液体动压轴承实验报告

合集下载

液体动压轴承试验

液体动压轴承试验
绘制轴承轴向油膜压力分布图
Page 6
实验二—液体动压轴承实验
四、实验方法与步骤
油膜压 力分布 测定
步骤分解
Page 7
轴承摩擦 特性曲线 的确定
PPT大宝库【】
实验二—液体动压轴承实验
(1) 油膜压力分布的测定
开启油泵,调节溢流阀,使加载油腔 压力在0.2Mpa以下
二、实验设备
•滑动轴承实验台
1-轴承箱 2-供油压力表 3、4-溢流 阀 5-加载油腔压力表 6-液压箱 7变速箱 8-调速电机控制器 9-底座 10-油泵 电机开关 11-总开关 12-调速电机
Page 3
PPT大宝库【】
实验二—液体动压轴承实验
三、实验原理与结构
1. 静压加载 当输送压力油到加载板的油腔时,轴承即获得载荷,轴 承载荷为:
正行程 反行程 正行程 反行程 正行程 反行程 正行程 反行程
0g
灵敏度
200g
400g
600g
800g
线性度
迟滞
重复性
精度
1000g
实验二—液体动压轴承实验
表3半桥邻臂实验记录
受力方式图
电桥接线图
半桥邻臂
计算公式与结论
Page 16
次 数
1 2 3 平均值 结果
加载(g) 电压(mv)
正行程 反行程 正行程 反行程 正行程 反行程 正行程 反行程
加载荷,调节溢流阀使得 p0=0.2Mpa,并计算此时载荷F,待 各压力表稳定后,记录压力表的数值
Page 9
实验二—液体动压轴承实验
(1) 油膜压力分布的测定
再将加载压力调至P0=0.4Mpa,计 算此时载荷F待压力表稳定后记录压

实验7 液体动压滑动轴承油膜压力与摩擦仿真及测试分析分解

实验7 液体动压滑动轴承油膜压力与摩擦仿真及测试分析分解

3)转速对油膜压力的影响 转速越高,单位时间通过载荷作用面的润滑 油就越多,产生的摩擦力就越大,油膜压力就越 大,特别是当转速达到一定值使流体的流动由层 流变为紊流时,承载力会得到显著提高。在转速 升高的同时会使润滑油的温度上升,运动粘度下 降,使油膜压力降低承载能力下降。相比而言, 油温升高带来的油膜压力降低比转速上升带来的 油膜压力升高要小得多。 4)液体动压滑动轴承设计的结构、尺寸,制造 精度,材料选择对动压油膜的产生和压力的大小 都有直接的影响。
实验7 液体动压滑动轴承油膜压 力与摩擦仿真及测试分析
7.1 实验目的
通过在 HSB 型试验台上,对液体动压 轴承进行径向和轴向油膜压力分布及大小的 测量和仿真,对摩擦特性曲线进行测定及仿 真,了解影响液体动压滑动轴承油膜建立及 影响油膜大小各项因素之间的关系。
7.2 实验原理
利用轴承与轴颈配合面之间形成的楔形间
3、滑动轴承油膜压力仿真与测试分析界面
4、滑动轴承摩擦特征仿真与测试分析界面
7.8 实验内容
1.液体动压轴承油膜压力周向分布测试分析
该实验装置采用压力传感器、A/D板采集该 轴承周向上七个点位置的油膜压力,并输入计 算机通过曲线拟合作出该轴承油膜压力周向分 布图。通过分析其分布规律,了解影响油膜压
传感器采集的实时数据。
注:此键仅用于观察和手动纪录各压力传感器采集的数据,软件所
需数据将由控制系统自动发送、接收和处理。
7.7软件界面操作说明
1、由计算机桌面“长庆科教”进入启动界面
2、在图7-7启动界面非文字区单击左键, 即可进入滑动轴承实验教学界面。


[实验指导]: 单击此键,进入实验指导书。 [进入油膜压力分析]: 单击此键,进入油膜压力及摩擦特性分析。 [进入摩擦特性分析]: 单击此键,进入连续摩擦特性分析。 [实验参数设置]: 单击此键,进入实验参数设置。 [退出]: 单击此键,结束程序的运行,返回WINDOWS界面。

