集合与函数的概念

合集下载

第讲集合与函数

第讲集合与函数

f ( x) 的定义域为
D f (, 0) (0, ) ,
g ( x) 的定义域为
Dg (0, ) ,
D f Dg
f ( x) 与 g ( x) 不相同。
例7 解
函数 f ( x) | x | 与 g ( x) x 2 是否相同?
f ( x) 与 g ( x) 的定义域均为实数域 R ,
。 2 。 1 。 3 2 1 。 x O 1 2 3 4 。 1 。 2 。 3
想想取整函数的图形是什么样子?
y [ x]
例5
已知 f ( x 1)
x 2, 0 x 1 , 求 f ( x) 的表达式。 2 x, 1 x 2,

令 t x 1,得 f (t )
确定的法则 f 有唯一确定的 y B 与之对应,则称 f
为从 A 到 B 的一个引映射,记为 f :A B,或记为 f :x y,x A,习惯上也记为 y f ( x),x A。
其中, y 称为 x 在映射 f 下的像, x 称为 y 在映射 f 下
的一个原像 , A 称为映射 f 的定义域 , 记为 D( f ); A中
在不需要区别上面两种情况时,一般将统称为函 数在区间 I 上单调增加, 记为 f ( x) I 。
设函数 f ( x) 在区间 I 上有定义, x1,x2 I ,
若 x2 x2 f ( x2 ) f ( x1 ),则称函数 f ( x) 在区 间 I 上是单调减少的。 若 x2 x2 f ( x2 ) f ( x1 ),则称函数 f ( x) 在区 间 I 上是严格单调减少的。
实质上,函数 y f ( x) 就是映射 f : A R

