2012届高考物理第一轮专题复习题261

合集下载

2012年高考物理第一轮考点及考纲复习题(有答案)

2012年高考物理第一轮考点及考纲复习题(有答案)

2012年高考物理第一轮考点及考纲复习题(有答案)2012年高考一轮复习考点及考纲解读(八)恒定电流内容要求说明 64.电流。

欧姆定律。

电阻和电阻定律65.电阻率与温度的关系 66.半导体及其应用。

超导及其应用 67.电阻的串、并联。

串联电路的分压作用。

并联电路的分流作用 68.电功和电功率。

串联、并联电路的功率分配 69.电源的电动势和内电阻。

闭合电路的欧姆定律。

路端电压 70.电流、电压和电阻的测量:电流表、电压表和多用电表的使用。

伏安法测电阻 II I I IIII II II名师解读恒定电流部分是高考必考内容之一,特别是电学实验更是几乎每年必考。

常见题型有选择题、实验题、计算题,其中以实验题居多。

高考考查的重点内容有:欧姆定律,串、并联电路的特点,电功及电热,闭合电路的欧姆定律,电阻的测量(包括电流表、电压表内阻的测量)。

其中含容电路、电路动态变化的分析、功率分配问题是命题率较高的知识点,尤其电阻的测量、测量电源的电动势和内电阻更是连续多年来一直连考不断的热点。

复习时要理解串、并联电路的特点,闭合电路欧姆定律的含义,另外,要密切注意半导体、超导等与生产和生活相结合的新情景问题。

样题解读【样题1】(江都市2011届高三联考)一中学生为即将发射的“神州七号”载人飞船设计了一个可测定竖直方向加速度的装置,其原理可简化如图8-1,连接在竖直弹簧上的重物与滑动变阻器的滑动头连接,该装置在地面上静止时其电压表指针指在表盘中央的零刻度处,在零刻度的两侧分别标上对应的正、负加速度值。

关于这个装置在“神州七号”载人飞船发射、运行和回收过程中示数的判断正确的是 A.飞船在竖直加速升空的过程中,如果电压表的示数为正,则飞船在竖直减速返回地面的过程中,电压表的示数仍为正 B.飞船在竖直加速升空的过程中,如果电压表的示数为正,则飞船在竖直减速返回地面的过程中,电压表的示数为负 C.飞船在近地圆轨道上运行时,电压表的示数为零D.飞船在近地圆轨道上运行时,电压表的示数所对应的加速度应约为9.8m/s2 [分析] 飞船竖直加速升空的过程和竖直减速返回地面的过程中都发生超重现象,弹簧被压缩,变阻器的滑动头向下滑动,所以电压表的示数正负情况相同,A项正确,B项错误;飞船在近地圆轨道上运行时,处于完全失重状态,加速度等于重力加速度,约为9.8m/s2,C项错误,D项正确。

2012届高考物理第一轮课时复习训练题(有答案和解释)

2012届高考物理第一轮课时复习训练题(有答案和解释)

2012届高考物理第一轮课时复习训练题(有答案和解释)第三节圆周运动及其应用一、单项选择题1.(2009年高考广东卷)如图所示是一个玩具陀螺,a、b和c是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A.a、b和c三点的线速度大小相等B.a、b和c三点的角速度相等C.a、b的角速度比c的大D.c的线速度比a、b的大解析:选B.由于a、b、c三点是陀螺上的三个点,所以当陀螺转动时,三个点的角速度相同,选项B正确,C错误;根据v=ωr,由于a、b、c三点的半径不同,ra=rb>rc,所以有va=vb>vc,选项A、D均错误.2.(2011年北京检测)在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些,汽车的运动可看成是做半径为R的圆周运动,设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于()A.gRhLB.gRhdC.gRLhD.gRdh解析:选 B.汽车做匀速圆周运动:向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F向=mgtanθ,根据牛顿第二定律:F向=mv2R,tanθ=hd,解得汽车转弯时的车速v =gRhd,所以B对.3.(2011年北京西城检测)如图所示,在同一竖直平面内有两个正对着的半圆形光滑轨道,轨道的半径都是R.轨道端点所在的水平线相隔一定的距离x.一质量为m的小球能在其间运动而不脱离轨道,经过最低点B时的速度为v.小球在最低点B与最高点A对轨道的压力之差为ΔF(ΔF>0),不计空气阻力.则()A.m、x一定时,R越大,ΔF一定越大B.m、x一定时,v越大,ΔF一定越大C.m、R一定时,x越大,ΔF一定越大D.m、R一定时,v越大,ΔF一定越大解析:选C.小球到达最高点A时的速度vA不能为零,否则小球早在到达A点之前就离开了圆形轨道,m、R一定时,x越大,小球到达最高点A时的速度越小,小球在最低点B与最高点A对轨道的压力之差ΔF 一定越大,C正确.二、双项选择题4.(2011年广州一模)如图所示,水平的木板B托着木块A一起在竖直平面内做匀速圆周运动,从水平位置a沿逆时针方向运动到最高点b的过程中()A.B对A的支持力越来越大B.B对A的支持力越来越小C.B对A的摩擦力越来越大D.B对A的摩擦力越来越小解析:选BD.以A为研究对象,由于其做匀速圆周运动,故合外力提供向心力.在水平位置a点时,向心力水平向左,由B对它的静摩擦力提供,f=mω2r;重力与B对它的支持力平衡,即FN=mg.在最高点b 时,向心力竖直向下,由重力与B对它的支持力的合力提供,mg-FN =mω2r,此时f=0.由此可见,B对A的支持力越来越小,B对A的摩擦力也越来越小.5.(2011年深圳模拟)如图所示,M为固定在水平桌面上的有缺口的方形木块,abcd为34圆周的光滑轨道,a为轨道的最高点,de面水平且有一定长度.今将质量为m的小球从d点的正上方高为h处由静止释放,让其自由下落到d处并切入轨道内运动,不计空气阻力,则()A.在h一定的条件下,小球释放后的运动情况与小球的质量无关B.改变h的大小,就能使小球通过a点后,落回轨道内C.无论怎样改变h的大小,都不可能使小球通过b点后落回轨道内D.调节h的大小,使小球飞出de面(即飞到e的右面)是可能的解析:选AD.在h一定的条件下,小球释放后的运动情况与小球的质量无关,小球通过a点时的最小速度为vmin=gR,其中R为圆轨道的半径,所以它落到与de面等高的水平面上时的最小水平位移为smin=vmin2Rg=2R,所以改变h的大小,不可能使小球通过a点后落回轨道内,但使小球飞出de面(即飞到e的右面)是可能的.改变h的大小,使小球通过b点后在ba之间的某一点离开轨道做斜上抛运动并落回轨道内是可能的.故A、D正确.6.(2011年长沙三校测评)2010年2月16日,在加拿大温哥华举行的第二十一届冬奥会花样滑冰双人自由滑比赛落下帷幕,中国选手申雪、赵宏博获得冠军.如图所示,如果赵宏博以自己为转动轴拉着申雪做匀速圆周运动.若赵宏博的转速为30r/min,手臂与竖直方向夹角为60°,申雪的质量是50kg,她触地冰鞋的线速度为4.7m/s,则下列说法正确的是()A.申雪做圆周运动的角速度为πrad/sB.申雪触地冰鞋做圆周运动的半径约为2mC.赵宏博手臂拉力约是850ND.赵宏博手臂拉力约是500N解析:选AC.申雪做圆周运动的角速度等于赵宏博转动的角速度.则ω=30r/min=30×2π/60rad/s=πrad/s,由v=ωr得:r=1.5m,A正确,B 错误;由Fcos30°=mrω2解得F≈850N,C正确,D错误.7.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧管壁半径为R,小球半径为r,则下列说法正确的是()A.小球通过最高点时的最小速度vmin=+B.小球通过最高点时的最小速度vmin=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力解析:选BC.小球沿管上升到最高点的速度可以为零,故A错误,B正确;小球在水平线ab以下的管道中运动时,由外侧管壁对小球的作用力FN与球重力在背离圆心方向的分力Fmg的合力提供向心力,即:FN -Fmg=mv2R+r,因此,外侧管壁一定对球有作用力,而内侧管壁无作用力,C正确;小球在水平线ab以上的管道中运动时,小球受管壁的作用力与小球速度大小有关,D错误.8.如图所示,光滑半球的半径为R,球心为O,固定在水平面上,其上方有一个光滑曲面轨道AB,高度为R/2.轨道底端水平并与半球顶端相切,质量为m的小球由A点静止滑下.小球在水平面上的落点为C(重力加速度为g),则()A.小球将沿半球表面做一段圆周运动后抛至C点B.小球将从B点开始做平抛运动到达C点C.OC之间的距离为2RD.小球从A运动到C的时间等于(1+2)Rg解析:选BC.小球从A到B由机械能守恒定律得mgR2=12mv2B,vB=gR;由mv2BR=mg可知,小球在半球顶端B点只受重力的作用,符合平抛运动的条件,故选项A错误,而B正确;从B到C,R=12gt2,OC=vBt,联立得t=2Rg,OC=2R,选项C正确;设从A到B的时间为tAB,由于R2Rg,故小球从A运动到C的时间大于(1+2)Rg,选项D 错误.三、非选择题9.如图所示,A、B两个齿轮的齿数分别为z1、z2,各自固定在过O1、O2的轴上,其中过O1的轴与电动机相连接,此轴的转速为n1,求:(1)B齿轮的转速n2;(2)A、B两个齿轮的半径之比;(3)在时间t内,A、B两齿轮转过的角度之比.解析:(1)相同时间内两齿轮咬合通过的齿数是相同的,则n1z1=n2z2,所以n2=z1z2n1.(2)设A、B半径分别是r1、r2,由于两轮边沿的线速度大小相等,则2πn1r1=2πn2r2,所以r1r2=n2n1=z1z2.(3)由ω=2πn得ω1ω2=n1n2=z2z1,再由φ=ωt得时间t内两齿轮转过的角度之比φ1φ2=ω1ω2=z2z1.答案:(1)z1z2n1(2)z1z2(3)z2z110.(2009年高考广东卷)如图所示,一个竖直放置的圆锥筒可绕其中心轴OO′转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A 点的高度为筒高的一半,内壁上有一质量为m的小物块.求:(1)当筒不转动时,物块静止在筒壁A点受到的摩擦力和支持力的大小;(2)当物块在A点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度.解析:(1)当筒不转动时,物块静止在筒壁A点时受到重力、摩擦力和支持力三力作用而平衡,由平衡条件得摩擦力的大小f=mgsinθ=mgHH2+R2支持力的大小FN=mgcosθ=mgRH2+R2.(2)当物块在A点随筒做匀速转动,且其所受到的摩擦力为零时,物块在筒壁A点受到重力和支持力的作用,它们的合力提供向心力,设筒转动的角速度为ω,则有mgtanθ=mω2R2由几何关系得tanθ=HR联立以上各式解得:ω=2gHR.答案:(1)mgHH2+R2mgRH2+R2(2)2gHR1.(2011年江西五校联考)如图所示,用长为L的轻绳把一个小铁球悬挂在高2L的O点处,小铁球以O为圆心在竖直平面内做圆周运动且恰能到达最高点B处,则有()A.小铁球在运动过程中轻绳的拉力最大为5mgB.小铁球在运动过程中轻绳的拉力最小为mgC.若运动中轻绳断开,则小铁球落到地面时的速度大小为7gL D.若小铁球运动到最低点轻绳断开,则小铁球落到地面时的水平位移为2L解析:选C.小铁球以O为圆心在竖直平面内做圆周运动且恰能到达最高点B处,说明小铁球在最高点B处,轻绳的拉力最小为零,mg=mv2/L,v=gL;由机械能守恒定律得,小铁球运动到最低点时动能mv21/2=mv2/2+mg•2L,在最低点轻绳的拉力最大,由牛顿第二定律F-mg=mv21/L,联立解得轻绳的拉力最大为F=6mg;选项A、B错误.以地面为重力势能参考平面,小铁球在B点处的总机械能为mg•3L+12mv2=72mgL,无论轻绳是在何处断开,小铁球的机械能总是守恒的,因此到达地面时的动能12mv′2=72mgL,落到地面时的速度大小为v′=7gL,选项C正确.小铁球运动到最低点时速度v1=5gL,由s=v1t,L=12gt2,联立解得小铁球落到地面时的水平位移为s=10L,选项D错误.2.(2010年高考重庆卷)小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d,手与球之间的绳长为34d,重力加速度为g.忽略手的运动半径和空气阻力.(1)求绳断开时球的速度大小v1和球落地时的速度大小v2.(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?解析:(1)设绳断后球飞行时间为t,由平抛运动规律,有竖直方向:14d=12gt2水平方向:d=v1t解得v1=2gd由机械能守恒定律,有12mv22=12mv21+mg(d-34d),解得v2=52gd.(2)设绳能承受的最大拉力大小为T,这也是球受到绳的最大拉力大小.球做圆周运动的半径为R=34d由圆周运动向心力公式,有T-mg=mv21R得T=113mg.(3)设绳长为l,绳断时球的速度大小为v3,绳承受的最大拉力不变,有T-mg=mv23l,解得v3=83gl绳断后球做平抛运动,竖直位移为d-l,水平位移为s,时间为t1.有d -l=12gt21,s=v3t1得s=-,当l=d2时,s有极大值smax=233d.答案:(1)2gd52gd(2)113mg(3)d2233d。