液体动压润滑轴承实验指导书

液体动压润滑轴承实验指导书

《液体动压润滑轴承》实验指导书一、实验目的1、观察径向滑动轴承液体动压润滑油膜的形成过程和现象。

2、测定和绘制径向滑动轴承径向油膜压力曲线,求轴承的承载能力。

3、观察载荷和转速改变时油膜压力的变化的情况。

4、观察径向滑动轴承油膜的轴向压力分布情况,绘制轴向油膜压力曲线。

5、了解径向滑动轴承的摩檫系数f的测量方法,绘制摩擦特性曲线。

二、实验台结构与技术参数1、实验台的主要结构如图所示1、三角带2、直流电机3、主轴箱4、主轴5、主轴瓦6、油压表(8只)、7、螺旋加载器8、测力弹簧片9、测力计(百分表)2、结构特点实验台主轴4、由两个高精度的单列向心球轴承支承。

直流电机2通过三角带1传动给主轴4,主轴顺时针旋转,主轴上装有精密加工制造的主轴瓦5,由无机调速器来实现主轴的无机变速,轴的转速由装在面板上的左数码管显示。

主轴瓦外圆上方被加载装置压住,通过螺旋加载器的加载杆即可实现对轴瓦加载,加载大小由载荷传感器传出,由装在面板上的右数码管显示。

主轴瓦上装有测力杆,通过百分表9可测出测力弹簧片变形Δ值。

主轴瓦前端装有7只油压表,测量在轴瓦全长1/2处(即中间位置)的径向压力,在轴瓦全长1/4处(距后端)装有1只油压表(即第8只),测量该处的径向压力,第8只油压表与前端装有的第4只油压表都安装在主轴瓦的同一条母线上。

3、主要技术参数实验主轴瓦内直径(即主轴直径)d=70mm、有效长度(宽度)B=125mm、材料 ZQSn6-6-3加载范围0~1000 N 调速范围n=3~500 rpm百分表精度 0.01mm 量程0~10mm 油压表精度 2.5级量程0~0.6MPa 测力杆上测力点与轴承中心距离L=120mm测力弹簧片特性系数k=0.098N/格(百分表每格)2、控制面板(如图)1、转速显示2、压力显示3、油膜指示4、电源开关5、压力调零6、转速调节7、测量键8、存储键9查看键10复位键在单片机的程序控制下,可完成“复位”“测量”“查看”“存储”4种测试功能,通电后,该电路自动开始工作,个位右下方的小数点亮,即表示电路正在检测并计算转速。

流体动压润滑轴承工作原理

流体动压润滑轴承工作原理
2.当载荷增加或转速升高时,油膜压力分布曲线有什么 变化?
3.轴向压力分布曲线与轴承宽径比B/d之间有什么关系? 当B/d≥4及B/d≤1/4两种情况下,它们的轴向油膜压力分布 有何明显差异?求解流休动力润滑雷诺方程的简化方程时 又有何不同?
滑动轴承基本性能测试
⑦ 观察油膜周向和轴向压力的分布曲线,如果曲线模糊,请点击 “稳定取值”按钮,同时观察右边的油膜压力数值显示窗口内的8个点 的油膜压力值。
⑧ 曲线稳定后,点击[暂停采样],再点击[打印]按钮打印当前窗口。 ⑨ 实验完成后,根据周向油膜压力分布曲线承载图,求出油膜平均 压力pm值,并计算K值。
滑动轴承基本性能测试
三、实验装置与原理
实验装置采用西南交通大学研制的ZHS20系列滑 动轴承综合实验台(实验台的详细介绍见附录Ⅲ)。 该实验台主要由主轴驱动系统、静压加载系统、轴承 润滑系统、油膜压力测试系统、油温测试系统、摩擦 因素测试系统以及数据采集与处理系统等组成。
滑动轴承基本性能测试
四、实验原理
6-2(a)Βιβλιοθήκη 车状态时6-2(b)运转状态时
滑动轴承基本性能测试
当动压油膜的压力p在载荷F方向分力的合力与载荷F平衡时,轴颈 中心处于某一相应稳定的平衡位置O1,随着轴承载荷、转速、润滑油 种类等参数的变化以及轴承几何参数(如宽径比、相对间隙)的不同, 轴径中心的位置也随之发生变化。
为了保证形成完全的液体摩擦状态,对于实际的工程表面, 最小油膜厚度必须满足以下列条件:
滑动轴承基本性能测试
二、实验内容
1.测试轴承中间平面上周向油膜压力分布曲线和轴向油 膜压力分布曲线 。
2.测试周向油膜压力分布曲线图的承载分量的曲线,求 轴承的端泄影响系数K。