数学必修一集合与函数概念知识点梳理

数学必修一集合与函数概念知识点梳理

数学必修一集合与函数概念知识点梳理数学必修一集合与函数是数学中的基础概念。

集合是数学中的一个概念,它可以有若干个元素,这些元素可以是任意东西,如数字、字母、图形等等。

而函数则是描述集合之间的关系,将一个集合的元素映射到另一个集合的元素上。

首先,我们来了解集合的基本概念。

集合是由若干个不同的元素组成的整体,这些元素可以用大括号{}括起来表示。

在集合中,元素的顺序是没有关系的,而且集合中的元素是唯一的,每个元素只能出现一次。

例如,集合A={1,2,3,4}包含了四个元素1、2、3、4,而集合B={a,b,c}包含了三个元素a、b、c。

接下来,我们来了解集合的一些常见运算。

首先,两个集合的交集是指包含了两个集合公共元素的集合,可以用符号∩表示。

例如,集合A={1,2,3,4},集合B={3,4,5,6},则A∩B={3,4}。

而集合的并集则是指包含了两个集合所有元素的集合,可以用符号∪表示。

例如,集合A={1,2,3,4},集合B={3,4,5,6},则A∪B={1,2,3,4,5,6}。

此外,集合的差集是指从一个集合中除去另一个集合中的元素,可以用符号\表示。

例如,集合A={1,2,3,4},集合B={3,4,5,6},则A\B={1,2}。

此外,还有几个特殊的集合。

空集是一个不包含任何元素的集合,用符号∅表示。

全集则是指一些给定的范围内的所有元素的集合。

例如,当我们讨论自然数时,全集就是自然数的集合。

而子集是指一个集合中的所有元素都是另一个集合中的元素,可以用符号⊆表示。

例如,集合A={1,2,3,4},集合B={2,4},则B是A的子集,可以表示为B⊆A。

在集合的基础上,我们来了解函数的概念。

函数是集合之间的一种特殊关系,它将一个集合的元素映射到另一个集合的元素上。

函数通常用f(x)的形式表示,其中f是函数的名称,x是输入的元素,f(x)是对应的输出元素。

例如,函数f(x)=2x表示将输入的元素乘以2后得到的输出元素。

集合与函数概念

集合与函数概念

集合与函数概念
集合和函数是数学中的基本概念。

集合是指将具有相同性质的元素汇集在一起形成一个整体。

集合通常用大写字母表示,其中的元素用小写字母表示。

集合中的元素是无序的,且每个元素在集合中是唯一的,
即不会重复出现。

例如,可以将所有大写英文字母组成的集合表示为A = {A, B, C, ..., Z},表示包含了所有大写英文字母的集合。

函数是集合之间的一种特殊关系。

一个函数将一个集合中
的元素映射到另一个集合中的元素。

函数通常用小写字母
表示,例如f,g等。

函数包括一个定义域(即输入的集合)和一个值域(即输出的集合)。

对于定义域中的每一个元素,函数都有唯一的映射结果。

例如,可以定义一个函数f,它将自然数集合N中的每个元素n映射到其平方值,即f(n) = n^2。

在这个例子中,定义域为N,值域为平方数的集合。

集合和函数在数学中有广泛的应用,包括在代数、几何、概率论等领域。

它们是数学研究和应用的基础。

高中集合数学知识点

高中集合数学知识点

高中集合数学知识点高中集合数学知识点一集合与函数概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.2、集合的中元素的三个特性:元素的确定性;元素的互异性;元素的无序性.集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上.描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射.记作“f:A B〞给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b 的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性〞,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象.学习数学的方法第一,兴趣。

集合与函数概念

集合与函数概念

1.集合(1)集合的含义与表示①了解集合的含义、元素与集合的“属于”关系。

②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。

②在具体情境中,了解全集与空集的含义。

(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

③能使用韦恩图(Venn )表达集合的关系及运算。

2.函数概念与基本初等函数I (指数函数、对数函数、幂函数)(1)函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。

③了解简单的分段函数,并能简单应用。

④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。

⑤会运用函数图像理解和研究函数的性质。

(2)指数函数①了解指数函数模型的实际背景。

②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。

③理解指数函数的概念,理解指数函数的单调性,掌握函数图像通过的特殊点。

(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

②理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点。

③了解指数函数xa y =与对数函数x y a log =互为反函数(a >0,a ≠1)。

(4)幂函数①了解幂函数的概念。

②结合函数21321x y xy x y x y x y =====,,,,的图象,了解它们的变化情况。

(5)函数与方程①结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。

②根据具体函数的图像,能够用二分法求相应方程的近似解。

【精华】人教版高中数学必修一--第一章-集合与函数概念--

【精华】人教版高中数学必修一--第一章-集合与函数概念--

【精华】人教版高中数学必修一第一章集合与函数概念一、集合的概念集合是数学中最基本的概念之一,它是某些指定对象的总体。

这些对象被称为集合的元素。

集合可以是有序的,也可以是无序的。

例如,自然数集合{1, 2, 3, }是无序的,而有序对集合{(1, 2), (2, 3), }是有序的。

集合的表示方法有两种:列举法和描述法。

列举法是将集合中的所有元素一一列出,用花括号{}括起来。

例如,集合{1, 2, 3}表示包含元素1、2、3的集合。

描述法是使用文字描述集合中元素的特征,例如,自然数集合可以表示为{所有大于0的整数}。

集合的基本运算包括交集、并集、差集、补集等。

交集是指两个集合共同拥有的元素组成的集合;并集是指两个集合所有元素组成的集合;差集是指一个集合中有而另一个集合中没有的元素组成的集合;补集是指一个集合中所有不属于另一个集合的元素组成的集合。

