈R ),则λ+μ的值为()A.65B.85C.2D.832已知向量a ,b ,c 在正方形网格中的位置如图所示,用基底a ,b 表示c ,则()A.c =2a -3bB.c =-2a -3bC.c =-3a +2bD.c =3a -2b二向量共线的坐标表示1(2022·海南文昌)已知a =(1,3),b =(-2,k ),且(a +2b )∥(3a -b ),则实数k =.2(2018·全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=.三利用向量共线求解综合问题1(角度1)已知向量OA=(k ,12),OB =(4,5),OC =(-k ,10),且A ,B ,C 三点共线,则k =.2在△ABC 中,若AD=2DB ,CD =13CA +λCB ,则λ=( )A.-13B.-23C.13D.23名师点拨利用两向量共线解题的技巧(1)一般地,在求一个与已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其它条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(2)如果已知两个向量共线,求某些参数的值,那么利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是:x 1y 2-x 2y 1=0”比较简捷.第五章平面向量复数1如图△ABC 中,AE =EB ,CF =2FA ,BF 交CE 于G ,AG =xAE +yAF,则x +y =( )A.25 B.35C.45D.752(2022·山东曲阜模拟)如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =mAB +29AC,则实数m 的值为()A.13B.19C.1D.3跟踪测验基础巩固1(2022·巴中模拟)向量AB =(2,3),AC=(4,7),则BC等于()A.(-2,-4) B.(2,4)C.(6,10) D.(-6,-10)2设向量a =(2,4)与向量b =(x ,6)共线,则实数x =()A.2 B.3 C.4 D.63(2022·陕西汉中月考)已知向a ,b 满足a -b =(1,-5),a +2b =(-2,1),则b =()A.(1,2)B.(1,-2)C.(-1,2)D.(-1,-2)4(2022·山西晋中)若向量a =(1,1),b =(-1,1),c =(4,2),则c =()A.3a +b B.3a -b C.-a +3b D.a +3b5(多选)下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是()A.a =(1,2),b =(0,0)B.a =(1,-2),b =(3,5)C.a =(3,2),b =(9,6)D.a =-34,12,b =(-3,-2)6向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=()第二节基本定理及坐标表示A.2B.4C.12 D.147(多选)已知M (3,-2),N (-5,-1),且|MP|=12|MN|,则P 点的坐标为()A.(-8,1) B.-1,-32C.1,32D.7,-528已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为.9(2021·广西贺州联考)已知向量AB=(m ,n ),BD =(2,1),AD=(3,8),则mn =.10设向量a =(3,2),b =(-1,3),向量λa -2b 与a +b 平行,则实数λ=.11(2022·江西南昌模拟)已知向量a =(m ,n ),b =(1,-2),若|a |=25,a =λb (λ<0),则m -n =.12已知a =(1,0),b =(2,1).(1)当k 为何值时,ka -b 与a +2b 共线;(2)若AB =2a +3b ,BC=a +mb 且A ,B ,C 三点共线,求m 的值.13已知向量a =(sin θ,cos θ-2sin θ),b =(1,2).(1)若a ∥b ,求tan θ的值;(2)若|a |=|b |,0<θ<π,求θ的值.