九年级数学上册_第21章二次根式学案_人教新课标版
新人教版九年级上21.1二次根式教案

新人教版九年级上21.1二次根式教案篇一:数学:人教版九年级上21.1二次根式(教案)数学:人教版九年级上21.1二次根式(教案)一、教学目标1.复习平方根的概念.2.经历从实际问题列二次根式的过程知道什么是二次根式会求二次根式有意义的条件.二、教学重点和难点1.重点:二次根式的概念.2..三、教学过程(一)复习旧知导入新课师:从本节课开始我们要学习新的一章——第二十一章二次根式(板书:第二十一章二次根式).师:什么是二次根式这得从平方根说起.师:初二的时候我们学过平方根那么什么是平方根(稍停)师:(板书:x=5并指准)x=55是x的什么(稍停)5是x的平方;反过来x是5的什么(稍停)x是5的平方根.师:(指准x=5)x=55是x的平方x是5的平方根.大家按照老师的说法自己说几遍.(生自己说)师:位同学来说一说2222生:??(让一两名同学说)师:(指准x=5)x=5x是5的平方根那么5的平方根x等于什么呢(板书:5的平方根x=)生:??(让一两名学生回答)师:x=师:(指准55的算术平方根.师:(指准板书)5的平方根是12的平方根生:(齐答).2212的什么12的算术平方根.师:上面我们复习的是正数的平方根下面我们来看0的平方根.师:(板书:x=0并指准)x=0x等于什么生:(齐答)x=0.(师板书:x=0)师:(指准板书)从x=0得出x=0这说明什么(稍停)这说明0的平方根为0(板书:0的平方根为0).师:我们还规定0的算术平方根为0.师:下面我们再来看负数有没有平方根.师:(板书:x=5并指准)一个数的平方等于5这样的数有没有(稍停)任何一个数的平方或者大于0或者等于0不可能小于0所以这样的数没有(板书:不存在).这说明什么(稍停)这说明5没有平方根(板书:5没有平方根).师:(指板书)从上面的讨论我们可以得出一个结论什么结论(稍停)正数有两个平方根它们互为相反数;0的平方根是0;负数没有平方根.(二)试探练习回授调节1.填空:(1)9的平方根是9的算术平方根是;(2)6的平方根是6的算术平方根是;(3)0的平方根是0的算术平方根是.2.用带根号的式子填空:(1)一个直角三角形的两条直角边的长分别是2和3则斜边的长为;(2)面积为S的正方形的边长为;(3)跳水运动员从跳台跳下他在空中的时间t(单位:秒)与跳台高度h(单位:米)满足关系h=5t.如果用含有h的式子表示t则t=.(三)尝试指导讲授新课(生报第222222师:式子有什么共同的特点生:??(问题的答案不是唯一的鼓励学生发表自己的看法)师:(指准式子)是13S的算术平方h的算术平方根.另一方面从式子5子).师:a等于13a等于Sa等于什么生:(齐答)等于h.S式(板书:叫做二次根式).师:大家把二次根式的概念读两遍.(生读)师:下面我们来看一道例题.(师出示例题)例当x师:大家看一看这个题目想一想做这个题目.(生读题思考)师:x2必须大于等于0.为什么被开方数x2必须大于等于0x2的算术平方根而负数没有平方根所以被开方数x2必须大于等于0.(以下师边讲解边板书解题过程如下)解:由x2≥0得x≥2.当x ≥2.(四)试探练习回授调节3.填空:(1)当a有意义;(2)当x.4.选做题:当x;当x有意义.(五)归纳小结布置作业2师:本节课我们首先复习了平方根的概念然后学习了什么是二次根式.(指准板a必须大于等于0(板书:其中a≥0).(作业:P5习题1P3练习2)四、板书设计课题:21.1二次根式(第2课时)一、教学目标1.经历探究过程知道并会简单运用二次根式的基本性质.2.培养探究能力和归纳表达能力.二、教学重点和难点1.重点:二次根式的基本性质.2.难点:二次根式基本性质的探究.三、教学过程(一)创设情境导入新课师:上节课我们学习了二次根式的概念什么样的式子是二次根式(师出示下面的板书)a≥0)的式子叫做二次根式.师:a必须大于等于0.譬如.师:明确了二次根式的概念本节课我们要学习什么本节课我们要学习二次根式的性质(板书:二次根式的性质).(二)尝试指导讲授新课师:二次根式有什么性质二次根式有三个性质我们先来看第一个性质.(师出示下面的板书)性质1a≥0)是一个非负数.师:(指准板书)性质1.0所.a的算术平方根而a的算术平方根总是大于等于0.师:下面我们来看二次根式的第二个性质.师:于什么生:等于3.(直到有学生猜出这个答案师板书:=3)师:(指式子)等2=3为什么(稍停)2(师出示下图)面积=3师:(指准图)这是一个正方形这个正方形的面积为3那么它的边长等于什么(多让几名同学回答然后师在图上板书:边长师:3.