液体动压轴承实验2

液体动压轴承实验2

液体动压轴承实验一、实验目的了解轴承油膜承载现象及其参数对轴承性能的影响,掌握油压及摩擦系数测试方法,加深对液体动压润滑原理的认识。

二、实验要求1、测定并绘出轴承油膜压力周向分布曲线及轴向分布曲线,并求出轴承的承载量。

2、计算实测端泄对轴承压力分布的影响系数k 值。

看其是否符合油膜压力沿抛物线分布规律。

3、测定轴承单位压力、滑动速度、润滑油粘度与摩擦系数之间的关系,绘制出轴承摩擦特性曲线。

三、试验台简介液体动压轴承试验台可用来进行油膜压力分布及轴承摩擦特性曲线的测定。

加载方法采用静压油垫。

调速方式采用 JZT 型调速电机,并配以变速箱,可实现 20~580r/min 无级变速,主轴转速可根据控制器表盘转速读数直接得出。

1、试验台主要技术参数(1)试验轴承参数轴颈直径d = 60mm。

轴颈有效长度l = 120mm直径间隙 0.07表面粗糙度1.6 ∇轴承材料ZQSn6-6-3(铸锡青铜)轴承自重G=80N(包括压力表及平衡锤等)(2)加载范围 3000N(3)加载油腔水平投影面积 188.5cm2(4)测力杆上测力点与轴承中心偏移距离 17mm(5)转速范围20~5800r/min(6)主电机功率0.375KW2、试验台总体布置图1 为试验台总体布置,图中 1 为试验轴承箱,由联轴器与变速箱 7 相联,6为液压箱,装于底座 9 内部,12 为调速电机,8 为调速电机控制器,5 为加载油腔压力表,2 为轴承供油压力表。

油泵电机开关为 10,主电机开关为 11,总开关位于试验台正面。

图 1 试验台总体布置图1-实验轴承箱 2-轴承供油压力表 3-减压阀 4-溢流阀 5-加载油腔压力表 6-液压箱7-变速箱8-调速电机控制器9-底座10-油泵电机开关11-主电机开关12-调速电机13-三角带传动装置3、试验轴承箱图 2 为试验轴承箱,图中 2 为主轴,由两只 P5 级滚动轴承支承。

6 为试验轴承,空套在主轴上,轴承内径d = 60mm,有效长度l= 120mm,在中间横断面,即有效长度 1/2 处的断面上沿周向开有七个测压孔,在 120º范围内均匀分布,距中间断面 1/4 处,即距周向测压孔15mm 处在铅直方向还开有另一个测压孔(即轴向测压孔),图中 1 表示七只压力表分别与七个周向测压孔相联,8 为一只与轴向测压孔相联的压力表,3 为加载盖板,固定在箱体上,加载油腔在水平面上的投影面积为188.5cm2.轴承外圆左侧装有测杆4、环5装在测杆端部,其与轴承中心距离为 78 mm。

液体动压径向滑动轴承实验指导书

液体动压径向滑动轴承实验指导书

液体动压径向滑动轴承实验指导书一、实验内容与目的:1.观察径向滑动轴承的摩擦现象,加深对概念的理解; 2.测绘径向滑动轴承的摩擦特性曲线,掌握测绘方法;3.测绘径向滑动轴承油膜压力曲线,求油膜承载能力。

了解复杂问题的简化处理方法。

二、实验设备的结构与工作原理:本实验有二类(二种型号)设备,它们的结构示意图如图1和图2所示:它们包括以下向个部份:可以证明,抛物面与轴直径截面所围体积与以m P 值为高的长方体的体积之比32=KdB m 。