能力提升14如果e 1,e 2是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一个基底的是()A.e 1与e 1+e 2B.e 1-2e 2与e 1+2e 2C.e 1+e 2与e 1-e 2D.e 1-2e 2与-e 1+2e 215已知点P 是△ABC 所在平面内一点,且P A+PB +PC=0,则()A.P A =-13BA +23BCB.P A =23BA +13BCC.P A =-13BA -23BCD.P A =23BA -13BC第五章平面向量复数16(2023·南京模拟)设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则|3a +b |等于()A.5B.6C.17D.2617(2021·豫南九校联考)如图,A ,B 分别是射线OM ,ON 上的点,给出下列向量:若这些向量均以O 为起点,则终点落在阴影区域内(包括边界)的向量有()A.OA+2OB B.12OA +13OBC.34OA +OB D.34OA -15OB18如图,在正方形ABCD 中,P ,Q 分别是边BC ,CD 的中点,AP =x AC +y BQ,则x 等于()A.1113B.65C.56D.3219在平行四边形ABCD 中,M ,N 分别是AD ,CD 的中点,BM =a ,BN =b ,则BD 等于()A.34a +23b B.23a +23b C.23a +34b D.34a +34b 20如图,扇形的半径为1,且OA⊥OB ,点C 在弧AB 上运动,若OC =xOA+yOB ,则2x +y 的最小值是.第三节平面向量的数量积运算第三节平面向量的数量积运算知识梳理一平面向量的夹角两个非零向量a 与b ,过O 点作OA=a ,OB =b ,则∠AOB 叫做向量a 与b 的夹角;两个向量夹角的范围是[0,π],规定零向量0 与任意向量的夹角为0;a 与b 的夹角为π2时,则a 与b 垂直,记作a ⊥b .二平面向量的数量积1定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0 ·a =0.2几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.注意:该“投影”为老教材中的概念,但可以帮助我们理解数量积的几何意义.三平面向量数量积的性质及其坐标表示1设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角.①数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2.②模:|a |=a ·a =x 21+y 21.③设A (x 1,y 1),B (x 2,y 2),则A ,B 两点间的距离|AB |=|AB|=(x 1-x 2)2+(y 1-y 2)2.④夹角:cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.⑤已知两非零向量a 与b ,a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0;a ∥b ⇔a ·b =±|a ||b |.(或|a ·b |=|a |·|b |).⑥|a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤x 21+y 21·x 22+y 22.2平面向量数量积的运算律①a ·b =b ·a (交换律);②λa ·b =λ(a ·b )=a ·(λb )(结合律);③(a +b )·c =a ·c +b ·c (分配律).3平面向量数量积运算的常用公式①(a +b )·(a -b )=a 2-b 2;②(a ±b )2=a 2±2a ·b +b 2.第五章平面向量复数四平面向量数量积的注意事项1两个向量的数量积是一个实数.∴0 ·a =0而0·a =0.2数量积不满足结合律(a ·b )·c ≠a ·(b ·c ).3a ·b 中的“·”不能省略.a ·a =a 2=|a |2.4向量a 与b 的夹角为锐角⇔a ·b >0且a 与b 不共线;a 与b 的夹角为钝角⇔a ·b <0,且a 与b 不共线.当a 、b 为非零向量时a 、b 同向⇔a ·b =|a ||b |;a 、b反向⇔a ·b =-|a ||b |.5a 在b 方向上的投影|a |·cos θ=a ·b|b |.(老教材中概念)五投影向量(新教材中概念)设a ,b 是两个非零向量,它们的夹角是θ,AB =a ,CD =b ,过AB 的起点A 和终点B ,分别作CD所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1,我们称上述变换为向量a 向向量b 投影,A 1B 1 叫做向量a 在向量b 上的投影向量(记为|a |cos θb |b |).设e 是与b 方向相同的单位向量,则投影向量记为|a |cos θe .MONM 1abθ(1)MO NM 1abθ(2)MONM 1abθ(3)如图,在平面内取一点O ,作OM =a ,ON=b .记a 与b 的夹角是θ,过点M 作直线ON 的垂线,垂足为M 1,则OM 1 就是向量a 在向量b 上的投影向量.