2012年高考第一轮复习(共218页)

2012年高考第一轮复习(共218页)

2012年高考第一轮复习(共218页)2012年高考第一轮复习之一-------力物体的平衡复习要点1.力的概念及其基本特性2.常见力的产生条件,方向特征及大小确定3.受力分析方法4.力的合成与分解5.平衡概念及平衡条件6.平衡条件的应用方法二、难点剖析1.关于力的基本特性力是物体对物体的作用。

力作用于物体可以使受力物体形状发生改变;可以使受力物体运动状态(速度)发生改变。

影响力的“使物体变形”和“使物体变速”效果的因素有:力的大小、力的方向和力的作用点,我们反影响力的作用效果的上述三个因素称为“力的三要素”。

对于抽象的力概念,通常可以用图示的方法使之形象化:以有向线段表示抽象的力。

在研究与力相关的物理现象时,应该把握住力概念的如下基本特性。

(1)物质性:由于力是物体对物体的作用,所以力概念是不能脱离物体而独立存在的,任意一个力必然与两个物体密切相关,一个是其施力物体,另一个是其受力物体。

把握住力的物质性特征,就可以通过对形象的物体的研究而达到了解抽象的力的概念之目的。

(2)矢量性:作为量化力的概念的物理量,力不仅有大小,而且有方向,在相关的运算中所遵从的是平行四边形定则,也就是说,力是矢量。

把握住力的矢量性特征,就应该在定量研究力时特别注意到力的方向所产生的影响,就能够自觉地运用相应的处理矢量的“几何方法”。

(3)瞬时性:力作用于物体必将产生一定的效果,物理学之所以十分注重对力的概念的研究,从某种意义上说就是由于物理学十分关注力的作用效果。

而所谓的力的瞬时性特征,指的是力与其作用效果是在同一瞬间产生的。

把握住力的瞬时性特性,应可以在对力概念的研究中,把力与其作用效果建立起联系,在通常情况下,了解表现强烈的“力的作用效果”往往要比直接了解抽象的力更为容易。

(4)独立性:力的作用效果是表现在受力物体上的,“形状变化”或“速度变化”。

而对于某一个确定的受力物体而言,它除了受到某个力的作用外,可能还会受到其它力的作用,力的独立性特征指的是某个力的作用效果与其它力是否存在毫无关系,只由该力的三要素来决定。

2012届高考物理第一轮专题复习题

2012届高考物理第一轮专题复习题

4S 店事故车维修保险理赔流程 1. 现场拍照(取得客户同意)。

12012届高考物理第一轮专题复习题 第3章 牛顿运动定律 第一节 牛顿第一、第三定律一、选择题 1.(2010年高考广东卷)下列关于力的说法正确的是( )A .作用力和反作用力作用在同一物体上B .太阳系中的行星均受到太阳的引力作用C .运行的人造地球卫星所受引力的方向不变D .伽利略的理想实验说明了力不是维持物体运动的原因解析:选BD.作用力和反作用力作用在两个不同的物体上,A 错误;太阳系中的所有行星都要受到太阳的引力,且引力方向沿着两个星球的连线指向太阳,B 正确,C 错误;伽利略理想实验说明力不是维持物体运动的原因,D 正确. 2.(2011年浙江金华模拟)关于惯性,下列说法正确的是( )A .静止的火车启动时速度变化缓慢,是因为火车静止时惯性大B .战斗机投入战斗时,必须抛掉副油箱,是要减少惯性,保证其运动的灵活性C .在绕地球运转的宇宙飞船内的物体处于失重状态,因而不存在惯性D .乒乓球可以快速抽杀,是因为乒乓球惯性大的缘故解析:选B.物体的质量是物体惯性大小的量度,物体的惯性是物体的固有属性,只与质量有关,与物体的运动状态无关,抛掉副油箱可以减小质量,故选B.3.吊在大厅天花板上的吊扇的总重力为G ,静止时固定杆对吊环的拉力大小为F ,当接通电源,让扇叶转动起来后,吊杆对吊环的拉力大小为F ′,则有( )A .F =G ,F ′=FB .F =G ,F ′>F C .F =G ,F ′<G D.F ′=G ,F ′>F答案:C 4.如图所示,物块P 与木板Q 叠放在水平地面上,木板Q 对物块P 的支持力的反作用力是( ) A .物块P 受到的重力B .地面对木板Q 的弹力C .物块P 对木板Q 的压力D .地球对木板Q 的吸引力 解析:选C.两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上,所以Q 对P 的支持力的反作用力是P 对Q 的压力. 5.(思维创新题)如图所示,一只盛水的容器固定在一个小车上,在容器中分别悬挂和拴着一只铁球和一只乒乓球.容器中的水和铁球、乒乓球都处于静止状态.当容器随小车突然向右运动时,两球的运动状况是(以小车为参考系)( )A .铁球向左,乒乓球向右B .铁球向右,乒乓球向左C .铁球和乒乓球都向左D .铁球和乒乓球都向右 答案:A 6.(2011年广州模拟)“嫦娥二号”的成功发射,一方面表明中国航天事业已走在了世界的前列,另一方面“嫦PS:双击获取文档。

2012届高考物理第一轮专题复习题26

2012届高考物理第一轮专题复习题26

课时16第三节 机械能守恒定律一、选择题1.如图所示,在两个质量分别为m 和2m 的小球a 和b 之间,用一根长为L 的轻杆连接(杆的质量可不计),而小球可绕穿过轻杆中心O 的水平轴无摩擦转动,现让轻杆处于水平位置,然后无初速度释放,重球b 向下,轻球a 向上,产生转动,在杆转至竖直的过程中( )A .b 球的重力势能减小,动能增加B .a 球的重力势能增加,动能减小C .a 球和b 球的总机械能守恒D .a 球和b 球的总机械能不守恒解析:选AC.两球组成的系统,在运动中除动能和势能外没有其他形式的能转化,所以系统的机械能守恒.2. (2011年广东佛山模拟)在一次课外趣味游戏中,有四位同学分别将四个质量不同的光滑小球沿竖直放置的内壁光滑的半球形碗的碗口内侧同时由静止释放,碗口水平,如图所示.他们分别记下了这四个小球下滑速率为v 时的位置,则这些位置应该在同一个( )A .球面B .抛物面C .水平面D .椭圆面解析:选C.因半球形碗的内壁光滑,所以小球下滑过程中机械能守恒,取小球速率为v时所在的平面为零势能面,则根据机械能守恒定律得mgh =12m v 2,因为速率v 相等,所以高度相等,与小球的质量无关,即这些位置应该在同一个水平面上,C 正确.3.(2011年江苏启东中学质检)如图所示,A 、B 两球质量相等,A 球用不能伸长的轻绳系于O 点,B 球用轻弹簧系于O ′点,O 与O ′点在同一水平面上,分别将A 、B 球拉到与悬点等高处,使绳和轻弹簧均处于水平,弹簧处于自然状态,将两球分别由静止开始释放,当两球达到各自悬点的正下方时,两球仍处在同一水平面上,则( )A .两球到达各自悬点的正下方时,两球动能相等B .两球到达各自悬点的正下方时,A 球动能较大C .两球到达各自悬点的正下方时,B 球动能较大D .两球到达各自悬点的正下方时,A 球受到向上的拉力较大解析:选BD.整个过程中两球减少的重力势能相等,A 球减少的重力势能完全转化为A 球的动能,B 球减少的重力势能转化为B 球的动能和弹簧的弹性势能,所以A 球的动能大于B 球的动能,所以B 正确;在O 点正下方位置根据牛顿第二定律,小球所受拉力与重力的合力提供向心力,则A 球受到的拉力较大,所以D 正确.4. (2011年江苏苏、锡、常、镇四市联考)如图所示,质量均为m的A 、B 两个小球,用长为2L 的轻质杆相连接,在竖直平面内,绕固定轴O 沿顺时针方向自由转动(转动轴在杆的中点),不计一切摩擦,某时刻A 、B 球恰好在如图所示的位置,A 、B 球的线速度大小均为v ,下列说法正确的是( )A .运动过程中B 球机械能守恒B .运动过程中B 球速度大小不变C .B 球在运动到最高点之前,单位时间内机械能的变化量保持不变 D .B 球在运动到最高点之前,单位时间内机械能的变化量不断改变解析:选BD.以A 、B 球为系统,两球在运动过程中,只有重力做功(轻杆对两球做功的和为零),两球的机械能守恒.以过O 点的水平面为重力势能的参考平面时,系统的总机械能为E =2×12m v 2=m v 2.假设A 球下降h ,则B 球上升h ,此时两球的速度大小是v ′,由机械能守恒定律知m v 2=12m v ′2×2+mgh -mgh ,得到v ′=v ,故运动过程中B 球速度大小不变.当单独分析B 球时,B 球在运动到最高点之前,动能保持不变,重力势能在不断增加.由几何知识可得单位时间内机械能的变化量是不断改变的,B 、D 正确.5.(2011年东北地区名校联考)如图所示,一物体以速度v 0冲向光滑斜面AB ,并能沿斜面升高h ,下列说法正确的是( )A .若把斜面从C 点锯断,由机械能守恒定律知,物体冲出C 点后仍能升高hB .若把斜面弯成如图所示的半圆弧形,物体仍能沿AB ′升高hC .若把斜面从C 点锯断或弯成如图所示的半圆弧形,物体都不能升高h ,因为物体的机械能不守恒D .若把斜面从C 点锯断或弯成如图所示的半圆弧形,物体都不能升高h ,但物体的机械能仍守恒解析:选D.若把斜面从C 点锯断,物体到达最高点时水平速度不为零,由机械能守恒定律知,物体冲出C 点后不能升高h ;若把斜面弯成如题图所示的半圆弧形,物体在升高h 之前已经脱离轨道.物体在这两种情况下机械能均守恒.6.(2011年盐城第一次调研)如图所示,离水平地面一定高处水平固定一内壁光滑的圆筒,筒内固定一轻质弹簧,弹簧处于自然长度.现将一小球从地面以某一初速度斜向上抛出,刚好能水平进入圆筒中,不计空气阻力.下列说法中正确的是( )A .弹簧获得的最大弹性势能小于小球抛出时的动能B .小球从抛出到将弹簧压缩到最短的过程中小球的机械能守恒C .小球抛出的初速度大小仅与圆筒离地面的高度有关D .小球从抛出点运动到圆筒口的时间与小球抛出时的角度无关解析:选AB.小球从抛出到弹簧压缩到最短的过程中,只有重力和弹力做功,小球的机械能守恒.即12m v 20=mgh +E p ,所以E p <E k0,故A 对,B 对.斜上抛运动可分解为竖直上抛运动和水平方向的匀速直线运动,所以h =0-v 20sin θ-2g=v 20sin θ2g (θ为v 0与水平方向的夹角).即v 0=2gh sin θ,知C 错;由0=v 0sin θ-gt ,t =v 0sin θg知D 错. 7.(2011年福建福州第一次模拟)如图所示,小车上有固定支架,一可视为质点的小球用轻质细绳拴挂在支架上的O 点处,且可绕O 点在竖直平面内做圆周运动,绳长为L .现使小车与小球一起以速度v 0沿水平方向向左匀速运动,当小车突然碰到矮墙后,车立即停止运动,此后小球上升的最大高度可能是( ) A .大于v 202g B .小于v 202g C .等于v 202gD .等于2L 答案:BCD8.(2011年河南安阳质检)ABCD 是一段竖直平面内的光滑轨道,AB 段与水平面成α角,CD 段与水平面成β角,其中BC 段水平,且其长度大于L .现有两小球P 、Q ,质量分别是2m 、m ,用一长为L 的轻质直杆连接,将P 、Q 由静止从高H 处释放,在轨道转折处用光滑小圆弧连接,不考虑两小球在轨道转折处的能量损失.则小球P 滑上CD 轨道的最大高度h 为( )A .h =HB .h =H +L (2sin α-sin β)3C .h =H +L sin βD .h =H +L (sin α-sin β)3解析:选B.P 、Q 整体上升的过程中,机械能守恒,以地面为重力势能的零势面,根据机械能守恒定律有:mgH +2mg (H +L sin α)=2mgh +mg (h +L sin β),解方程得:h =H +L (2sin α-sin β)3. 9. (2011年广东调研考试)如图所示,一质量为m 的滑块以初速度v从固定于地面的斜面底端A 开始冲上斜面,到达某一高度后返回A ,斜面与滑块之间有摩擦.下列各项分别表示它在斜面上运动的速度v 、加速度a 、势能E p 和机械能E 随时间的变化图象,可能正确的是( )解析:选C.由牛顿第二定律可知,滑块上升阶段有:mg sin θ+F f =ma 1,下滑阶段有:mg sin θ-F f =ma 2,因此a 1>a 2,B 选项错误;且v >0和v <0时,速度图象的斜率不同,故A 选项错误;由于摩擦力始终做负功,机械能一直减小,故选项D 错误;重力势能先增大后减小,且上升阶段加速度大,势能变化快,下滑阶段加速度小,势能变化慢,故选项C 正确.10.(2011年江西六所重点中学联考)面积很大的水池,水深为H ,水面上浮着一正方体木块,木块边长为a ,密度为水的1/2,质量为m .开始时,木块静止,有一半没入水中,如图所示.现用力将木块缓慢地压到池底.在这一过程中( )A .木块的机械能减少了mg (H -a 2) B .水池中水的机械能不变C .水池中水的机械能增加了2mg (H -a 2) D .水池中水的机械能增加了2mg (H -5a 8) 解析:选AD.用力将木块缓慢地压到池底的过程中,木块下降的深度为H -a 2,所以木块的机械能减少了mg (H -a 2),A 对;因水池面积很大,可忽略因木块压入水中所引起的水深变化,木块刚好完全没入水中时,图中原来处于划斜线区域的水被排开,结果等效于使这部分水平铺于水面,这部分水的质量为m ,上升的高度为34a ,其势能的增加量为ΔE 水1=mgH -mg (H -34a )=34mga ;木块从刚好完全没入水中到压入池底的过程中,等效成等体积的水上升到木块刚好完全没入水中的位置,这部分水的质量为2m ,上升的高度为H -a ,势能的增加量为ΔE 水2=2mg (H -a ),所以水池中水的机械能增加了ΔE 水=ΔE 水1+ΔE 水2=2mg (H -5a 8),D 对. 二、计算题11.(2010年高考江苏卷)在游乐节目中,选手需借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论.如图所示,他们将选手简化为质量m =60 kg 的质点,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角α=53°,绳的悬挂点O 距水面的高度为H =3 m ,不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深.取重力加速度g =10 m/s 2,sin 53°=0.8,cos 53°=0.6.(1)求选手摆到最低点时对绳拉力的大小F ;(2)若绳长l =2 m ,选手摆到最高点时松手落入水中.设水对选手的平均浮力F f 1=800 N ,平均阻力F f 2=700 N ,求选手落入水中的深度d ;(3)若选手摆到最低点时松手,小明认为绳越长,在浮台上的落点距岸边越远;小阳却认为绳越短,落点距岸边越远.请通过推算说明你的观点.解析:(1)由机械能守恒定律得mgl (1-cos α)=12m v 2① 选手做圆周运动,有F ′-mg =m v 2l解得F ′=(3-2cos α)mg且选手对绳的拉力F =F ′则F =1080 N.(2)由动能定理得 mg (H -l cos α+d )-(F f 1+F f 2)d =0则d =mg (H -l cos α)F f 1+F f 2-mg解得d =1.2 m.(3)选手从最低点做平抛运动,则有x =v t ,H -l =12gt 2 联立①式解得x =2l (H -l )(1-cos α)当l =H 2时,x 有最大值,解得l =1.5 m 因此,两人的看法均不正确.当绳长越接近1.5 m 时,落点距岸边越远.答案:(1)1080 N (2)1.2 m (3)见解析12.(2011年青岛高三摸底考试)如图所示,一内壁光滑的细管弯成半径为R =0.4 m 的半圆形轨道CD ,竖直放置,其内径略大于小球的直径,水平轨道与竖直半圆轨道在C 点连接完好.置于水平轨道上的弹簧左端与竖直墙壁相连,B 处为弹簧的自然状态.将一个质量为m =0.8 kg 的小球放在弹簧的右侧后,用力向左侧推小球而压缩弹簧至A 处,然后将小球由静止释放,小球运动到C 处后对轨道的压力为F 1=58 N .水平轨道以B 处为界,左侧AB 段长为x =0.3 m ,与小球的动摩擦因数为μ=0.5,右侧BC 段光滑.g =10 m/s 2,求:(1)弹簧在压缩时所储存的弹性势能.(2)小球运动到轨道最高处D 点时对轨道的压力.解析:(1)对小球在C 处,由牛顿第二定律及向心力公式得 F 1-mg =m v 21Rv 1=(F 1-mg )R m=(58-0.8×10)×0.40.8=5(m/s) 从A 到B 由动能定理得E p -μmgx =12m v 21E p =12m v 21+μmgx =12×0.8×52+0.5×0.8×10×0.3=11.2(J) (2)从C 到D 由机械能守恒定律得12m v 21=2mgR +12m v 22 v 2=v 21-4gR =52-4×10×0.4=3(m/s)由于v 2>gR =2 m/s ,所以小球在D 处对轨道外壁有压力. 小球在D 处,由牛顿第二定律及向心力公式得 F 2+mg =m v 22R F 2=m (v 22R -g )=0.8×(320.4-10)=10(N) 由牛顿第三定律可知,小球在D 点对轨道的压力大小为10 N ,方向竖直向上. 答案:(1)11.2 J (2)10 N 方向竖直向上。