二、函数的概念函数是数学中另一个基本的概念,它描述了两个变量之间的依赖关系。

在函数中,一个变量被称为自变量,另一个变量被称为因变量。

函数的表示方法有三种:解析法、表格法和图像法。

解析法是使用数学公式来表示函数的方法,例如,y = x^2 表示一个二次函数。

表格法是使用表格来表示函数的方法,表格中的每一行都代表一个函数值。

图像法是使用图形来表示函数的方法,图形中的每个点都代表一个函数值。

函数的基本性质包括单调性、奇偶性、周期性等。

单调性是指函数在某个区间内是递增或递减的;奇偶性是指函数在自变量取相反数时,函数值也取相反数;周期性是指函数在一定区间内重复出现。

三、集合与函数的关系集合与函数有着密切的关系。

集合可以用来表示函数的定义域和值域,而函数可以用来描述集合中元素之间的关系。

例如,一个函数可以将一个集合中的元素映射到另一个集合中的元素,从而建立两个集合之间的对应关系。

在解决数学问题时,集合与函数的概念常常被结合起来使用。

例如,在求解函数的值域时,需要先确定函数的定义域,然后根据函数的性质来求解值域。

集合与函数的概念总结

集合与函数的概念总结集合与函数是数学中的基本概念,它们在数学和其他科学领域中有着广泛的应用。

下面是对集合与函数的概念进行全面总结的1000字。

首先,我们先来介绍集合的概念。

集合是指具有某种共同性质的事物的总体,可以是物体、数或者其他数学对象的集合。

集合的表示方法可以是列举法、描述法或图示法。

例如,{1, 2, 3, 4}就是一个集合,它包含了数值为1、2、3和4的元素。

集合中的元素是无序的,且不重复。

我们通常用大写字母A, B, C等来表示集合。

在集合的运算方面,常见的有并、交和差。

集合的并(union)指的是两个或多个集合中的所有元素的总体,用符号“∪”表示。

例如,A = {1, 2},B = {2, 3},则A∪B = {1, 2, 3}。

集合的交(intersection)指的是两个或多个集合中的共有元素的总体,用符号“∩”表示。

例如,A∩B = {2}。

集合的差(difference)指的是一个集合中去掉与另一个集合共有元素后剩下的元素,用符号“-”表示。

例如,A-B = {1}。

此外,还有集合的补集、子集和幂集。

集合的补集是指某个集合中不属于另一个集合的元素的总体,用符号“’”或“-”表示。

例如,A’表示A的补集,即不属于A的元素构成的集合。

集合的子集指的是某个集合的所有元素都含在另一个集合之中,用符号“⊆”表示。

例如,A⊆B表示A是B的子集。

集合的幂集指的是一个集合的所有子集所构成的集合。

接下来,我们来介绍函数的概念。

函数是一种特殊的关系,它把一个集合中的每个元素与另一个集合中的唯一元素相对应。

函数由三个部分组成,即定义域、值域和对应关系。

定义域是指函数的输入值所属的集合,也就是函数可以接受的值的集合。

值域是指函数的输出值所属的集合,也就是函数可以返回的值的集合。

对应关系是指定义域中的每个元素与值域中的唯一元素之间的关系。

函数的表示方法有多种,其中最常见的是显式表示法和隐式表示法。

显式表示法是指用一个公式或表达式来表示函数。

高中数学必修一章知识点总结第一章 集合与函数概念

高中数学必修一章知识点总结第一章 集合与函数概念一、集合相关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:⑴、元素的确定性; ⑵、元素的互异性; ⑶、元素的无序性说明:①、对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

②、任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

③、集合中的元素是平等的,没有先后顺序,所以判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

④、集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … }⑴、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}常用数集及其记法:非负整数集(即自然数集):N ;正整数集:*N 或+N ; 整数集:Z ;有理数集:Q ;实数集:R;⑵、集合的表示方法:列举法 描述法 韦恩图示法 区间法Ⅰ、列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

例{太平洋,大西洋,印度洋,北冰洋} Ⅱ、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①、语言描述法:例:{不是直角三角形的三角形}、{我校的篮球队员}②、数学式子描述法:例:不等式x-3>2的解集是}23|{>-∈x R x 或}23|{>-x xⅢ、韦恩图示法:用平面上封闭曲线的内部代表集合的方法。

Ⅳ、区间法:用来表示诸如定义域、值域、方程或不等式的解集的方法。

4、元素与集合的关系:集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集合A 记作A a ∈ ,相反,a 不属于集合A 记作 A a ∉。

5、集合的分类:⑴、按元素的属性分类①、数集 元素是数的集合②、点集 元素是点的集合③、序数对 元素是有序实数对的集合⑵、按集合中元素的个数分类①、有限集 含有有限个元素的集合②、无限集 含有无限个元素的集合③、空集 不含任何元素的集合 例:}5|{2-=x x 二、集合间的基本关系1、“包含”关系—子集结论:对于两个集合A 、B ,如果集合A 中的任何一个元素都是集合B 的元素,我们就说集合A 是集合B 的子集,即B A ⊆。