即OM 1 =|a|cos θb|b |,又因为θcos =a ·b|a ||b |,所以OM 1 =|a |cos θb |b |=|a|⋅a ·b |a ||b |⋅b |b |=a ·b |b |⋅b |b |=a ·b ⋅b |b|2ABC DA 1B 1ab第三节平面向量的数量积运算题型探究一投影向量1(2023·广西·模拟预测)向量a=23,2 在向量b =1,3 上的投影向量为()A.32B.34,34C.3,3D.342(2023上·广东广州·白云中学校考)已知向量a =0,-2 ,b =1,t ,若向量b 在向量a上的投影向量为-12a,则a ⋅b =()A.-2B.-52C.2D.1123在等边△ABC 中,AD=2AB +3AC ,则向量AD 在向量BC 上的投影向量为()A.13BCB.12BCC.-13BCD.-12BC4已知向量a =1,3 ,b =-2,m ,若向量a在向量b 方向上的投影为-3,则m 的值为()A.3B.-3C.-233D.2331(2024·全国·模拟预测)已知向量a =1,3 ,b =-2,m ,若向量a 在向量b 上的投影向量为-34b,则实数m 的值为()A.3 B.-3C.-233D.2332已知a =1,2 ,若b =1,且a ,b =π6,则b 在a 方向上投影向量的坐标为.第五章平面向量复数3已知a ,b 为平面向量,b =2.若a 在b 方向上的投影向量为b2,则a -b ⋅b=.4(2023上·贵州贵阳·高三校考)如果平面向量a =1,-1 ,b =-6,2 ,则向量a +b 在a 上的投影向量的坐标为.5向量AB =2,1 在向量AC =0,12 上的投影向量为λAC ,则AB +λAC =()A.23B.22C.8D.12二平面向量数量积的运算1已知向量e 1,e 2,|e 1|=1,e 2=(1,3),e 1,e 2的夹角为60°,则(e 1+e 2)·e 2=()A.355B.255C.5D.52已知点A ,B ,C 满足|AB |=3,|BC |=4,|CA |=5,则AB ·BC +BC ·CA +CA ·AB的值是.反思感悟向量数量积的四种计算方法(1)当已知向量的模和夹角θ时,可利用定义法求解,即a ·b =|a ||b |cos θ.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.(3)转化法:当模和夹角都没给出时,即用已知模或夹角的向量作基底来表示所求数量积的向量求解.(4)建系用坐标法:结合图形特征适当建立坐标系,求出向量的坐标,进而求其数量积(如本例(2)).1(2021·贵阳市第一学期监测考试)在△ABC 中,|AB +AC |=|AB -AC |,AB =2,AC =1,E ,F 为BC 的三等分点,则AE ·AF=()A.109 B.259C.269D.89第三节平面向量的数量积运算三向量的模、夹角一向量的模1若平面向量a 、b 的夹角为60°,且a =(1,-3),|b |=3,则|2a -b |的值为()A.13B.37C.13D.12(2022·黄冈调研)已知平面向量m ,n 的夹角为π6,且|m |=3,|n |=2,在△ABC 中,AB =2m +2n ,AC =2m -6n ,D 为BC 的中点,则|AD |=.3(2021·全国甲)若向量a ,b 满足|a |=3,|a -b |=5,a ·b =1,则|b |=.反思感悟平面向量的模的解题方法(1)若向量a 是以坐标(x ,y )形式出现的,求向量a 的模可直接利用|a |=x 2+y 2.(2)若向量a ,b 是非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.即“模的问题平方求解.”二向量的夹角1(2021·八省联考)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin <a ,c >=()A.73B.23C.79D.292(2020·全国Ⅲ理)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉=()A.-3135B.-1935C.1735D.19353(2019·全国卷Ⅰ,5分)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为()A.π6B.π3C.2π3D.5π6第五章平面向量复数反思感悟求两向量夹角的方法及注意事项(1)一般是利用夹角公式:cos θ=a ·b|a ||b |.(2)注意:数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.三平面向量的垂直1(2020·全国Ⅲ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是()A.a +2bB.2a +bC.a -2bD.2a -b2(2022·安徽宣城调研)已知在△ABC 中,∠A =120°,且AB =3,AC =4,若AP =λAB +AC ,且AP⊥BC,则实数λ的值为()A.2215B.103C.6D.1273(2021·全国乙,14,5分)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=.