2012届高考物理第一轮课时复习训练题(附答案)

2012届高考物理第一轮课时复习训练题(附答案)

2012届高考物理第一轮课时复习训练题(附答案)第二节带电粒子在磁场中的运动一、单项选择题1.(2011年广东广州模拟)速率相同的电子垂直磁场方向进入四个不同的磁场,其轨迹如下图所示,则磁场最强的是()解析:选D.由qvB=mv2r得r=mvqB,速率相同时,半径越小,磁场越强,选项D正确.2.初速度为v0的电子,沿平行于通电长直导线的方向射出,直导线中的电流方向与电子的初始运动方向如图所示,则()A.电子将向右偏转,速率不变B.电子将向左偏转,速率改变C.电子将向左偏转,速率不变D.电子将向右偏转,速率改变解析:选A.由安培定则可知,直导线右侧的磁场方向垂直纸面向里,电子带负电,用左手定则判断洛伦兹力的方向时,四指指向负电荷运动的反方向,大拇指指向此时洛伦兹力的方向,方向向右,电子向右偏转;而洛伦兹力不做功,则速率不变,故A正确.3.(2011年浙江杭州模拟)质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示,离子源S产生的各种不同正离子束(速度可看成零),经加速电场加速后垂直进入有界匀强磁场,到达记录它的照相底片P上,设离子射出磁场的位置到入口处S1的距离为x,下列判断正确的是()A.若离子束是同位素,则x越大,离子进入磁场时速度越小B.若离子束是同位素,则x越大,离子质量越小C.只要x相同,则离子质量一定不相同D.只要x相同,则离子的比荷一定相同解析:选D.在加速电场中,qU=12mv2;在磁场中qvB=mv2R;由几何关系知x=2R;以上三式联立可得x=2mvqB=2B2mUq,只有选项D 正确.4.(2011年山东淄博模拟)如图所示,ABC为与匀强磁场垂直的边长为a的等边三角形,磁场垂直纸面向外,比荷为em的电子以速度v0从A 点沿AB方向射入,欲使电子能经过BC边,则磁感应强度B的取值应为()A.B>3mv0aeB.B<2mv0aeC.B<3mv0aeD.B>2mv0ae解析:选C.如图所示,由题意知,当电子正好经过C点,此时圆周运动的半径R=a2/cos30°=a3,要想电子从BC边经过,圆周运动的半径要大于a3,由带电粒子在磁场中运动的公式r=mvqB,有a3>mv0eB,即B<3mv0ae,C选项正确.二、双项选择题5.(2011年广东四校联考)质量为m、带电荷量为q的粒子(忽略重力)在磁感应强度为B的匀强磁场中做匀速圆周运动,形成空间环形电流.已知粒子的运动速率为v、半径为R、周期为T,环形电流的大小为I.则下面说法正确的是()A.该带电粒子的比荷为qm=BRvB.在时间t内,粒子转过的圆弧对应的圆心角为θ=qBtmC.当速率v增大时,环形电流的大小I保持不变D.当速率v增大时,运动周期T变小解析:选BC.在磁场中,由qvB=mv2R,得qm=vBR,选项A错误;在磁场中运动周期T=2πmqB与速率无关,选项D错误;在时间t内,粒子转过的圆弧对应的圆心角θ=tT•2π=qBtm,选项B正确;电流定义I=qT=Bq22πm,与速率无关,选项C正确.6.(2011年深圳模拟)1932年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示.这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是()A.离子由加速器的中心附近进入加速器B.离子由加速器的边缘进入加速器C.离子从磁场中获得能量D.离子从电场中获得能量解析:选AD.回旋加速器对离子加速时,离子是由加速器的中心附近进入加速器的,故选项A正确,选项B错误;离子在磁场中运动时,洛伦兹力不做功,所以离子的能量不变,故选项C错误;D形盒D1、D2之间存在交变电场,当离子通过交变电场时,电场力对离子做正功,离子的能量增加,所以离子的能量是从电场中获得的,故选项D正确.7.(2011年辽宁锦州模拟)如图所示,圆柱形区域的横截面在没有磁场的情况下,带电粒子(不计重力)以某一初速度沿截面直径方向入射时,穿过此区域的时间为t;若该区域加沿轴线方向的匀强磁场,磁感应强度为B,带电粒子仍以同一初速度沿截面直径入射,粒子飞出此区域时,速度方向偏转了π/3,根据上述条件可求得的物理量为()A.带电粒子的初速度B.带电粒子在磁场中运动的半径C.带电粒子在磁场中运动的周期D.带电粒子的比荷解析:选CD.设圆柱形区域的半径为R,粒子的初速度为v0,则v0=2Rt,由于R未知,无法求出带电粒子的初速度,选项A错误;若加上磁场,粒子在磁场中的轨迹如图所示,设运动轨迹半径为r,运动周期为T,则T=2πrv0,速度方向偏转了π/3,由几何关系得,轨迹圆弧所对的圆心角θ=π/3,r=3R,联立以上式子得T=3πt;由T=2πm/qB得q/m =23Bt,故选项C、D正确;由于R未知,无法求出带电粒子在磁场中做圆周运动的半径,选项B错误.8.(2011年上海模拟)环形对撞机是研究高能粒子的重要装置,其核心部件是一个真空的圆环状的空腔.若带电粒子的初速度可视为零,经电压为U的电场加速后,沿圆环切线方向注入对撞机的环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,磁感应强度大小为 B.带电粒子将被局限在圆环状空腔内运动.要维持带电粒子在圆环内做半径确定的圆周运动,下列说法中正确的是()A.对于给定的加速电压,带电粒子的比荷q/m越大,磁感应强度B 越小B.对于给定的加速电压,带电粒子的比荷q/m越大,磁感应强度B 越大C.对于给定的带电粒子,加速电压U越大,粒子运动周期越小D.对于给定的带电粒子,不管加速电压U多大,粒子运动的周期都不变解析:选AC.带电粒子先经电压为U的电场加速,由动能定理有qU=12mv2,沿圆环切线方向注入对撞机的环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,粒子做匀速圆周运动,由qvB=mv2R,解得:R=1B2mUq,因半径R确定,对于给定的加速电压,带电粒子的比荷q/m越大,磁感应强度B越小,选项A正确;对于给定的带电粒子,加速电压U越大,磁感应强度越大,由周期公式T=2πmqB,所以粒子运动周期越小,选项C正确,选项D错误.三、非选择题9.在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示.一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出.(1)请判断该粒子带何种电荷,并求出其比荷qm.(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B′多大?此次粒子在磁场中运动所用时间t是多少?解析:(1)由粒子的飞行轨迹,利用左手定则可知,该粒子带负电荷.粒子由A点射入,由C点飞出,其速度方向改变了90°,则粒子轨迹半径r=R,又qvB=mv2R,则粒子的比荷为qm=vBr.(2)令粒子飞出磁场的点为D点,则粒子从D飞出磁场速度方向改变了60°角,故AD弧所对圆心角为60°角.用粒子速度的偏向角的角平分线及一处(A点)速度的垂线可找出圆心.粒子做圆周运动的半径:R′=rcot30°=3r,又:R′=mvqB′,所以B′=33B,粒子在磁场中飞行时间t=16T=16•2πmqB′=3πr3v.答案:(1)负电vBr(2)3B33πr3v10.(2011年东北四市联考)如图所示,在空间有一直角坐标系xOy,直线OP与x轴正方向的夹角为30°,第一象限内有两个方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线OP是它们的理想边界,OP上方区域Ⅰ中磁场的磁感应强度为B.一质量为m,电荷量为q的质子(不计重力,不计质子对磁场的影响)以速度v从O点沿与OP成30°角的方向垂直磁场进入区域Ⅰ,质子先后通过磁场区域Ⅰ和Ⅱ后,恰好垂直打在x 轴上的Q点(图中未画出),试求:(1)区域Ⅱ中磁场的磁感应强度大小;(2)Q点到O点的距离.解析:(1)设质子在匀强磁场区域Ⅰ和Ⅱ中做匀速圆周运动的轨道半径分别为r1和r2,区域Ⅱ中磁感应强度为B′,由牛顿第二定律得qvB=mv2r1qvB′=mv2r2粒子在两区域运动的轨迹如图所示,由几何关系可知,质子从A点出匀强磁场区域Ⅰ时的速度方向与OP的夹角为30°,故质子在匀强磁场区域Ⅰ中运动轨迹对应的圆心角为θ=60°则ΔO1OA为等边三角形OA=r1r2=OAsin30°=12r1解得区域Ⅱ中磁感应强度为B′=2B.(2)Q点到O点的距离为x=OAcos30°+r2=(3+12)mvqB.答案:(1)2B(2)(3+12)mvqB1.(2010年高考江苏卷)如图所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴OO′与SS′垂直.a、b、c三个质子先后从S点沿垂直于磁场的方向射入磁场,它们的速度大小相等,b的速度方向与SS′垂直,a、c的速度方向与b的速度方向间的夹角分别为α、β,且α>β.三个质子经过附加磁场区域后能到达同一点S′,则下列说法中正确的有()A.三个质子从S运动到S′的时间相等B.三个质子在附加磁场以外区域运动时,运动轨迹的圆心均在OO′轴上C.若撤去附加磁场,a到达SS′连线上的位置距S点最近D.附加磁场方向与原磁场方向相同解析:选CD.三个质子运动的弧长不同,但速度大小相同,所以运动的时间一定不同,选项A错误;假设三个质子在附加磁场以外区域运动轨迹的圆心均在OO′轴上,则必定三个质子运动轨迹的半径不同,这与R=mvqB都相同相矛盾,所以选项B错误;若撤去附加磁场,画出三个质子的运动轨迹(图略),a、b、c三个质子到达SS′连线的位置距离S 的长度分别为sa=2Rcosα,sb=2R,sc=2Rcosβ,由于α>β,所以sa 最小,选项C正确;由于撤去附加磁场sb最大,加上附加磁场三者都经过S′,又由于质子b经过附加磁场区域最大,所以附加磁场应起到“加强偏转”的作用,即附加磁场方向与原磁场方向相同,选项D正确.2.(2010年高考山东卷)如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m、带电量+q、重力不计的带电粒子,以初速度v1垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功W1.(2)粒子第n次经过电场时电场强度的大小En.(3)粒子第n次经过电场所用的时间tn.(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).解析:(1)设磁场的磁感应强度大小为B,粒子第n次进入磁场时的半径为Rn,速度为vn,由牛顿第二定律得qvnB=mv2nRn①由①式得vn=qBRnm②因为R2=2R1,所以v2=2v1③对于粒子第一次在电场中的运动,由动能定理得W1=12mv22-12mv21④联立③④式得W1=3mv212.⑤(2)粒子第n次进入电场时速度为vn,出电场时速度为vn+1,有vn=nv1,vn+1=(n+1)v1⑥由动能定理得qEnd=12mv2n+1-12mv2n⑦联立⑥⑦式得En= 2n+1 mv212qd.⑧(3)设粒子第n次在电场中运动的加速度为an,由牛顿第二定律得qEn=man⑨由运动学公式得vn+1-vn=antn⑩联立⑥⑧⑨⑩式得tn=2d 2n+1 v1.(4)如图所示.答案:(1)32mv21(2) 2n+1 mv212qd(3)2d 2n+1 v1(4)如解析图所示。