么生:??(多让几名同学回答)=3.师:(板书:=)利用同样的办法我们可以得到等于什么师:3可见222生:(齐答)等于8.(生答师板书:8)篇二:人教版九年级上册教案21.1二次根式121.1二次根式第一课时教学内容二次根式的概念及其运用教学目标a≥0)的意义解答具体题目.提出问题根据问题给出概念应用概念解决实际问题.教学重难点关键1a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3那么它的图象在第一象限横、?纵坐标相等的点的坐标x问题2:如图在直角三角形ABC中AC=3BC=1∠C=90°那么AB边的长是.A问题3:甲射击6次各次击中的环数如下:8、7、9、9、7、8那么甲这次射击的方差是S2那么S=.老师点评:问题1:横、纵坐标相等即x=y所以x2=3.因为点在第一象限所以.问题2:由勾股定理得C问题3:由方差的概念得S=二、探索新知a≥0)?的式子叫做二次根式(学生活动)议一议:1.1有算术平方根2.0的算术平方根是多少3.当a<0老师点评:(略)例1、x1x≥0y?≥0).x?y;第二被开方数是正数分析或0.x>0)x≥0y≥0);不是二次11.xx?y例2.当x分析:由二次根式的定义可知被开方数一定要大于或等于0所以3x1≥0?才能有意义.解:由3x1≥0得:x≥当x≥131在实数范围内有意义.3三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x分析+1在实数范围内有意义x?11在实数范围内有意义必须同时满足中的≥0和x?11中的x+1≠0.x?1解:依题意得??2x?3?0?x?1?0由①得:x≥32由②得:x≠1当x≥32且x≠11x?1在实数范围内有意义.例4(1)已知求xy的值.(答案:2)(2)求axx+bxx的值.(答案:25)五、归纳小结(学生活动老师点评)本节课要掌握:1a≥0)的式子叫做二次根式2.要使二次根式在实数范围内有意义必须满足被开方数是非负数.六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.第一课时作业设计一、选择题1.下列式子中是二次根式的是()A.BCD.x2.下列式子中不是二次根式的是()ABCD.1x3.已知一个正方形的面积是5那么它的边长是()A.5BC.15D.以上皆不对二、填空题1.形如的式子叫做二次根式.2.面积为a的正方形的边长为.3.负数平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒其高为0.2m按设计需要做成正方形试问底面边长应是多少2.当x2在实数范围内有意义3.4.x有()个.底面应?A.0B.1C.2D.无数5.已知a、b=b+4求a、b的值.第一课时作业设计答案:一、1.A2.D3.B二、1a≥0)23.没有三、1.设底面边长为x则0.2x2=1解答:3??2x?3?0?x??2.依题意得:??2x?0???x?0∴当x>3且x≠0x2在实数范围内没有意义.23.134.B5.a=5b=4篇三:人教版数学九年级(上)21.1《二次根式》教案21.1《二次根式》教案一、知识回顾1.9的平方根是9的算术平方根是.2.3的算术平方根表示为;3的平方根表示为3.在实数范围内正数有0的(算术)平方根是;负数(算术)平方根.二、知识点拨知识点1:一般地我们把形如(a≥0)的式子叫做二次根式“”称为二次根号.6.下列是二次根式的是:.(1)x2=25(2)2x?1(3)x2-x-9=0(4)2x?6(5)xy≥0(6)2(7)12(8)x7.当a是怎样的实数时下列各2a式在实数范围内有意义a(1)a?2(2)?1(3)2a?3(4)?2(5)3?a(6)a(7)?a(8)a2(9)a32知识点2:一般地=a(a≥0).a)8.计算:222(1)(2)(3).5)(2)3)222(4)(5)(6)(32))(?0.2)知识点3:一般地a2=a (a≥0).9.化简:2(1)(2)?5(3)0.32)22(5)(4)?1(6)?2???)722(7)0.62(8)?3知识点4:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数和字母连接起来的式子我们称这样的式子为代数式.三、课后思考10.已知直角三角形两直角边为a和b斜边为c.(提示:勾股定理公式:a2+b2=c2)(1)如果a=12b=5求c;(2)如果a=3c=4求b;(3)如果c=10b=9求a.11.