反思感悟平面向量垂直问题的解题思路解决向量垂直问题一般利用向量垂直的充要条件a ·b =0求解.1(2020·全国Ⅱ)已知单位向量a ,b 的夹角为45°,ka -b 与a 垂直,则k =.2(2021·山西康杰中学期中)已知向量a 、b 满足|b |=2|a |=2,a 与b 的夹角为120°,则|a -2b |=()A.13B.21C.13D.213(2021·江西七校联考)已知向量a =(1,3),b =(3,m ),且b 在a 上的投影为-3,则向量a 与b 的夹角为.第三节平面向量的数量积运算四数量积的综合应用一有关数量积的最值(范围)问题1(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A ·(PB +PC)的最小值是()A.-2B.-32C.-43D.-12(2020·新高考Ⅰ)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP ·AB的取值范围是()A.(-2,6)B.(-6,2)C.(-2,4)D.(-4,6)反思感悟平面向量中有关最值(范围)问题的两种求解思路一是“形化”,即利用平面向量的几何意义先将问题转化为平面几何中的最值或取值范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,先把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.1已知向量a ,b ,c 满足|a |=|b |=a ·b =2,(a -c )·(b -2c )=0,则|b -c |的最小值为()A.7-32B.3-12C.32D.722已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是()A.1B.2C.2D.22二用已知向量表示未知向量1(2023·六安模拟)在等边△ABC 中,AB =6,BC =3BD ,AM =2AD ,则MC ·MB=.第五章平面向量复数2已知正方形ABCD 的对角线AC =2,点P 在另一条对角线BD 上,则AP ·AC的值为()A.-2B.2C.1D.43如图,在梯形ABCD 中,AB ∥CD ,CD =2,∠BAD =π4,若AB ·AC =2AB ·AD ,则AD ·AC=.1已知△ABC 满足AB =1,AC =2,O 为∠BAC 的平分线与边BC 的垂直平分线的交点,AO=354,则AB ⋅AC =()A.32B.35C.65D.4552正三角形△ABC 中,AB =2,P 为BC 上的靠近B 的四等分点,D 为BC 的中点,则AP ⋅BD=()A.-12B.14C.34D.323如图,平行四边形ABCD 中,AB =4,AD =2且∠BAD =60°,M 为边CD 的中点,AD在AB 上投影向量是AD,则AD ⋅AM =.第三节平面向量的数量积运算跟踪测验基础巩固1已知a ,b 为单位向量,其夹角为60°,则(2a -b )·b =()A.-1B.0C.1D.22若向量a 与b 的夹角为60°,a =(2,0),|a +2b |=23,则|b |=()A.3 B.1 C.4 D.33已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =()A.-92B.0C.3D.1524(2022·青岛调研)如图所示,直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =AD =4,CD =8.若CE =-7DE ,3BF =FC ,则AF ·BE =()A.11 B.10 C.-10 D.-115(2021·甘肃兰州模拟)已知非零单位向量a ,b 满足|a +b |=|a -b |,则a 与b -a 的夹角为()A.π6 B.π3 C.π4 D.3π46已知向量a =(-2,-1),b =(λ,1),若a 与b 的夹角为钝角,则λ的取值范围可以是()A.-12,+∞ B.(2,+∞)C.-12,2 ∪(2,+∞) D.-12,0 ∪0,+∞ 7(多选)已知两个不等的平面向量a ,b 满足a=1,λ ,b=λ-1,2 ,其中λ是常数,则下列说法正确的是( )A.若a ⎳b,则λ=-1或λ=2B.若a ⊥b ,则a -b 在a +b 上的投影向量的坐标是-15,-75 C.当a +2b 取得最小值时,a =295D.若a ,b 的夹角为锐角,则λ的范围为13,+∞ 8(多选)(2021·武汉调研)如图,点A ,B 在圆C 上,则AB ·AC 的值()A.