如果我们测量是精确的;那么我们计算结果摩擦状态指示装置的原理是用一个与轴和轴瓦相连的直流电路上的灯泡来指示的。

当轴当轴在很低的转速下转动时,轴将润滑油带入轴和轴瓦之间收敛性间隙内,但由于此时的油膜厚度很薄,轴与轴瓦之间部分微观不平的凸峰处仍在接触,当轴的转速达到一定值时,轴与轴瓦之间形成的压力油膜厚度完全分开两表面之间微观不平的凸峰,油膜守全将轴与轴瓦隔开,灯泡就不亮了。

这个指示装置还有一个作用就是当指示灯亮时不能加载,以免出现油温过高烧瓦等现三、实验方法与步骤:一)操作前检查:1.调速旋钮是否逆时针旋到底;2.将百分表调零;3.察看油标,检查润滑油油位是否到位;4.使加载系统处于未加载状态;二)实验操作(在做完以上准备工作后):1.观察润滑现象:接通电源,将调速旋钮右旋将使在一定转速(300转/分左右)下旋转,再回调至200转/分左右,然后再慢慢的调到转速为零。

注意观察各种摩擦状态。

2.摩擦系数测量:①接通电源,旋转调速旋钮使轴在一定转速(300转/分)下旋转。

②用加、减载荷方法记录在不同载荷情况下百分表读数;然后再在一固定载荷(HS-A型加到40kg;HZ型加三块砝码)下,用加、减转速方法记录百分表读数。

这样就得到摩擦系数各点值。

3.油膜承载压力测量:①调节调速旋钮,将轴转速达到各试验机的最高转速(500转/分以内);②加载使轴承受一定载荷(HS-A型100kg;HZ型六块砝码),待压力表值稳定后记录各块压力表的值。

液体动压轴承实验平台的搭建与应用开题报告

液体动压轴承实验平台的搭建与应用开题报告

液体动压轴承实验平台的搭建与应用开题报告一、选题背景液体动压轴承是一种高速转子支撑系统,它能够将主轴与轴承之间的机械接触转变为粘滞阻尼作用,从而实现高速、高精度、高负载、低振动、低噪音、低能耗的转子运动。

在航空、航天、电力、化工、机械等领域中有着广泛应用。

然而,液体动压轴承的研制和应用受到很多因素的制约,如:液体动压轴承结构复杂,制造难度大;液体动压轴承性能指标受到多种因素的影响,研究难度大;液体动压轴承的使用需要有合适的控制系统来协同工作,增加了研究难度。

目前液体动压轴承的研究主要集中在理论、数值模拟和实验三个方面。

其中,实验研究是验证理论和数值模拟结论的重要手段,也是研制液体动压轴承的关键。

常规的液体动压轴承实验平台制造和调试周期长,费用高,而且无法满足实验需求的复杂程度,因此需要一种更加灵活、经济、高效的液体动压轴承实验平台。

二、选题意义本课题旨在搭建一种实验平台用于液体动压轴承的研究,具体包括设计、制造和调试。

该实验平台能够模拟真实工作状态下轴承的运动和性能,可以验证和优化液体动压轴承的设计,提高轴承的效率和性能。

此外,该实验平台还可以提高液体动压轴承的研究效率,加快液体动压轴承技术的普及和应用,为液体动压轴承的产业化打下坚实的基础。

三、研究内容1. 研究液体动压轴承的理论模型和设计方法,分析液体动压轴承的结构及工作原理。

2. 根据液体动压轴承的实际应用需求,设计液体动压轴承实验平台,并分析其运动特点和性能指标。

3. 制造液体动压轴承实验平台,包括轴承、轴承箱体、测量系统、控制系统等主要部件的制造。

4. 做好液体动压轴承实验平台的系统集成、测试和验收工作,提高实验平台的性能和稳定性。

5. 进行液体动压轴承的实验研究,验证液体动压轴承的性能指标,优化液体动压轴承的设计。

四、研究目标1. 设计制造一种灵活、经济、高效的液体动压轴承实验平台。

2. 验证和优化液体动压轴承的设计,提高液体动压轴承的效率和性能。

液体动压滑动轴承实验

液体动压滑动轴承实验

CQH-A液体动压滑动轴承实验台使用说明书本实验台用于液体动压滑动轴承实验,主要用它来观察滑动轴承的结构,测量其径向油膜压力分布和轴向油膜压力分布,测定其摩擦特征曲线和承载量。