已知半径为rcm的圆的面积是半径为2cm和3cm的两个圆的面积的和求r的值.12.(1)?n是整数求自然数n的值.(2)24n是整数求正整数n的最小值.13.当x是怎样的实数时下列各式在实数范围内有意义1(1)3?x(2)2x?114.已知n是正整数n是整数求n的最小值.四、中考链接15.(XX·株洲)若使二次根式x?2在实数范围内有意义则x的取值范围是()A.x>2B.x≥2C.x<2D.x≤2XX16.(XX·天津)若x、y为实数且x?2?y?2?0则的值为.xy17.(XX·哈尔滨)36的算术平方根是()A.6B.±6C.D.±618.(XX·荆门)?9的平方根是()A.81B.±3C.3D.-319.(XX·宜宾)9的平方根是()A.3B.-3C.±3D.±3220.(XX·怀化)若a?2?b?3?(c?4)?0则a-b+c=.21.(XX·福州)请写出一个比5小的整数:022.(XX·江苏)计算:?2?(1?2)?4223.(XX·江西)计算:(?2)?(3?5)??2?(?3)024.(XX·南充)计算:(??XX)??3?2。
九年级数学上册 第21章 二次根式 21.3 (第2课时)教案 (新版)

难点目标
由整式运算知识迁移到含二次根式的运算
导入示标
含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.
复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算
目标三导
学做思一:完成下列各题:
1.计算:(1)(2x+y)·zx (2)(2x2y+3xy2)÷xy
——————————新学期新成绩新目标新方向——————————
二次根式的加减
课题名称
二次根式的加减(二)
三维目标
1.含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.
复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘 方等运算
2.通过自查、小组纠错,通过计算能力
3.培养学生严谨计算的 习惯
2.计算:(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2
学做思二:计算:(1)( + )× (2)(4 -3 )÷2
学做思三:计算:(1)( +6)(3- )(2)( + )( - )
通过学习你还有什么问题或疑问?计算中应注意哪些问题?
达标检测
1.( -3 +2 )× 的值是() .
A. -3 B.3 -
C.2 - D. -
2。计算 :
(1)(- + )2(2)(1-2 )(1+2 )-(2 - 1 )2
反思总结
1.知识建构
2.能力提高
3.课堂体验
课后练习
九年级数学上册 21.1 二次根式教案 新人教版

(2)学生是否能分和这两种情况进行讨论.
在教师的引导下,学生很容易得到如下结论:
是一个非负数.
通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生的分类讨论的思想和归纳概括的能力.
活动3
问题
根据算术平方根的意义填空:
21.1 二次根式
教学目标
知识技能
1.了解二次根式的概念.
2.了解二次根式的基本性质.
数学思考
经历观察、比较、总结二次根式的基本性质的过程,发展学生的归纳概括能力.
解决问题
通过对二次根式的概念和性质的探究,提高数学探究能力和归纳表达能力.
情感态度
学生经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的快乐,并提高应用的意识.
通过这组题目的练习,加深对这一性质的理解和应用.对于复杂的题目,要学会分解,化难为易.
活动4
问题
(1)填空:
;;
;.
(2)思考:当时,?
(3)与相等吗?
例3化简:
(1); (2).
教师首先引导学生比较活动3与活动4中两组题目的不同之处,注意学生是否观察出:活动3中的题目是对非负数先进行开平方运算,再进行平方运算;而活动4中的题目正好相反,是先进行平方运算,再进行开平方运算.
注重新旧知识的连贯性,使学生有一个由浅入深的学习过程,并体会到学习的内容是融会贯通的.
为学生提供练习的时间和空间,调动学生的主观能动性,激发好奇心和求知欲.
通过题目的练习,使学生加深对所学知识的理解,避免一些常见错误.
活动2
问题
请比较与0的大小.