与圆C 的半径有关 B.与圆C 的半径无关C.与弦AB 的长度有关 D.与点A ,B 的位置有关9(2019·全国卷Ⅲ)已知向量a =(2,2),b =(-8,6),则cos a ,b=.10已知向量a =(3,4),b =(x ,1),若(a -b )⊥a ,则实数x 等于.11(2021·新高考Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =12已知b 在a上的投影向量的坐标为(4,-3),a=4,则a ⋅(a-2b )=.第五章平面向量复数13已知|a |=4,|b |=3,(2a -3b )·(2a +b)=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB =a ,BC =b ,求△ABC 的面积.14已知空间三点A 2,0,-2 ,B 1,-1,-2 ,C 3,0,-4 .(1)求向量AB 与AC夹角θ的余弦值;(2)求向量AB 在向量AC 上的投影向量a.能力提升15若向量a ,b 满足|a |=10,b =(-2,1),a ·b =5,则a 与b 的夹角为()A.90° B.60° C.45° D.30°16(2022·新乡质检)已知向量a =(0,2),b =(23,x ),且a 与b 的夹角为π3,则x =()A.-2 B.2 C.1 D.-117在△ABC 中,AP =PB ,且|CP|=23,|CA |=8,∠ACB =2π3,则CP ·CA =()A.24 B.12C.243 D.12318如图所示,在等腰直角三角形AOB 中,OA =OB =1,AB =4AC ,则OC ·(OB -OA)=.19(2020·天津,15)如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD=λBC ,AD ·AB =-32,则实数λ的值为;若M ,N 是线段BC 上的动点,且|MN |=1,则DM ·DN的最小值为.20在△ABC 中,AB =3AC =9,AC ·AB=AC 2,点P 是△ABC 所在平面内一点,则当P A 2+PB 2+PC 2取得最小值时,求P A ·BC的值.第四节平面向量的综合应用第四节平面向量的综合应用知识梳理一平面向量在几何中的应用1用向量解决常见平面几何问题的技巧:问题类型所用知识公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0,其中a =(x 1,y 1),b =(x 2,y 2),b ≠0垂直问题数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,其中a =(x 1,y 1),b =(x 2,y 2),且a ,b 为非零向量夹角问题数量积的定义cos θ=a ·b|a ||b |(θ为向量a ,b 的夹角),其中a ,b 为非零向量长度问题数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y ),a 为非零向量2向量方法解决平面几何问题的步骤:平面几何问题设向量向量问题运算解决向量问题还原解决几何问题.二平面向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.三平面向量与其他知识的交汇平面向量作为一种工具,常与函数(三角函数)、解析几何结合,常通过向量的线性运算与数量积,向量的共线与垂直求解相关问题.四三角形的“四心”1三角形的重心G (三角形三条中线的交点)2三角形的外心O (三角形三条垂直平分线的交点)3三角形的内心I (三角形三条角平分线的交点)4三角形的垂心H (三角形三条高线的交点)第五章平面向量复数题型探究一平面向量与平面几何名师点拨平面几何问题的向量解法(1)坐标法:把几何图形放在适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法:适当选取一组基底,沟通向量之间的联系,利用向量共线构造关于设定未知量的方程来求解.一判断三角形的形状名师点拨三角形形状的判断在△ABC 中,①若|AB |=|AC|,则△ABC 为等腰三角形;②若AB ·AC=0,则△ABC 为直角三角形;③若AB ·AC<0,则△ABC 为钝角三角形;④若AB ·AC >0,BA ·BC >0,且CA ·CB >0,则△ABC 为锐角三角形;⑤若|AB +AC |=|AB -AC|,则△ABC 为直角三角形;⑥若(AB +AC )·BC=0,则△ABC 为等腰三角形.1若P 为△ABC 所在平面内一点,且|P A -PB |=|P A +PB -2PC|,且△ABC 的形状为()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形2(2022·驻马店质检)若O 为△ABC 所在平面内任一点,且满足(OB -OC )·(OB +OC -2OA)=0,则△ABC 的形状为()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形引申若条件改为“|OB -OC |=|OB +OC -2OA|”,则选()引申若条件改为“AB 2=AB ·AC +BA ·BC +CA ·CB”,则选()。