高中数学 第一章 集合与函数概念 函数的概念课件 新人教A必修1


❖ 本节重点:函数的概念、定义域、值域的求 法.
❖ 本节难点:(1)函数概念的理解.
❖ (2)实际应用问题中函数的定义域和复合函数 定义域.
❖ (一)对函数y=f(x)涵义的理解,应明确以 下几点:
❖ ①“A,B是非空数集”,若求得自变量取 值范围为∅,则此函数不存在.
❖ ②定义域、对应法则和值域是函数的三要 素,实际上,值域是由定义域和对应法则 决定的,所以看两个函数是否相等,只要 看这两个函数的定义域与对应法则是否相 同.
❖ (1)当每辆车的月租金定为3600元时,能租 出多少辆车?
❖ (2)当每辆车的月租金定为多少元时,租赁
[解析] (1)当每辆车的月租金为 3600 元时,未租出的 车辆数为:(3600-3000)÷50=12,所以这时租出了 88 辆车.
(2)设每辆车的月租金为 x 元,则租赁公司的月收益为: f(x)=(100-x-530000)(x-150)-x-530000×50,整理得:f(x) =-5x02 +162x-2100=-510(x-4050)2+307050.所以当 x= 4050 元时,f(x)最大,其最大值为 307050.即当每辆车的月租 金为 4050 元时,租赁公司的月收益最大,最大值为 307050 元.
❖ [分析] (1)据函数的定义:“对于集合A中的 任意一个元素,在集合B中有唯一确定的元素 与之对应”进行判断.
❖ (2)给定函数的解析式,也就给定了由定义域 到值域的对应法则,只要将自变量允许值代 入,就可以求得对应的函数值.
[解析] (1)①由 x2+y2=2 得 y=± 2-x2,因此由它不能 确定 y 是 x 的函数,如当 x=1 时,由它所确定的 y 的值有两 个±1.
②由 x-1+ y-1=1,得 y=(1- x-1)2+1,所以当 x 在{x|x≥1}中任取一个值时,由它可以确定唯一的 y 值与之 对应,故由它可以确定 y 是 x 的函数.

集合与函数的概念

集合与函数的概念(一)知识点归纳与典例分析一、集合有关概念1.集合的含义2.集合的元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … }集合的表示方法:列举法与描述法、Venn图。

◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R4、集合的分类:有限集、无限集、空集二、集合间的基本关系1.子集和真子集①任何一个集合是它本身的子集。

A⊆A如果 A⊆B, B⊆C ,那么 A⊆C②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)2.“相等”注意:证明两个集合相等,就是证明两个集合互相包含如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

◆有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算:交集、并集、补集运算类型交集并集补集性质A I A=AA IΦ=ΦA I B=B I AA I B⊆AA I B⊆BA Y A=AA YΦ=AA Y B=B Y AA Y B⊇AA Y B⊇B(C u A) I (C u B)= C u (A Y B)(C u A) Y (C u B)= C u(A I B)A Y (C u A)=UA I (C u A)= Φ.典例分析:1.下列四组对象,能构成集合的是()A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合{a,b,c }的真子集共有个3.若集合M={y|y=x2-2x+1,x∈R},N={x|x≥0},则M与N的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.已知集合A={x| x 2+2x-8=0}, B={x| x 2-5x+6=0}, C={x| x 2-mx+m 2-19=0}, 若B ∩C ≠Φ,A ∩C=Φ,求m 的值 四、函数的有关概念1.函数的概念2.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与函数的概念龙港高中林长豪课题:§1.1 集合1.1.1 集合的含义与表示教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系、集合相等的含义;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题引例1:(数学家和牧民的故事)牧民非常喜欢数学,但不知道集合是什么,于是他请教一位数学家.集合是不定义的概念,数学家很难回答牧民的问题.有一天他来到牧场,看到牧民正把羊往羊圈里赶,等到牧民把全部羊赶入羊圈关好门.数学家灵机一动,高兴地告诉牧民:“你看这就是集合!”2:军训时当教官一声口令:“高一(14)班同学到操场集合”在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a A(举例)6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1)列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;例1.(课本例1)思考2,(课本P4思考)引入描述法说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{x|x是直角三角形},…;例2.(课本例2)说明:(课本P5最后一段)思考3:(课本P5思考)强调:描述法表示集合应注意集合的代表元素{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}不同。

辨析:这里的{ }已包含“所有”的意思,所以不必写{x|x是全体整数}。

下列写法{x|x 是实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(三)课堂练习(课本P5练习)三、归纳小结本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

四、作业布置书面作业:习题1.1,第1- 4题五、板书设计(略)课题:§1.1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课型:新授课教学目的:(1)理解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用V enn 图表达集合间的关系;(4)理解空集的含义。