九年级数学上册 第21章《二次根式》学案(1) 新人教版

课 题第二十一章 二次根式单元知识结构单元学习目标1、 知识与能力1)能利用二次根式的性质化简二次根式。
2)掌握二次根式的积、商的算术平方根的运算法则。
3)培养学生实数运算的能力。
2、过程与方法:通过学习,要体会转化、分类、类比以及一般到特殊的数学思想。
3、情感、态度、价值观:教学中结合学生生活实际,利用二次根式运算解决一些实际问题,培养学生爱数学、用数学的思想感情。
学习重点:1.二次根式的化简和运算。
2.最简二次根式和同类二次根式的意义。
3.通过二次根式运算解决实际问题。
课时安排:约需七课时第 一 课时课 题 21.1.1 二次根式学习目标1.理解二次根式的概念。
2.能利用a (a ≥0)的意义求被开方数中字母的取值范围。
3.能判断二次根式是否有意义。
学法指导 让学生自主学让学习、合作学习,学习过程中,注意体会转化、分类、类比及从一般到特殊的数学思想。
课前预习:1.复习平方根的定义:形如x 2=a(a ≥0)的式子,则x 是a 的( ),记作x=( )2.a(a ≥0)的算术平方根记作( )。
3.已知反比例函数y=3x,那么它的图象在第一象限横、纵坐标相等的点的坐标是_________.4.如图,在直角三角形ABC 中,AC=3,BC=1,∠C=90°,那么AB 边的长是________B二次根式的性质 二次根式的化简和运算错误!未找到引用源。
错误!未找到引用源。
2=a(a ≥0) 错误!未找到引用源。
2=∣a ∣ 1)二次根式的乘除2)二次根式的加减课 堂 导 学二、探索新知很明显3、10都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,子我们就把它称二次根式.因此,一般地,我们把形如a (a ≥0)•的式子叫做二次根式,“”称为二次根号.由于二次根式的被开方数只能取非负值,因此二次根式要有意义就必须被开方数大于等于0。
从形式上看,二次根式必须具备以下两个条件: ( 1 ) 必须有二次根号;( 2 ) 被开方数不能小于0 。
人教版版九年级上册第二十一章 二次根式全章教案-1

A B C第一讲 二次根式一、教学目标:(1) 了解二次根式的概念,初步理解二次根式有意义的条件.(2) 通过具体问题探求并掌握二次根式的基本性质:当a ≥0时,()2a = a ;能运用这个性质进行一些简单的计算。
(3) 通过观察一些特殊的情形,获得一般结论,使学生感受归纳的思想方法。
二、教学重点:二次根式的概念以及二次根式的基本性质三、教学难点:经历知识产生的过程,探索新知识.四、教学过程:1、概念复习:什么叫平方根? 什么叫算术平方根?2、 引入:计算:的平方根是 .(2)如图,在R ∆t ABC 中,AB=50m,BC=a m,则AC= m. (3)圆的面积为S,则圆的半径是 .(4)正方形的面积为3-b ,则边长为 .(5)对上面(2)~(4)题的结果,你能发现它们有什么共同的特征吗? 3、归纳总结:1、二次根式的定义.______________________________________________________ 说说对二次根式 a 的认识,好吗?_________________________________________2、练习:说一说,下列各式是二次根式吗?(1)32 (2)6 (3)12- (4))0(≤-m m (5)x xy (、y 异号) (6)12+a (7)35 4、例1: 要使式子5-x 有意义,x 的取值范围是什么?5、二次根式性质的探索:22=4,即(4)2= 4;32=9,即(9)2= 9;……观察上述等式的两边,你得到什么启示?揭示:当a ≥0时,()2a = a 。
6、例2:计算:(1)2)3(; (2)2)32(; (3) 2)(b a + (a+b ≥0)7、练习. (1)=2)32((2)2)32(- 练习:1、要使下列式子有意义,x 的取值范围是什么?(1)5+x (2)43-x (3)15+x (4)x 101- (5)12+x (6)2x - (7)11-+-x x (8)11+x (9)31x-2、当x=2时,下列各式中,在实数范围内没有意义的是( ) A 、2-x B 、x -2 C 、22-x D 、22x -3、计算:(1)2)5( (2)2)73((3)22)2()8(+ (4)222)(b a +4、已知0512=++++-y x y x ,求x+y 的值。
九年级数学上册 第21章 二次根式 21.3 (第1课时)教案 (新版)

二次根式加减的步骤是什么?
学做思二:
计算:(1) + (2) +
学做思 三:
计算:(1)3 -9 +3 (2)( + )+( - )
通过 学习你还有什么问题或疑问?与同伴交流一下!
达标检测
1.在 、 、 、 、 、3 、-2 中,与 是同类二 次根式的有________.