2012届高三物理一轮复习精品资料近代物理初步(高考真题 模拟新题)(有详解)

O 单元 近代物理初步 O1 量子论初步 光的粒子性35.[2011·课标全国卷] O1(1)在光电效应实验中,某金属的截止频率相应的波长为λ0,该金属的逸出功为________.若用波长为λ(λ<λ0)的单色光做实验,则其遏止电压为________.已知电子的电荷量、真空中的光速和普朗克常量分别为e 、c 和h .【答案】h c λ0 hc e ·λ0-λλ0λ【解析】 截止频率即刚好发生光电效应的频率,此时光电子的最大初动能为零,由爱因斯坦光电效应方程E k =h ν-W 0和c =λ0ν得:W 0=h cλ0.若用波长为λ的单色光做实验,光电子的最大初动能E k =h ν-W 0=h c λ-h cλ0,设其截止电压为U ,则eU =E k ,解得:U=hc e ·λ0-λλ0λ. F3(2)如图1-17所示,A 、B 、C 三个木块的质量均为m ,置于光滑的水平面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触而不固连.将弹簧压紧到不能再压缩时用细线把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体.现A 以初速v 0 沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起.以后细线突然断开,弹簧伸展,从而使C 与A 、B 分离.已知C 离开弹簧后的速度恰为v 0 ,求弹簧释放的势能.图1-17【解析】 设碰后A 、B 和C 的共同速度的大小为v ,由动量守恒得 3mv =mv 0①设C 离开弹簧时,A 、B 的速度大小为v 1,由动量守恒得3mv =2mv 1+mv 0② 设弹簧的弹性势能为E p ,从细线断开到C 与弹簧分开的过程中机械能守恒,有 12(3m )v 2+E p =12(2m )v 21+12mv 20③ 由①②③式得,弹簧所释放的势能为E p =13mv 20④18.O1[2011·四川卷] 氢原子从能级m 跃迁到能级n 时辐射红光的频率为ν1,从能级n跃迁到能级k 时吸收紫光的频率为ν2,已知普朗克常量为h ,若氢原子从能级k 跃迁到能级m ,则( ) A .吸收光子的能量为h ν1+h ν2 B .辐射光子的能量为h ν1+h ν2 C .吸收光子的能量为h ν2-h ν1 D .辐射光子的能量为h ν2-h ν1【解析】 D 氢原子从m 能级跃迁到n 能级辐射能量,即E m -E n =h ν1,氢原子从n 能级跃迁到k 能级吸收能量,即E k -E n =h ν2,氢原子从k 能级跃迁到m 能级,E k -E m =h ν2+E n -h ν1-E n =h ν2-h ν1,因紫光的频率ν2大于红光的频率ν1,所以E k >E m ,即辐射光子的能量为h ν2-h ν1,D 正确.18.O1[2011·全国卷] 已知氢原子的基态能量为E 1,激发态能量E n =E 1n2,其中n =2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( )A .-4hc 3E 1B .-2hc E 1C .-4hc E 1D .-9hcE 1【解析】 C 从第一激发态到电离状态吸收的能量ΔE =0-E 122=-E 14,根据ΔE =h ν=h cλ,所以λ=-4hcE 1,因此答案为C.18.O1[2011·广东物理卷] 光电效应实验中,下列表述正确的是( ) A .光照时间越长光电流越大 B .入射光足够强就可以有光电流 C .遏止电压与入射光的频率有关D .入射光频率大于极限频率才能产生光电子18.O1[2011·广东物理卷] CD 【解析】 各种金属都存在着极限频率,低于极限频率的任何入射光强度再大、照射时间再长都不会发生光电效应;发生光电效应时,光电流的强度与入射光的强度成正比;遏止电压随入射光的频率增大而增大,故CD 选项正确.12.[2011·江苏物理卷] 【选做题】本题包括A 、B 、C 三小题,请选定其中两......题.,并在相....应.的答..题.区域内作答.....,若三题都做,则按A 、B 两题评分.C.(选修模块3-5)(12分)(1)O1[2011·江苏物理卷] 下列描绘两种温度下黑体辐射强度与波长关系的图中,符合黑体辐射实验规律的是( )A BC D图11(1)O1[2011·江苏物理卷] 【答案】 A【解析】随着温度的升高,一方面各种波长的辐射强度都增加,另一方面辐射强度的极大值向着波长较短的方向移动,所以A正确.29.(1)O1[2011·福建卷] (1)爱因斯坦提出了光量子概念并成功地解释光电效应的规律而获得1921年的诺贝尔物理学奖.某种金属逸出光电子的最大初动能E km与入射光频率ν的关系如图1-13所示,其中ν0为极限频率.从图中可以确定的是________.(填选项前的字母)A.逸出功与ν有关B.E km与入射光强度成正比图1-13C.当ν<ν0时,会逸出光电子D.图中直线的斜率与普朗克常量有关29.(1)O1[2011·福建卷] D 【解析】由爱因斯坦光电方程E k=hν-W和W=hν0(W为金属的逸出功)可得,E k=hν-hν0,可见图象的斜率表示普朗克常量,D正确;只有ν≥ν0时才会发生光电效应,C错;金属的逸出功只和金属的极限频率有关,与入射光的频率无关,A错;最大初动能取决于入射光的频率,而与入射光的强度无关,B错.O2 原子核【必做部分】38.O2[2011·山东卷] 【物理-物理3-5】(1)碘131核不稳定,会发生β衰变,其半衰期为8天.①碘131核的衰变方程:131 53I→________(衰变后的元素用X表示).②经过________天有 75%的碘131核发生了衰变.【答案】①131 54X+0-1e ②16【解析】①在衰变的过程中,质量数守恒,核电荷数守恒,即131 53I→131 54X+0-1e.②经过8天后,有一半发生衰变,即50%发生衰变,再经过8天,剩下一半的一半发生衰变,这时有75%的碘131核发生了衰变,所以共用时间16天.(2)如图1-22所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m 的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)图1-22【解析】设乙船上的人抛出货物的最小速度大小为v min,抛出货物后船的速度为v1,甲船上的人接到货物后船的速度为v2,由动量守恒定律得12m·v0=11m·v1-m·v min①10m·2v0-m·v min=11m·v2②为避免两船相撞,应满足v1=v2③联立①②③式得v min=4v016.O2[2011·重庆卷]核电站核泄漏的污染物中含有碘131和铯137.碘131的半衰期约为8天,会释放β射线;铯137是铯133的同位素,半衰期约为30年,发生衰变时会辐射γ射线.下列说法正确的是( )A.碘131释放的β射线由氦核组成B.铯137衰变时辐射出的γ光子能量小于可见光光子能量C.与铯137相比,碘131衰变更慢D.铯133和铯137含有相同的质子数16.O2[2011·重庆卷]D 【解析】β射线实际是电子流,A错误;γ射线是高频电磁波,其光子能量大于可见光的能量,B错误;半衰期是放射性元素的原子核有半数发生衰变所需的时间,碘131的半衰期为8天,铯137半衰期为30年,碘131衰变更快,C错误;同位素是具有相同的质子数和不同的中子数的元素,故铯133和铯137含有相同的质子数,D正确.15.O2[2011·浙江卷] 关于天然放射现象,下列说法正确的是( )A.α射线是由氦原子核衰变产生B.β射线是由原子核外电子电离产生C.γ射线是由原子核外的内层电子跃迁产生D.通过化学反应不能改变物质的放射性【解析】 D α射线是由氦原子核组成的,不是由氦原子核衰变产生的,A选项错误;β射线中的电子是原子核内部一个中子转变成一个质子的同时从原子核逸出的,B选项错误;γ射线是由原子核内部受激发产生的,常伴随着α衰变和β衰变,C选项错误;物质的放射性反映的是物质的物理性质,与其是否参与化学反应无关,D选项正确.1.O2[2011·天津卷] 下列能揭示原子具有核式结构的实验是( )A.光电效应实验B.伦琴射线的发现C. α粒子散射实验D. 氢原子光谱的发现1.[2011·天津卷] C 【解析】卢瑟福根据α粒子散射实验现象提出了原子的核式结构,C正确.12.O2[2011·天津卷] 回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力地推动了现代科学技术的发展.(1)当今医学影像诊断设备PET/CT 堪称“现代医学高科技之冠”,它在医疗诊断中,常利用能放射正电子的同位素碳11作示踪原子.碳11是由小型回旋加速器输出的高速质子轰击氮14获得,同时还产生另一粒子,试写出核反应方程.若碳11的半衰期τ为20 min ,经2.0 h 剩余碳11的质量占原来的百分之几?(结果取2位有效数字)(2)回旋加速器的原理如图所示,D 1和D 2是两个中空的半径为R 的半圆金属盒,它们接在电压一定、频率为f 的交流电源上,位于D 1圆心处的质子源A 能不断产生质子(初速度可以忽略,重力不计),它们在两盒之间被电场加速,D 1、D 2置于与盒面垂直的磁感应强度为B 的匀强磁场中.若质子束从回旋加速器输出时的平均功率为P ,求输出时质子束的等效电流I 与P 、B 、R 、f 的关系式(忽略质子在电场中的运动时间,其最大速度远小于光速).图10(3)试推理说明:质子在回旋加速器中运动时,随轨道半径r 的增大,同一盒中相邻轨道的半径之差Δr 是增大、减小还是不变? 12.[2011·天津卷] 【解析】 (1)核反应方程为14 7N +11H ―→11 6C +42He ①设碳11原有质量为m 0,经过t 1=2.0 h 剩余的质量为m τ,根据半哀期定义有m τm 0=⎝ ⎛⎭⎪⎫12t τ=⎝ ⎛⎭⎪⎫1212020≈1.6%② (2)设质子质量为m ,电荷量为q ,质子离开加速器时速度大小为v ,由牛顿第二定律知qvB =m v 2R③质子运动的回旋周期为T =2πR v =2πmqB④由回旋加速器工作原理可知,交流电源的频率与质子回旋频率相同,由周期T 与频率f 的关系得f =1T⑤ 设在t 时间内离开加速器的质子数为N ,则质子束从回旋加速器输出时的平均功率P =N ·12mv 2t⑥输出时质子束的等效电流I =Nq t⑦由上述各式得I =PπBR 2f⑧ (3)方法一:设k (k ∈*)为同一盒中质子运动轨道半径的序数,相邻的轨道半径分别为r k 、r k +1(r k +1>r k ),Δr k =r k +1-r k ,在相应轨道上质子对应的速度大小分别为v k 、v k -1,D 1、D 2之间的电压为U ,由动能定理知 2qU =12mv 2k +1-12mv 2k ⑨由洛伦兹力充当质子做圆周运动的向心力,知r k =mv kqB,则 2qU =q 2B 22m(r 2k +1-r 2k )整理得 Δr k =4mUqB2r k +1+r k⑩因U 、q 、m 、B 均为定值,令C =4mUqB2,由上式得Δr k =Cr k +r k +1相邻轨道半径r k +1、r k +2之差 Δr k +1=Cr k +1+r k +2因为r k +2>r k ,比较Δr k 、Δr k +1得 Δr k +1<Δr k ○11 说明随轨道半径r 的增大,同一盒中相邻轨道的半径之差Δr 减小. 