教学重点:子集与空集的概念;用Venn 图表达集合间的关系。

教学难点:弄清元素与子集 、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N ;(2;(3)-1.5 R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣布课题)二、新课教学(一) 集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A 是集合B 的部分元素构成的集合,我们说集合B 包含集合A ;如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。

记作:)(A B B A ⊇⊆或读作:A 含于(is contained in )B ,或B 包含(contains )A当集合A 不含于集合B 时,记作A⊆ B用Venn)(A B B A ⊇⊆或(二)A B B A ⊆⊆且,则B A =中的元素是一样的,因此B A =即 ⎩⎨⎧⊆⊆⇔=AB B A B A 练习结论:任何一个集合是它本身的子集(三) 真子集的概念若集合B A ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集(proper subset )。

记作:A B (或B A )举例(由学生举例,共同辨析)(四) 空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(empty set ),记作:∅规定:空集是任何集合的子集,是任何非空集合的真子集。

(五) 结论:○1A A ⊆ ○2B A ⊆,且C B ⊆,则C A ⊆ (六) 例题(1)写出集合{a ,b}的所有的子集,并指出其中哪些是它的真子集。

(2)化简集合A={x|x-3>2},B={x|x ≥5},并表示A 、B 的关系;(七) 课堂练习(八) 归纳小结,强化思想两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;(九) 作业布置1、 书面作业:习题1.1 第5题2、 提高作业:○1 已知集合}5|{<<=x a x A ,x x B |{=≥}2,且满足B A ⊆,求实数a 的取值范围。

○2 设集合}|{}|{}|{是矩形是平行四边形是四边形x x ,C x x ,B x x A ===,}|{是正方形x x D =,试用Venn 图表示它们之间的关系。

板书设计(略)课题:§1.3集合的基本运算(一)教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课 型:新授课教学重点:集合的交集与并集的概念;教学难点:集合的交集与并集 “是什么”,“为什么”,“怎样做”;教学过程:一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?观察下列各个集合,你能说出集合C 与集合A 、B 之间的关系吗?(1)A={1,2,3,4,5},B={2,5,8,9},C={2,5}(2) A={1,2,3,4,5},B={2,5,8,9},C={1,2,3,4,5,8,9}引入并集、交集概念。

二、新课教学1. 并集一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集(Union )记作:A ∪B 读作:“A 并B ”即: A ∪B={x|x ∈A ,或x ∈B}Venn 图表示:说明:两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。

例题(P 9-10例4、例5)说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。

问题:在上图中我们除了研究集合A 与B 的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A 与B 的交集。

2. 交集一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集(intersection )。

记作:A ∩B 读作:“A 交B ”即: A ∩B={x|∈A ,且x ∈B}交集的Venn 图表示说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。

例题(P 9-10例6、例7)拓展:求下列各图中集合A 与B 的并集与交集当两个集合没有公共元素时,两个集合的交集是空集,集3. 求集合的并、交是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法。

4. 集合基本运算的一些结论:(A ∩B )⊆A ,(A ∩B )⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩AA ⊆(A ∪B ),B ⊆(A ∪B ),A ∪A=A ,A ∪∅=A,A ∪B=B ∪A若A ∩B=A ,则A ⊆B ,反之也成立若A ∪B=B ,则A ⊆B ,反之也成立若x ∈(A ∩B ),则x ∈A 且x ∈BA若x∈(A∪B),则x∈A,或x∈B三、课堂练习P11、1~3四、作业布置:略课题:§1.3集合的基本运算(二)教学目的:(1)理解全集以及在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

课型:新授课教学重点:集合的全集、补集的概念;教学难点:集合的全集、补集以及求集合中元素个数问题。

教学过程:一、引入课题问:我班全体同学有一部分参加了校运动会,在这个问题需关注的集合有几个?二、新课教学1.全集、补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。

补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,记作:C U A即:C U A={x|x∈U且x∈A}补集的Venn图表示说明:补集的概念必须要有全集的限制例题(P12例8、例9)例10、设全集U={-1,1,a2-2a-3}, A={1, |b|-3}若:C U A={5}, 求a, b的值2.求集合的补集运算,运算结果仍然还是集合,在处理有关交集与并集、补集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

相关文档
最新文档