该实验台结构简单、重量轻、体积小、外形美观大方,测量直观准确,运行稳定可靠。

一、实验台结构简介1. 该实验台主要结构见图1所示:图1 滑动轴承试验台结构图1. 操纵面板2. 电机3. V带4. 轴油压表接头5. 螺旋加载杆6. 百分表测力计装置7. 径向油压表(7只)8. 传感器支承板9. 主轴10. 主轴瓦11. 主轴箱2. 结构特点该实验台主轴9由两个高精度的单列向心球轴承支承。

直流电机2通过V带3驱动主轴9,主轴顺时针旋转,主轴上装有精密加工制造的主轴瓦10,由装在底座里的无级调速器实现主轴的无级变速,轴的转速由装在面板1上的左数码管直接读出。

主轴瓦外圆处被加载装置(未画)压住,旋转加载杆5即可对轴瓦加载,加载大小由负载传感器传出,由面板上右数码管显示。

主轴瓦上装有测力杆,通过测力计装置可由百分表6读出摩擦力值。

主轴瓦前端装有7只测径向压力的油压表7,油的进口在轴瓦长度的1/2处。

在轴瓦全长的1/4处装有一个轴向油压表的接头,需要时可用内六角扳手将堵油塞旋出,再装上备用的轴向油压表。

3. 实验中如需拆下主轴瓦观察,需按下列步骤进行:a. 旋出外加载传感器插头。

b. 用内六角扳手将传感器支承板8上的两个内六角螺钉卸下,拿出传感器支承板即可将主轴瓦卸下。

二、主要技术参数实验轴瓦:内直径d=60mm有效长度B=125mm表面粗糙度∇7)材料ZCuSn5Pb5Zn5(即旧牌号ZQSn6-6-3)加载范围0~1000N(0~100kg⋅f)百分表精度0.01 量程0—10mm油压表精度 2.5% 量程0~0.6Mpa测力杆上测力点与轴承中心距离L=120mm测力计标定值k=0.098N/格电机功率:355W调速范围:2~400rpm实验台总量:52kg三、电气工作原理5 4 3图二1—主轴转速数码管:主轴转速传感器采集的实时数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液体动压轴承实验报告
一、实验目的
本次实验旨在探究液体动压轴承的工作原理和性能特点,通过实验验证其在工业生产中的应用价值。

二、实验原理
液体动压轴承是一种利用液体动力学原理实现轴承支撑的装置。

其工作原理是通过液体的动力学特性,使轴承内部形成一定的压力,从而支撑轴承和轴承上的负载。

液体动压轴承具有摩擦小、寿命长、可靠性高等优点,广泛应用于机械制造、航空航天、船舶制造等领域。

三、实验设备
本次实验所使用的液体动压轴承试验装置主要包括:液体动压轴承、电机、转速传感器、压力传感器、温度传感器、数据采集器等。

四、实验步骤
1.将液体动压轴承安装在电机上,并连接转速传感器、压力传感器、温度传感器和数据采集器。

2.启动电机,调整转速至设定值,记录转速和轴承内部压力、温度
等参数。

3.逐步增加负载,记录轴承内部压力、温度等参数。

4.在不同转速和负载下,记录轴承内部压力、温度等参数,并绘制相应的曲线图。

五、实验结果
通过实验,我们得到了不同转速和负载下液体动压轴承的压力、温度等参数数据,并绘制了相应的曲线图。

实验结果表明,液体动压轴承具有较好的支撑性能和稳定性能,能够满足工业生产中的要求。

六、实验结论
本次实验验证了液体动压轴承的工作原理和性能特点,证明了其在工业生产中的应用价值。

液体动压轴承具有摩擦小、寿命长、可靠性高等优点,是一种理想的轴承支撑装置。

七、实验感想
通过本次实验,我们深入了解了液体动压轴承的工作原理和性能特点,对于工业生产中的轴承支撑问题有了更深入的认识。

同时,我们也认识到实验操作的重要性,只有严格按照实验步骤进行操作,才能得到准确的实验结果。

相关文档
最新文档