方法二:设k (k ∈N *)为同一盒中质子运动轨道半径的序数,相邻的轨道半径分别为r k 、r k +1(r r +1>r k ),Δr k =r k +1-r k ,在相应轨道上质子对应的速度大小分别为v k 、v k +1,D 1、D 2之间的电压为U .由洛伦兹力充当质子做圆周运动的向心力,知r k =mv kqB,故 r k r k +1=v kv k +1○12 由动能定理知,质子每加速一次,其动能增量 ΔE k =qU ○13 以质子在D 2盒中运动为例,第k 次进入D 2时,被电场加速(2k -1)次,速度大小为v k =k -qUm○14 同理,质子第(k +1)次进入D 2时,速度大小为v k +1=k +qUm综合上述各式得r kr k +1=2k -12k +1整理得r 2kr 2k +1=2k -12k +1r 2k +1-r 2kr 2k +1=22k +1 Δr k =2r 2k +1k +r k +r k +1同理,对于相邻轨道半径r k +1、r k +2,Δr k +1=r k +2-r k +1,整理后有 Δr k +1=2r 2k +1k +r k +1+r k +2由于r k +2>r k ,比较Δr k 、Δr k +1得 Δr k +1<Δr k ○15 说明随轨道半径r 的增大,同一盒中相邻轨道的半径之差Δr 减小,用同样的方法也可得到质子在D 1盒中运动时具有相同的结论.12.[2011·江苏物理卷] 【选做题】本题包括A 、B 、C 三小题,请选定其中两......题.,并在相....应的答...题.区域内作答.....,若三题都做,则按A 、B 两题评分. C .(选修模块3-5)(12分)(2)O2[2011·江苏物理卷] 按照玻尔原子理论,氢原子中的电子离原子核越远,氢原子的能量__________(选填“越大”或“越小”).已知氢原子的基态能量为E 1(E 1 <0),电子质量为m, 基态氢原子中的电子吸收一频率为ν的光子被电离后,电子速度大小为___________(普朗克常量为h ). (2)O2[2011·江苏物理卷] 【答案】 越大h ν+E 1m【解析】 电子离原子核越远,能级越大,电势能越大,原子能量也就越大;根据能量守恒定律有h ν+E 1=12mv 2,所以电离后电子速度大小为h ν+E 1m.(3)O2[2011·江苏物理卷] 有些核反应过程是吸收能量的.例如,在X +147N→178O +11H 中,核反应吸收的能量Q =[]()m O +m H -()m X +m N c 2.在该核反应方程中,X 表示什么粒子?X粒子以动能E k 轰击静止的147N 核,若E k =Q ,则该核反应能否发生?请简要说明理由. (3)O2[2011·江苏物理卷] 【答案】 42He.不能发生,因为不能同时满足能量守恒和动量守恒的要求.【解析】 根据核反应中质量数和电荷数守恒,可求X 粒子质量数和电荷数分别为4和2,所以粒子是42He ;粒子轰击,说明粒子具有动量,由动量守恒知,反应后总动量不为零,动能不为零,则系统机械能不为零,若E k =Q ,则反应后系统机械能应为零,所以这样的核反应不能发生.13.O2[2011·北京卷] 表示放射性元素碘131(13153I)β衰变的方程是( ) A. 13153I ―→12751Sb +42He B. 13153I ―→13154Xe + 0-1e C. 13153I ―→13053I +10n D. 13153I ―→13052Te +11H13.O2[2011·北京卷] B 【解析】 β衰变放出的为电子,只有B 项正确.O3 近代物理初步综合1.[2011·东北模拟]卢瑟福和他的助手做α粒子轰击金箔实验,获得了重要发现.关于α粒子散射实验的结果,下列说法正确的是( ) A .证明了质子的存在B .证明了原子核是由质子和中子组成的C .证明了原子的全部正电荷和几乎全部质量都集中在一个很小的核里D .说明了原子中的电子只能在某些轨道上运动1.C 【解析】α粒子散射实验发现了原子内存在一个集中了全部正电荷和几乎全部质量的核.数年后卢瑟福发现核内有质子并预测核内存在中子,所以C对,A、B错.玻尔发现了电子轨道量子化,D错.2.[2011·福州模拟]如图X31-1所示为卢瑟福和他的同事们做α粒子散射实验的装置示意图,荧光屏和显微镜分别放在图中的A、B、C、D四个位置时,下述对观察到现象的说法中正确的是( )图X31-1A.放在A位置时,相同时间内观察到屏上的闪光次数最多B.放在B位置时,相同时间内观察到屏上的闪光次数只比A位置时稍少些C.放在C、D位置时,屏上观察不到闪光D.放在D位置时,屏上仍能观察到一些闪光,但次数极少2.AD 【解析】α粒子散射实验的结果是,绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转.因此,荧光屏和显微镜一起分别放在图中的A、B、C、D四个位置时,在相同时间内观察到屏上的闪光次数分别为绝大多数、少数、少数、极少数,故A、D正确.3.[2011·锦州模拟]已知金属钙的逸出功为2.7 eV,氢原子的能级图如图X31-2所示,一群氢原子处于量子数n=4能级状态,则( )图X31-2A.氢原子可能辐射6种频率的光子B.氢原子可能辐射5种频率的光子C .有3种频率的辐射光子能使钙发生光电效应D .有4种频率的辐射光子能使钙发生光电效应3. AC 【解析】 一群氢原子处于量子数为n 的激发态时,可辐射的光谱线的条数为N =n ()n -12,故A 对,B 错;这6种频率的光子有3种能量大于2.7 eV ,C 对,D 错.4.[2011·温州模拟]如图X31-3所示为氢原子的能级示意图,一群氢原子处于n =3的激发态,在向较低能级跃迁的过程中向外发出光子,用这些光子照射逸出功为 2.49 eV 的金属钠,下列说法中正确的是( )图X31-3A .这群氢原子能辐射出三种频率不同的光,其中从n =3跃迁到n =2所发出的光波长最短B .这群氢原子在辐射光子的过程中电子绕核运动的动能减小,电势能增大C .金属钠表面所发出的光电子的最大初动能为11.11 eVD .金属钠表面所发出的光电子的最大初动能为9.60 eV4. D 【解析】 从n =3跃迁到n =2所发出的光频率最小,波长最大,A 错;氢原子在辐射光子的过程后,轨道半径减小,动能增大,电势能减小,总能量减小,B 错;辐射光子的最大能量为12.09 eV ,所以金属钠表面所发出的光电子的最大初动能为(12.09-2.49) eV =9.60 eV ,C 错,D 对.5.[2011·苏北模拟]若氢原子的基态能量为E (E <0 ),各个定态的能量值为E n =E n 2(n =1,2,3…),则为使一处于基态的氢原子核外电子脱离原子核的束缚,所需的最小能量为________;若有一群处于n =2能级的氢原子,发生跃迁时释放的光子照射某金属能产生光电效应现象,则该金属的逸出功至多为________(结果均用字母表示).5.-E -34E 【解析】 若氢原子的基态能量为E (E <0 ),各个定态的能量值为E n =E n 2(n =1,2,3…),则为使一处于基态的氢原子核外电子脱离原子核的束缚,电子需吸收能量跃迁到无穷远处,所需的最小能量为0-E =-E ;处于n =2能级的氢原子,辐射光子的能量为-34E ,所以要使某金属能产生光电效应现象,则该金属的逸出功至多为-34E . 6.[2011·西平模拟]由于放射性元素23793Np 的半衰期很短,所以在自然界一直未被发现,只是在使用人工的方法制造后才被发现.已知237 93Np 经过一系列α衰变和β衰变后变成209 83Bi ,下列论断中正确的是( )A. 209 83Bi 的原子核比237 93Np 的原子核少28个中子B. 209 83Bi 的原子核比237 93Np 的原子核少18个中子C .衰变过程中共发生了7次α衰变和4次β衰变D .衰变过程中共发生了4次α衰变和7次β衰变6.BC 【解析】 209 83Bi 的中子数为209-83=126,237 93Np 的中子数为237-93=144,209 83Bi的原子核比237 93Np 的原子核少18个中子,A 错、B 对;衰变过程中共发生了α衰变的次数为237-2094=7次,β 衰变的次数是2×7-(93-83)=4次,C 对、D 错. 7.[2011·东北模拟 ]关于下列核反应或核衰变方程,说法正确的是( )A.94Be +42He→12 6C +X ,符号“X”表示中子B. 14 7N +42He→17 8O +X ,符号“X”表示中子C. 2411Na→2412Mg + 0-1e 是裂变D. 235 92U +10n→140 54Xe +9438Sr +210n 是聚变7.A 【解析】 由核反应中质量数守恒、电荷数守恒可知A 对、B 错;C 中反应是衰变,D中反应是裂变,C 、D 均错.8.[2011·温州模拟]2010年7月25日早7时,美国“乔治·华盛顿”号核航母驶离韩南部釜山港赴东部海域参加军演,标志此次代号为“不屈的意志”的美韩联合军演正式开始.在现代兵器体系中,潜艇和航母几乎算得上是一对天生的冤家对头,整个二战期间,潜艇共击沉航母17艘,占全部沉没航母数量的40.5%.中国有亚洲最大的潜艇部队,拥有自行开发的宋级柴电动力潜艇和汉级核动力潜艇,核动力潜艇中核反应堆释放的核能被转化成动能和电能.核反应堆的工作原理是利用中子轰击重核发生裂变反应,释放出大量的核能.方程235 92U +n→141 56Ba +9236Kr +a X 是反应堆中发生的许多核反应中的一种,n 为中子,X 为待求粒子,a 为X 的个数,则( )A .X 为质子,a =3B .X 为质子,a =2C .X 为中子,a =2D .X 为中子,a =38. D 【解析】由核反应中质量数守恒、电荷数守恒可知D对.。