二次根式的加减
课题名称
二次根式的加减法(一)
三维目标
1.理解和掌握二次根式加减的方法
2.经历同类二次根式的探究过程,体会它在二次根式加减运算中的重要性
3.训 练学生计算习惯 的养成
重点目标
二次根式化简 为最简根式
难点目标
会判定是否是最简二次根式
导入示标
理解和掌握二次根式加减的方法
目标三导
学做思一: 计算下列各式.
2.计算:5 -3 -7 +9 =________
3.下列各 式:①3 +3=6 ;② =1;③ + = =2 ;④ =2 ,其中 错误的有().
A.3个B.2个 C.1个D.0个
反思总结
1.知识建构
2. 能力提高
3.课堂体验
课后练习
人教版数学九年级上册21.1.2《二次根式的概念》教案

人教版数学九年级上册21.1.2《二次根式的概念》教案一. 教材分析人教版数学九年级上册21.1.2《二次根式的概念》是该册的一个重点和难点。
本节课主要介绍二次根式的概念,包括二次根式的定义、性质和运算。
通过本节课的学习,学生将能够理解二次根式的概念,掌握二次根式的性质和运算,为后续学习二次根式的应用打下基础。
二. 学情分析学生在学习本节课之前,已经学习了实数、有理数、无理数等基础知识,对数的运算也有一定的了解。
但是,学生对二次根式的概念和性质可能还比较陌生,需要通过本节课的学习来掌握。
此外,学生可能对二次根式的运算有一定的困难,需要通过实例和练习来加深理解。
三. 教学目标1.理解二次根式的概念,掌握二次根式的性质和运算。
2.能够运用二次根式的知识解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.二次根式的概念和性质。
2.二次根式的运算。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等教学方法。
通过问题引导学生思考,通过实例讲解和练习让学生理解和掌握二次根式的概念和性质,通过合作学习让学生互相交流和解决问题。
六. 教学准备1.PPT课件。
2.教学实例和练习题。
3.黑板和粉笔。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾实数、有理数、无理数等基础知识,为新课的学习做好铺垫。
2.呈现(15分钟)讲解二次根式的定义,通过实例让学生理解二次根式的概念。
讲解二次根式的性质,让学生掌握二次根式的基本性质。
3.操练(20分钟)让学生进行二次根式的运算练习,引导学生运用二次根式的性质和运算法则进行计算。
在此过程中,教师要及时给予指导和反馈,帮助学生巩固所学知识。
4.巩固(10分钟)通过一些典型的例题和练习题,让学生进一步理解和掌握二次根式的概念和性质,能够熟练地进行二次根式的运算。
5.拓展(10分钟)让学生思考和讨论二次根式在实际问题中的应用,引导学生将所学知识运用到实际问题中,提高学生的解决问题的能力。
人教版九年级上21.1二次根式(1)学案 21.1二次根式(1)学案

第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2(a≥0)是一个非负数,)2=a(a≥0)(a≥0).(3(a≥0,b≥0);a≥0,b>0)a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念. 再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定, 并运用规定进行计算.(3)利用逆向思维, 得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点, 给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1(a ≥0(a ≥0)是一个非负数;)2=a (a ≥0);(a ≥0) 及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1(a ≥0)2=a (a ≥0(a ≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时章节测试 讲评 2课时21.1 《 二次根式(1)》学案课型: 上课时间: 课时:学习内容:二次根式的概念及其运用学习目标:1(a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习(一)、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=,那么它的图象在第一象限横、 纵坐标相等的点的坐标是___________..问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.)(二)学生学习课本知识4、5页(三)、探索新知1、知识: ,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如的式子叫做二次根式,.例如:形如 、、是二次根式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十一章 二次根式___.4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=- A .①、② B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ). A .21>a B .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______.12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2-(2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________;(3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______.二、选择题 3.xxx x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷(2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题4.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15.⋅+-+bb a b a a 124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______. .ab 与2abB mn 与nm 11+ C .22n m +与22n m -D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+ 三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-baa ________. 二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.第二十一章 二次根式全章测试一、填空题2.322-的相反数是______,绝对值是______.3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ). A .1个B .2个C .3个D .4个78.若(x +2)2=2,则x 等于( ). A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+-12.).32)(23(--13..25341122÷⋅14.).94(323ab a b a b a a b a b +-+ ⋅÷+--+xy y x yx xy y x y)(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题. ①;211111*********2=+-+=++ ②;6111212113121122=+-+=++ ③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果;(2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式.。