高三数学教案:复数的向量表示
高三数学教案:复数的向量表示一、教学目标1.理解复数的向量表示方法,掌握复数的向量表示与几何意义。
2.能够利用复数的向量表示解决实际问题,提高空间想象能力和逻辑思维能力。
3.培养学生合作探究、主动学习的习惯,提高课堂参与度。
二、教学重点与难点1.教学重点:复数的向量表示方法及其几何意义。
2.教学难点:复数的向量表示在实际问题中的应用。
三、教学过程1.导入新课(1)引导学生回顾复数的基本概念,如复数的定义、复数的表示方法等。
(2)提问:复数在平面直角坐标系中有何几何意义?2.知识讲解(1)讲解复数的向量表示方法:复数a+bi可以表示为一个向量,实部a为横坐标,虚部b为纵坐标。
向量表示的复数可以用箭头表示,起点为原点,终点为对应的坐标点。
(2)讲解复数的向量表示的几何意义:向量表示的复数与平面直角坐标系中的点一一对应。
向量的长度表示复数的模,向量的方向表示复数的辐角。
3.课堂练习(1)让学生举例说明复数的向量表示方法。
已知复数z1=3+4i,z2=1-2i,求z1+z2的向量表示。
已知复数z1=2+i,z2=4-3i,求z1·z2的向量表示。
4.小组讨论(1)让学生分组讨论复数的向量表示在实际问题中的应用。
(2)每组选代表进行分享,其他组进行补充和评价。
5.课堂小结(2)回顾课堂所学,巩固知识点。
6.作业布置(1)课后练习:教材P页习题1、2、3。
(2)思考题:如何利用复数的向量表示解决复数乘法和除法问题?四、教学反思1.讲解复数的向量表示时,要让学生充分理解向量表示的几何意义。
2.在课堂练习环节,要关注学生的解题过程,及时给予指导和反馈。
3.在小组讨论环节,要引导学生积极参与,提高学生的合作能力。
4.课后作业要针对不同层次的学生进行分层设计,提高学生的巩固效果。
五、教学评价1.学生对复数的向量表示方法及几何意义的掌握程度。
2.学生在课堂练习和课后作业中的表现。
3.学生在小组讨论中的合作能力和参与度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新整理高三数学复数的向量表示
复数的向量表示教学目标
(1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;
(2)理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系;
(3)掌握复数的模的定义及其几何意义;
(4)通过学习复数的向量表示,培养学生的数形结合的数学思想;
(5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法.
教学建议
一、知识结构
本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式.
二、重点、难点分析
本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的
几何意义是表示向量的长度,也就是复平面上的点到原点的距离.
三、教学建议
1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视.
2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系
如图所示,建立复平面以后,复数与复平面内的点形成—一对应关系,而点又与复平面的向量构成—一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形成—一对应关系.因此,我们常把复数说成点Z或说成向量.点、向量是复数的另外两种表示形式,它们都是复数的几何表示.
相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与复平面上以原点为起点的向量集合构成—一对应关系.
2.
这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创造了条件.
3.向量的模,又叫向量的绝对值,也就是其有向线段的长度.它的计算公式是,当实部为零时,根据上面复数的模的公式与以前关于实数绝对值及算术平方根的规定一致.这些内容必须使学生在理解的基础上牢固地掌握.4.讲解教材第182页上例2的第(1)小题建议.在讲解教材第182页上例2的第(1)小题时.如果结合提问的图形,可以帮助学生正确理解教。