2012高考物理一轮复习试题7

2012高考物理一轮复习试题7一、选择题(本题共10小题,每小题7分,共70分,每小题至少有一个选项正确,把正确选项前的字母填在题后的括号内)1.下列说法中正确的是()A.物体在不受外力作用时,保持原有运动状态不变的性质叫惯性,故牛顿运动定律又叫惯性定律B.牛顿第一定律仅适用于宏观物体,只可用于解决物体的低速运动问题C.牛顿第一定律是牛顿第二定律在物体的加速度a=0条件下的特例D.伽利略根据理想实验推出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去解析:牛顿第一定律表明,物体在不受外力作用时,保持原有运动状态不变的性质叫惯性,故牛顿第一定律又叫惯性定律,A错误.牛顿运动定律都是在宏观、低速的情况下得出的结论,在微观、高速的情况下不成立,B正确.牛顿第一定律说明了两点含义,一是所有物体都有惯性,二是物体不受力时的运动状态是静止或匀速直线运动,牛顿第二定律并不能完全包含这两点意义,C错误.伽利略的理想实验是牛顿第一定律的基础,D正确.答案:BD2.物体静止在斜面上,如图所示,下列说法正确的是()A.物体对斜面的压力和斜面对物体的支持力是一对平衡力B.物体对斜面的摩擦力和斜面对物体的摩擦力是一对作用力和反作用力C.物体所受重力和斜面对物体的作用力是一对作用力和反作用力D.物体所受重力可以分解为沿斜面向下的力和对斜面的压力解析:物体对斜面的压力和斜面对物体的支持力及物体对斜面的摩擦力和斜面对物体的摩擦力同属物体和斜面间的相互作用力,分别作用在斜面和物体上,因此它们是作用力和反作用力,所以A错B对;物体所受的重力是地球施加的,其反作用力是物体对地球的吸引力,应作用在地球上,因此C错;物体所受重力,无论如何分解,各分力都应作用在物体上,而不能作用在斜面上形成对斜面的压力,所以D错.答案:B3.(2009年高考宁夏卷)在力学理论建立的过程中,有许多伟大的科学家做出了贡献,关于科学家和他们的贡献,下列正确的是()[来源:学*科*网] A.伽利略发现了行星运动的规律B.卡文迪许通过实验测出了引力常量C.牛顿最早指出力不是维持物体运动的原因D.笛卡儿对牛顿第一定律的建立做出了贡献解析:开普勒发现了行星运动的规律,即开普勒三定律,A错.伽利略利用斜面实验指出:力不是维持运动的原因,C错.卡文迪许设计了扭秤实验,测出了引力常量,B对.对牛顿第一定律的建立做出贡献的科学家很多,如伽利略、笛卡儿等,D对.答案:BD4.(探究创新)如图所示,甲、乙两节空车厢质量相等,两个同学玩捉迷藏游戏时,有一同学躲在某节车厢内,牵拉系在另一车厢上的绳子,使两车靠近.设绳子质量不计,两车厢与水平轨道之间的摩擦不计.站在地面上的同学若要判断哪节车厢里面有人,下列依据正确的是()A.根据绳子拉力大小,拉力大的一端车厢里面有人B.根据运动的先后,后运动的车厢里面有人C.根据同一时刻运动的快慢,运动慢的车厢里面有人D.根据同一时刻运动的快慢,运动快的车厢里面有人解析:绳子上的拉力大小是相等的,A错;两车同时开始运动,所以不能根据运动的先后判断哪个车厢里有人,B错;有人的车厢加速度小,所以在同一时刻其速度小,C正确,D错误.答案:C[来源:]5.下列关于惯性的各种说法中,你认为正确的是()A.抛出去的标枪、手榴弹等是靠惯性向远处运动的B.在完全失重的情况下,物体的惯性将消失C.把手中的球由静止释放后,球能竖直加速下落,说明力是改变物体惯性的原因D.材料不同的两个物体放在地面上,用一个相同的水平力分别推它们,则难A.人只有在静止的车厢内,竖直向上高高跳起后,才会落在车厢的原来位置B.人在沿直线匀速前进的车厢内,竖直向上高高跳起后,将落在原来位置C.人在沿直线加速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方D.人在沿直线减速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方解析:由于惯性,人竖直向上跳起后水平方向的速度与人跳起时车的速度相等,故车静止时或做匀速直线运动时,人均落在原来的位置,故A错误,B正确;当车加速前进时,人竖直跳起后,水平方向以此时该车的速度做匀速直线运动,而车做加速直线运动,故人将落在起跳点的后方,C正确;同样的道理,可分析D 错误.[来源:学科网ZXXK]答案:BC9.我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带,以下叙述正确的是()A.系好安全带可以减小惯性[来源:Z#xx#][来源:Z,xx,]B.是否系好安全带对人和车的惯性没有影响C.系好安全带可以防止因车的惯性而造成的伤害D.系好安全带可以防止因人的惯性而造成的伤害解析:安全带与人和车的惯性无关,A错、B对.系好安全带主要是防止因刹车时人具有向前的惯性而造成伤害事故,C错、D对.答案:BD10.如图所示是一种汽车安全带控制装置的示意图,当汽车处于静止或匀速直线运动时,摆锤竖直悬挂,锁棒水平,棘轮可以自由转动,安全带能被拉动.当汽车突然刹车时,摆锤由于惯性绕轴摆动,使得锁棒锁定棘轮的转动,安全带不能被拉动.若摆锤从图中实线位置摆到虚线位置,汽车的可能运动方向和运动状态是()A .向左行驶、突然刹车B .向右行驶、突然刹车C .向左行驶、匀速直线运动D .向右行驶、匀速直线运动解析:简化模型如图所示,当小球在虚线位置时,小球、车具有向左的加速度,车的运动情况可能为:向左加速行驶或向右减速行驶,A 错误,B 正确;当车匀速运动时,无论向哪个方向运动,小球均处于竖直位置不摆动,C 、D 错误.答案:B二、非选择题(本题共2小题,共30分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)11.(15分)如图所示,高为h 的车厢在平直轨道上匀减速向右行驶,加速度大小为a ,车厢顶部A 点处有质量为m 的油滴落到地板上,若O 点位于A 点的正下方,则油滴落在地板上的点应在O 点左侧还是右侧?离O 点距离为多少?油滴下落过程中对地球的作用力大小为多少?解析:油滴离开车厢上的A 点后,由于惯性在水平方向上保持原来的速度,而在竖直方向上做自由落体运动.在竖直方向上,由h =12gt 2知 油滴的下落时间t = 2hg ①设油滴下落时车的速度为v 0,则在时间t 内油滴的水平位移s 1=v 0t ②车的水平位移s 2=v 0t -12at 2③ 由①②③得油滴落在O 点右侧,距O 点的距离为Δs =s 1-s 2=12at 2=a g h .油滴下落时地球对油滴的作用力大小为mg,由牛顿第三定律可知,油滴对地球的作用力大小也是mg.[来源:]答案:右侧ag h mg12.(15分)(综合提升)一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的质量为M,环的质量为m,如图所示.已知环沿杆匀加速下滑时,环与杆间的摩擦力大小为f,而此时箱对地面的压力大小为多少?解析:环在竖直方向上受力情况如图甲所示,受一个重力,及箱子的杆给它的竖直向上的摩擦力f,根据牛顿第三定律,环应给杆一个竖直向下的摩擦力f′,故箱子竖直方向上受力如图乙所示,受重力Mg,地面对它的支持力N,及环给它的摩擦力f′,由于箱子处于平衡状态,可得N=f′+Mg=f+Mg.根据牛顿第三定律,箱子给地面的压力大小等于地面给箱子的弹力,即[来源:学#科#网]N′=f+Mg.答案:f+Mg。

2012届高考物理第一轮精练跟踪复习题(附答案和解释)

2012届高考物理第一轮精练跟踪复习题(附答案和解释)第二章第二单元力的合成与分解一、单项选择题(本题共6小题,每小题7分,共42分)1.手握轻杆,杆的另一端安装有一个小滑轮C,支持着悬挂重物的绳子,如图1所示,现保持滑轮C的位置不变,使杆向下转动一个角度,则杆对滑轮C的作用力将()A.变大B.不变C.变小D.无法确定2.如图2所示,用一根长为l的细绳一端固定在O点,另一端悬挂质量为m的小球A,为使细绳与竖直方向夹30°角且绷紧,小球A处于静止,对小球施加的最小的力是()A.3mgB.32mgC.12mgD.33mg3.(2010•镇江模拟)如图3所示是用来粉刷墙壁的涂料滚的示意图.使用时,用撑竿推着涂料滚沿墙壁上下滚动,把涂料均匀地粉刷到墙壁上.撑竿的重量和墙壁的摩擦均不计,而且撑竿足够长.粉刷工人站在离墙壁某一距离处缓缓上推涂料滚,使撑竿与墙壁间的夹角越来越小.该过程中撑竿对涂料滚的推力为F1,墙壁对涂料滚的支持力为F2,下列说法正确的是()A.F1、F2均减小B.F1、F2均增大C.F1减小,F2增大D.F1增大,F2减小4.如图4甲所示为杂技表演的安全网示意图,网绳的结构为正方格形,O、a、b、c、d…等为网绳的结点.安全网水平张紧后,若质量为m的运动员从高处落下,并恰好落在O点上.该处下凹至最低点时,网绳dOe、bOg均成120°向上的张角,如图乙所示,此时O点受到的向下的冲击力大小为F,则这时O点周围每根网绳承受的力的大小为() A.FB.F2C.F+mgD.F+mg25.(如图5所示,质量为m的等边三棱柱静止在水平放置的斜面上.已知三棱柱与斜面之间的动擦因数为μ,斜面的倾角为30°,则斜面对三棱柱的支持力与摩擦力的大小分别为()A.32mg和12mgB.12mg和32mgC.12mg和12μmgD.32mg和32μmg6.在建筑工地上有时需要将一些建筑材料由高处送到低处,为此工人们设计了一种如图6所示的简易滑轨:两根圆柱形木杆AB和CD相互平行,斜靠在竖直墙壁上,把一摞弧形瓦放在两木杆构成的滑轨上,瓦将沿滑轨滑到低处.在实际操作中发现瓦滑到底端时速度较大,有时会摔碎,为了防止瓦被损坏,下列措施中可行的是()A.增加每次运送瓦的块数B.减少每次运送瓦的块数C.增大两杆之间的距离D.减小两杆之间的距离二、多项选择题(本题共4小题,每小题7分,共28分.每小题有多个选项符合题意,全部选对的得7分,选对但不全的得3分,错选或不答的得0分)7.如图7所示,一个物体由绕过定滑轮的绳拉着,分别用图中所示的三种情况拉住,在这三种情况下,若绳的张力分别为F1、F2、F3,轴心对定滑轮的支持力分别为FN1、FN2、FN3.滑轮的摩擦、质量均不计,则()A.FN1>FN2>FN3B.FN1=FN2=FN3C.F1=F2=F3D.F1<F2<F38.如图8所示,用两根细线把A、B两小球悬挂在天花板上的同一点O,并用第三根细线连接A、B两小球,然后用某个力F作用在小球A上,使三根细线均处于直线状态,且OB细线恰好沿竖直方向,两小球均处于静止状态.则该力可能为图中的()A.F1B.F2C.F3D.F49.如图9所示,A、B两物体的质量分别为mA、mB,且mA>mB,整个系统处于静止状态.滑轮的质量和一切摩擦均不计,如果绳一端由Q 点缓慢地向左移到P点,整个系统重新平衡后,物体A的高度和两滑轮间绳与水平方向的夹角θ变化情况是()A.物体A的高度升高B.物体A的高度降低C.θ角不变D.θ角变小10.如图10所示,轻质光滑滑轮两侧用细绳连着两个物体A与B,物体B放在水平地面上,A、B均静止.已知A和B的质量分别为mA、mB,绳与水平方向的夹角为θ,则()A.物体B受到的摩擦力可能为0B.物体B受到的摩擦力为mAgcosθC.物体B对地面的压力可能为0D.物体B对地面的压力为mBg-mAgsinθ三、计算题(本题共2小题,共30分.解答时请写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)11.(15分)(2008•重庆高考)滑板运动是一项非常刺激的水上运动,研究表明,在进行滑板运动时,水对滑板的作用力FN垂直于板面,大小为kv2,其中v为滑板速率(水可视为静止).某次运动中,在水平牵引力作用下,当滑板和水面的夹角θ=37°时(如图11所示),滑板做匀速直线运动,相应的k=54kg/m,人和滑板的总质量为108kg,试求(重力加速度g取10m/s2,sin37°=35,忽略空气阻力):(1)水平牵引力的大小;(2)滑板的速率.12.(15分)榨油在我国已有上千年的历史,较早时期使用的是直接加压式榨油方法.而现在已有较先进的榨油方法,某压榨机的结构示意图如图12所示,其中B点为固定铰链,若在A铰链处作用一垂直于壁的力F,则由于力F的作用,使滑块C压紧物体D,设C与D光滑接触,杆的重力及滑块C的重力不计.压榨机的尺寸如图所示,l=0.5m,b=0.05m.求物体D所受压力的大小是F的多少倍?第二章第二单元力的合成与分解【参考答案与详细解析】一、单项选择题(本题共6小题,每小题7分,共42分)1.解析:杆对滑轮C的作用力大小等于两绳的合力,由于两绳的合力不变,故杆对滑轮C的作用力不变.答案:B2.解析:将mg在沿绳方向与垂直于绳方向分解,如图所示.所以施加的力与F1等大反向即可使小球静止,故Fmin=mgsin30°=12mg,故选C.答案:C3.解析:在缓缓上推过程中涂料滚受力如图所示.由平衡条件可知:F1sinθ-F2=0F1cosθ-G=0解得F1=GcosθF2=Gtanθ由于θ减小,所以F1减小,F2减小,故正确答案为A.答案:A4.解析:O点周围共有4根绳子,设每根绳子的力为F′,则4根绳子的合力大小为2F′,所以F=2F′,所以F′=F2,应选B.答案:B5.解析:三棱柱受到重力、支持力和摩擦力三个力的作用而平衡,故FN=mgcos30°=32mg,Ff=mgsinθ=12mg,A正确.答案:A6.解析:沿两个杆的方向仰视或俯视,弧形瓦受到两个杆各自提供的两个支持力,且支持力垂直于瓦面和杆倾斜向上,如图所示.因为瓦在垂直两杆的平面内受力平衡,即其垂直分量不变,所以两杆之间距离越大支持力的方向就越倾斜,支持力也就越大,滑动摩擦力Ff随着支持力的增大而增大;根据牛顿第二定律得弧形瓦下滑的加速度a=gsinα-Ffm,其值会随Ff增大而减小;因为弧形瓦滑到底端的路程即木杆的长度一定,所以加速度越小,到达底端的速度就越小,C正确.答案:C二、多项选择题(本题共4小题,每小题7分,共28分.每小题有多个选项符合题意,全部选对的得7分,选对但不全的得3分,错选或不答的得0分)7.解析:由于定滑轮只改变力的方向,不改变力的大小,所以F1=F2=F3=G,又轴心对定滑轮的支持力等于绳对定滑轮的合力.而已知两个分力的大小,其合力与两分力的夹角θ满足关系式:F=G2+G2+2GGcosθ=G2(1+cosθ),θ越大,F越小,故FN1>FN2>FN3,选项A、C正确.答案:AC8.解析:由于小球B处于静止状态,且细线OB沿竖直方向,因此细线AB无弹力,对小球A受力分析,由于它受力平衡,并根据小球A受到的细线的拉力和重力的方向可知,施加给小球A的力F应沿F2或F3的方向,故选B、C.答案:BC9.解析:最终平衡时,绳的拉力F大小仍为mAg,由二力平衡可得2Fsinθ=mBg,故θ角不变,但因悬点由Q到P,左侧部分绳子变长,故A 应升高,所以A、C正确.答案:AC10.解析:对B受力分析如右图所示,则水平方向上:Ff=FT•cosθ由于FT=mAg所以Ff=mAgcosθ,故A错B对;竖直方向上:FNB+FTsinθ=mBg所以FNB=mBg-FTsinθ=mBg-mAgsinθ,故C错D对.答案:BD三、计算题(本题共2小题,共30分.解答时请写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)11.解析:(1)以滑板和运动员为研究对象,其受力如图所示由共点力平衡条件可得FNcosθ=mg①FNsinθ=F②由①、②联立,得F=810N(2)FN=mg/cosθ,FN=kv2得v=mgkcosθ=5m/s.答案:(1)810N(2)5m/s12.解析:按力F的作用效果沿AB、AC方向分解为F1、F2,如图甲所示,则F1=F2=F2cosθ由几何知识得tanθ=lb=10.按力F2的作用效果沿水平向左和竖直向下分解为FN′、FN,如图乙所示,则FN=F2sinθ,以上各式联立解得FN=5F,所以物体D所受压力的大小是F的5倍.答案:5倍。

2012高考物理一轮复习试题2

2012高考物理一轮复习试题2一、选择题(本题共10小题,每小题7分,共70分,每小题至少有一个选项正确,把正确选项前的字母填在题后的括号内)1.从某高处释放一粒小石子,经过1 s从同一地点再释放另一粒小石子,则在它们落地之前,两粒石子间的距离将()A.保持不变B.不断增大[来源:学科网]C.不断减小D.有时增大,有时减小解析:设第1粒石子运动的时间为t s,则第2粒石子运动的时间为(t-1) s,则经过时间t s,两粒石子间的距离为Δh=12gt2-12g(t-1)2=gt-12g,可见,两粒石子间的距离随t的增大而增大,故B正确.答案:B2.以35 m/s的初速度竖直向上抛出一个小球,不计空气阻力,g取10 m/s2.以下判断正确的是()A.小球到最大高度时的速度为0B.小球到最大高度时的加速度为0C.小球上升的最大高度为61.25 mD.小球上升阶段所用的时间为3.5 s解析:小球到最大高度时的速度为0,但加速度仍为向下的g,A正确,B错误;由H=v202g=61.25 m,可知C正确;由t=v0g=3510s=3.5 s,可知D正确.答案:ACD3.汽车以20 m/s的速度做匀速运动,某时刻关闭发动机而做匀减速运动,加速度大小为5 m/s2,则它关闭发动机后通过37.5 m所需时间为() A.3 s B.4 s[来源:学|科|网]C.5 s D.6 s解析:由位移公式得:s=v0t-12at2解得t1=3 s t2=5 s因为汽车经t0=v0a=4 s停止,故t2=5 s舍去,应选A.[来源:]答案:A4.(探究创新题)正在匀加速沿平直轨道行驶的长为L的列车,保持加速度不小)是均匀变化(即v=kh,k是个常数)的可能性.答案:B7.(思维拓展题)物体以速度v匀速通过直线上的A、B两点,所用时间为t.现在物体从A点由静止出发,先做匀加速直线运动(加速度为a1),到某一最大速度v m后立即做匀减速直线运动(加速度大小为a2),至B点速度恰好减为0,所用时间仍为t,则物体的()A.v m只能为2v,与a1、a2的大小无关B.v m可为许多值,与a1、a2的大小有关C.a1、a2须是一定的D.a1、a2必须满足a1·a2a1+a2=2vt解析:由AB=v t=v m2t1+v m2t2=v m2t得,v m=2v,与a1、a2的大小无关,故A正确;由t1=v ma1,t2=v ma2得t=v ma1+v ma2,即得a1·a2a1+a2=2vt,故D也正确.答案:AD8.一辆汽车拟从甲地开往乙地,先由静止启动做匀加速直线运动,然后保持匀速直线运动,最后做匀减速直线运动,当速度减为0时刚好到达乙地.从汽车启动开始计时,下表给出某些时刻汽车的瞬时速度,据表中的数据通过分析、计算可以得出汽车()时刻(s) 1.0 2.0 3.0 5.07.09.510.5速度(m/s) 3.0 6.09.012129.0 3.0 A.B.匀加速直线运动经历的时间为5.0 sC.匀减速直线运动经历的时间为2.0 sD.匀减速直线运动经历的时间为4.0 s解析:从题表中看出,匀速的速度为12 m/s.从t=1.0 s到t=3.0 s,各秒内速度变化相等,做匀加速直线运动,a=9.0-3.03.0-1.0m/s2=3 m/s2.匀加速的时间t=v/a=123s=4.0 s,故选项A对,B错;匀减速的加速度a=3.0-9.010.5-9.5m/s2=-6 m/s2.匀减速的时间t =0-v a =-12-6s =2.0 s ,故选项C 对,D 错.答案:AC9.(2011年孝感模拟)如图所示,水龙头开口处A 的直径d 1=2 cm ,A 离地面B 的高度h =80 cm ,当水龙头打开时,从A 处流出的水流速度v 1=1 m/s ,在空中形成一完整的水流束.则该水流束在地面B 处的截面直径d 2约为(g 取10 m/s 2)( )A .2 cmB .0.98 cmC .4 cmD .应大于2 cm ,但无法计算解析:水流由A 到B 做匀加速直线运动,由v 2B -v 21=2gh 可得:v B = 17 m/s ,由单位时间内通过任意横截面的水的体积均相等,可得:v 1·Δt ·14πd 21=v B ·Δt ·14πd 22, 解得:d 2=0.98 cm , 故B 正确. 答案:B10.在地质、地震、勘探、气象和地球物理等领域的研究中,需要精确的重力加速度g 值,g 值可由实验精确测定,以铷原子钟或其他手段测时间,能将g 值测得很准.具体做法是:将真空长直管沿竖直方向放置,自其中O 点竖直向上抛出小球,小球又落至原处O 点的时间为T 2,在小球运动过程中经过比O 点高H 的P 点,小球离开P 点后又回到P 点所用的时间为T 1,测得T 1、T 2和H ,可求得g 等于( )A.8H T 22-T 21B.4HT 22-T 21C.8H (T 2-T 1)2 D.H 4(T 2-T 1)2[来源:学科网]解析:设从O 点到最高点为H 2,[来源:学科网] 则H 2=12g (T 22)2,由P 点到最高点的距离为H 2-H ,[来源:Z|xx|]则H2-H=12g(T12)2,由以上两式解得:g=8HT22-T21,故选A.答案:A二、非选择题(本题共2小题,共30分,解答时应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)11.(15分)(2010年高考全国Ⅰ卷)汽车由静止开始在平直的公路上行驶,0~60 s内汽车的加速度随时间变化的图线如图所示.(1)画出汽车在0~60 s内的v-t图线;(2)求在这60 s内汽车行驶的路程.解析:(1)0~10 s内,汽车做初速度为0的匀加速直线运动,10 s末速度v1=a1t1=2×10 m/s=20m/s10~40 s内,汽车做匀速直线运动,40~60 s内,汽车做匀减速直线运动.[来源:学_科_网]60 s末的速度v2=v1+a2t2=20 m/s-1×20 m/s=0.v-t图线如图所示.(2)s=12v1t1+v1t+12(v1+v2)t2=12×20×10 m+20×30 m+12×(20+0)×20 m=900 m.答案:(1)见解析(2)900 m12.(15分)(综合提升)如图所示,在国庆阅兵式中,某直升飞机在地面上空某高度A位置处于静止状态待命,要求该机10时56分40秒由静止状态沿水平方向做匀加速直线运动,经过AB段加速后,进入BC段的匀速受阅区,11时准时通过C位置,如右图所示已知s AB=5 km,s BC=10 km.问:(1)直升飞机在BC段的速度大小是多少?(2)在AB段做匀加速直线运动时的加速度大小是多少?解析:(1)由题意知t=t1+t2=200 ss AB=0+v2t1=5 000 ms BC=v t2=10 000 m 解得:v=100 m/s(2)因为t1=2s ABv=100 s所以a=v-0t1=1 m/s2答案:(1)100 m/s(2)1 m/s2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时16第三节 机械能守恒定律一、选择题1.如图所示,在两个质量分别为m 和2m 的小球a 和b 之间,用一根长为L 的轻杆连接(杆的质量可不计),而小球可绕穿过轻杆中心O 的水平轴无摩擦转动,现让轻杆处于水平位置,然后无初速度释放,重球b 向下,轻球a 向上,产生转动,在杆转至竖直的过程中( )A .b 球的重力势能减小,动能增加B .a 球的重力势能增加,动能减小C .a 球和b 球的总机械能守恒D .a 球和b 球的总机械能不守恒解析:选AC.两球组成的系统,在运动中除动能和势能外没有其他形式的能转化,所以系统的机械能守恒.2. (2011年广东佛山模拟)在一次课外趣味游戏中,有四位同学分别将四个质量不同的光滑小球沿竖直放置的内壁光滑的半球形碗的碗口内侧同时由静止释放,碗口水平,如图所示.他们分别记下了这四个小球下滑速率为v 时的位置,则这些位置应该在同一个( )A .球面B .抛物面C .水平面D .椭圆面解析:选C.因半球形碗的内壁光滑,所以小球下滑过程中机械能守恒,取小球速率为v时所在的平面为零势能面,则根据机械能守恒定律得mgh =12m v 2,因为速率v 相等,所以高度相等,与小球的质量无关,即这些位置应该在同一个水平面上,C 正确.3.(2011年江苏启东中学质检)如图所示,A 、B 两球质量相等,A 球用不能伸长的轻绳系于O 点,B 球用轻弹簧系于O ′点,O 与O ′点在同一水平面上,分别将A 、B 球拉到与悬点等高处,使绳和轻弹簧均处于水平,弹簧处于自然状态,将两球分别由静止开始释放,当两球达到各自悬点的正下方时,两球仍处在同一水平面上,则( )A .两球到达各自悬点的正下方时,两球动能相等B .两球到达各自悬点的正下方时,A 球动能较大C .两球到达各自悬点的正下方时,B 球动能较大D .两球到达各自悬点的正下方时,A 球受到向上的拉力较大解析:选BD.整个过程中两球减少的重力势能相等,A 球减少的重力势能完全转化为A 球的动能,B 球减少的重力势能转化为B 球的动能和弹簧的弹性势能,所以A 球的动能大于B 球的动能,所以B 正确;在O 点正下方位置根据牛顿第二定律,小球所受拉力与重力的合力提供向心力,则A 球受到的拉力较大,所以D 正确.4. (2011年江苏苏、锡、常、镇四市联考)如图所示,质量均为m的A 、B 两个小球,用长为2L 的轻质杆相连接,在竖直平面内,绕固定轴O 沿顺时针方向自由转动(转动轴在杆的中点),不计一切摩擦,某时刻A 、B 球恰好在如图所示的位置,A 、B 球的线速度大小均为v ,下列说法正确的是( )A .运动过程中B 球机械能守恒 B .运动过程中B 球速度大小不变C .B 球在运动到最高点之前,单位时间内机械能的变化量保持不变D .B 球在运动到最高点之前,单位时间内机械能的变化量不断改变解析:选BD.以A 、B 球为系统,两球在运动过程中,只有重力做功(轻杆对两球做功的和为零),两球的机械能守恒.以过O 点的水平面为重力势能的参考平面时,系统的总机械能为E =2×12m v 2=m v 2.假设A 球下降h ,则B 球上升h ,此时两球的速度大小是v ′,由机械能守恒定律知m v 2=12m v ′2×2+mgh -mgh ,得到v ′=v ,故运动过程中B 球速度大小不变.当单独分析B 球时,B 球在运动到最高点之前,动能保持不变,重力势能在不断增加.由几何知识可得单位时间内机械能的变化量是不断改变的,B 、D 正确.5.(2011年东北地区名校联考)如图所示,一物体以速度v 0冲向光滑斜面AB ,并能沿斜面升高h ,下列说法正确的是( )A .若把斜面从C 点锯断,由机械能守恒定律知,物体冲出C 点后仍能升高hB .若把斜面弯成如图所示的半圆弧形,物体仍能沿AB ′升高hC .若把斜面从C 点锯断或弯成如图所示的半圆弧形,物体都不能升高h ,因为物体的机械能不守恒D .若把斜面从C 点锯断或弯成如图所示的半圆弧形,物体都不能升高h ,但物体的机械能仍守恒解析:选D.若把斜面从C 点锯断,物体到达最高点时水平速度不为零,由机械能守恒定律知,物体冲出C 点后不能升高h ;若把斜面弯成如题图所示的半圆弧形,物体在升高h 之前已经脱离轨道.物体在这两种情况下机械能均守恒.6.(2011年盐城第一次调研)如图所示,离水平地面一定高处水平固定一内壁光滑的圆筒,筒内固定一轻质弹簧,弹簧处于自然长度.现将一小球从地面以某一初速度斜向上抛出,刚好能水平进入圆筒中,不计空气阻力.下列说法中正确的是( )A .弹簧获得的最大弹性势能小于小球抛出时的动能B .小球从抛出到将弹簧压缩到最短的过程中小球的机械能守恒C .小球抛出的初速度大小仅与圆筒离地面的高度有关D .小球从抛出点运动到圆筒口的时间与小球抛出时的角度无关解析:选AB.小球从抛出到弹簧压缩到最短的过程中,只有重力和弹力做功,小球的机械能守恒.即12m v 20=mgh +E p ,所以E p <E k0,故A 对,B 对.斜上抛运动可分解为竖直上抛运动和水平方向的匀速直线运动,所以h =0-v 20sin θ-2g=v 20sin θ2g (θ为v 0与水平方向的夹角).即v 0=2gh sin θ,知C 错;由0=v 0sin θ-gt ,t =v 0sin θg知D 错. 7.(2011年福建福州第一次模拟)如图所示,小车上有固定支架,一可视为质点的小球用轻质细绳拴挂在支架上的O 点处,且可绕O 点在竖直平面内做圆周运动,绳长为L .现使小车与小球一起以速度v 0沿水平方向向左匀速运动,当小车突然碰到矮墙后,车立即停止运动,此后小球上升的最大高度可能是( ) A .大于v 202g B .小于v 202gC .等于v 202gD .等于2L 答案:BCD8.(2011年河南安阳质检)ABCD 是一段竖直平面内的光滑轨道,AB 段与水平面成α角,CD 段与水平面成β角,其中BC 段水平,且其长度大于L .现有两小球P 、Q ,质量分别是2m 、m ,用一长为L 的轻质直杆连接,将P 、Q 由静止从高H 处释放,在轨道转折处用光滑小圆弧连接,不考虑两小球在轨道转折处的能量损失.则小球P 滑上CD 轨道的最大高度h 为( )A .h =HB .h =H +L (2sin α-sin β)3C .h =H +L sin βD .h =H +L (sin α-sin β)3 解析:选B.P 、Q 整体上升的过程中,机械能守恒,以地面为重力势能的零势面,根据机械能守恒定律有:mgH +2mg (H +L sin α)=2mgh +mg (h +L sin β),解方程得:h =H +L (2sin α-sin β)3. 9. (2011年广东调研考试)如图所示,一质量为m 的滑块以初速度v从固定于地面的斜面底端A 开始冲上斜面,到达某一高度后返回A ,斜面与滑块之间有摩擦.下列各项分别表示它在斜面上运动的速度v 、加速度a 、势能E p 和机械能E 随时间的变化图象,可能正确的是( )解析:选C.由牛顿第二定律可知,滑块上升阶段有:mg sin θ+F f =ma 1,下滑阶段有:mg sin θ-F f =ma 2,因此a 1>a 2,B 选项错误;且v >0和v <0时,速度图象的斜率不同,故A 选项错误;由于摩擦力始终做负功,机械能一直减小,故选项D 错误;重力势能先增大后减小,且上升阶段加速度大,势能变化快,下滑阶段加速度小,势能变化慢,故选项C 正确.10.(2011年江西六所重点中学联考)面积很大的水池,水深为H ,水面上浮着一正方体木块,木块边长为a ,密度为水的1/2,质量为m .开始时,木块静止,有一半没入水中,如图所示.现用力将木块缓慢地压到池底.在这一过程中( )A .木块的机械能减少了mg (H -a 2) B .水池中水的机械能不变C .水池中水的机械能增加了2mg (H -a 2) D .水池中水的机械能增加了2mg (H -5a 8) 解析:选AD.用力将木块缓慢地压到池底的过程中,木块下降的深度为H -a 2,所以木块的机械能减少了mg (H -a 2),A 对;因水池面积很大,可忽略因木块压入水中所引起的水深变化,木块刚好完全没入水中时,图中原来处于划斜线区域的水被排开,结果等效于使这部分水平铺于水面,这部分水的质量为m ,上升的高度为34a ,其势能的增加量为ΔE 水1=mgH -mg (H -34a )=34mga ;木块从刚好完全没入水中到压入池底的过程中,等效成等体积的水上升到木块刚好完全没入水中的位置,这部分水的质量为2m ,上升的高度为H -a ,势能的增加量为ΔE 水2=2mg (H -a ),所以水池中水的机械能增加了ΔE 水=ΔE 水1+ΔE 水2=2mg (H -5a 8),D 对. 二、计算题11.(2010年高考江苏卷)在游乐节目中,选手需借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论.如图所示,他们将选手简化为质量m =60 kg 的质点,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角α=53°,绳的悬挂点O 距水面的高度为H =3 m ,不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深.取重力加速度g =10 m/s 2,sin 53°=0.8,cos 53°=0.6.(1)求选手摆到最低点时对绳拉力的大小F ;(2)若绳长l =2 m ,选手摆到最高点时松手落入水中.设水对选手的平均浮力F f 1=800 N ,平均阻力F f 2=700 N ,求选手落入水中的深度d ;(3)若选手摆到最低点时松手,小明认为绳越长,在浮台上的落点距岸边越远;小阳却认为绳越短,落点距岸边越远.请通过推算说明你的观点.解析:(1)由机械能守恒定律得mgl (1-cos α)=12m v 2① 选手做圆周运动,有F ′-mg =m v 2l解得F ′=(3-2cos α)mg且选手对绳的拉力F =F ′则F =1080 N.(2)由动能定理得 mg (H -l cos α+d )-(F f 1+F f 2)d =0则d =mg (H -l cos α)F f 1+F f 2-mg解得d =1.2 m.(3)选手从最低点做平抛运动,则有x =v t ,H -l =12gt 2 联立①式解得x =2l (H -l )(1-cos α)当l =H 2时,x 有最大值,解得l =1.5 m 因此,两人的看法均不正确.当绳长越接近1.5 m 时,落点距岸边越远.答案:(1)1080 N (2)1.2 m (3)见解析12.(2011年青岛高三摸底考试)如图所示,一内壁光滑的细管弯成半径为R =0.4 m 的半圆形轨道CD ,竖直放置,其内径略大于小球的直径,水平轨道与竖直半圆轨道在C 点连接完好.置于水平轨道上的弹簧左端与竖直墙壁相连,B 处为弹簧的自然状态.将一个质量为m =0.8 kg 的小球放在弹簧的右侧后,用力向左侧推小球而压缩弹簧至A 处,然后将小球由静止释放,小球运动到C 处后对轨道的压力为F 1=58 N .水平轨道以B 处为界,左侧AB段长为x =0.3 m ,与小球的动摩擦因数为μ=0.5,右侧BC 段光滑.g =10 m/s 2,求:(1)弹簧在压缩时所储存的弹性势能.(2)小球运动到轨道最高处D 点时对轨道的压力. 解析:(1)对小球在C 处,由牛顿第二定律及向心力公式得F 1-mg =m v 21Rv 1=(F 1-mg )R m =(58-0.8×10)×0.40.8=5(m/s) 从A 到B 由动能定理得E p -μmgx =12m v 21E p =12m v 21+μmgx =12×0.8×52+0.5×0.8×10×0.3=11.2(J) (2)从C 到D 由机械能守恒定律得12m v 21=2mgR +12m v 22 v 2=v 21-4gR =52-4×10×0.4=3(m/s) 由于v 2>gR =2 m/s ,所以小球在D 处对轨道外壁有压力.小球在D 处,由牛顿第二定律及向心力公式得F 2+mg =m v 22R F 2=m (v 22R -g )=0.8×(320.4-10)=10(N) 由牛顿第三定律可知,小球在D 点对轨道的压力大小为10 N ,方向竖直向上. 答案:(1)11.2 J (2)10 N 方向竖直向上。

相关文档
最新文档