函数的奇偶性(教师版)
函数的奇偶性教案

函数的奇偶性教案一、教学目标1. 知识与技能:(1)理解函数奇偶性的概念;(2)学会判断函数的奇偶性;(3)能够运用函数的奇偶性解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳,探索函数的奇偶性;(2)利用函数的奇偶性进行函数图像的变换。
3. 情感态度与价值观:(1)培养学生的逻辑思维能力;(2)激发学生对数学的兴趣,提高学习积极性。
二、教学重点与难点1. 教学重点:(1)函数奇偶性的概念及其判断方法;(2)函数奇偶性在实际问题中的应用。
2. 教学难点:(1)函数奇偶性的判断方法;(2)函数奇偶性在实际问题中的应用。
三、教学过程1. 导入新课:(1)复习已学过的函数性质,如单调性、周期性等;(2)提问:同学们,你们知道函数还有其他的性质吗?2. 探究新知:(1)介绍函数奇偶性的概念;(2)通过示例,让学生观察、分析、归纳函数的奇偶性;(3)引导学生掌握判断函数奇偶性的方法。
3. 典例分析:(1)分析函数f(x)=x^3的奇偶性;(2)分析函数f(x)=|x|的奇偶性;(3)分析函数f(x)=sinx的奇偶性。
4. 练习巩固:(2)运用函数的奇偶性解决实际问题。
四、课堂小结本节课,我们学习了函数的奇偶性,掌握了判断函数奇偶性的方法,并能够在实际问题中运用。
希望大家能够继续努力学习,不断提高自己的数学能力。
五、课后作业2. 运用函数的奇偶性解决实际问题:已知函数f(x)=x^2+1的图像关于y轴对称,求函数f(x)在x=-1时的值;3. 探究函数的奇偶性与单调性的关系。
六、教学活动设计1. 小组讨论:让学生分组讨论函数奇偶性的性质,以及如何判断一个函数的奇偶性。
2. 案例分析:通过具体的函数例子,让学生理解并掌握函数奇偶性的判断方法。
3. 互动提问:教师提出问题,引导学生思考并回答,以检查学生对函数奇偶性的理解和掌握程度。
七、教学评价1. 课堂问答:通过提问学生,检查他们对函数奇偶性的概念和判断方法的理解。
专题:函数的奇偶性讲义(教师用)

函数的奇偶性一、函数奇偶性设函数y =)(x f 的定义域为D ,如果对于D 任意一个x ,都有D x ∈-,且)(x f -=-)(x f ,那么这个函数叫做奇函数.设函数y =)(x g 的定义域为D ,如果对于D 任意一个x ,都有D x ∈-,且)(x g -=)(x g ,那么这个函数叫做偶函数.奇函数)(x f 的图象关于原点成中心对称图形. 偶函数)(x g 的图象关于y 轴成轴对称图形. 二、方法归纳1.函数的定义域D 是关于原点的对称点集(即对x ∈D 就有-x ∈D ),是其具有奇偶性的必要条件.2.在公共定义域:两个偶函数的和、差、积、商均为偶函数;两个奇函数的和、差是奇函数,积、 商是偶函数; 偶函数与奇函数的积、商是奇函数.3.判断函数的奇偶性应把握:① 若为具体函数,严格按照定义判断,注意定义域D 的对称性和变换中的等价性. ② 若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性和合理性.4.定义在关于原点的对称点集D 上的任意函数)(x f ,总可以表示成一个偶函数与一个奇函数的和. 即)(x f =)(x F +)(x G ,其中)(x F =2)()(x f x f -+为偶函数, )(x G =2)()(x f x f --为奇函数.5.奇(偶)函数性质的推广:若函数)(x f 的图象关于直线a x =对称,则)2()(a x f x f +=-; 若函数)(x f 的图象关于点)0,(a 对称,则)2()(a x f x f +-=-; 三、典型例题精讲[例1](1)函数)(x f =111122+++-++x x x x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线x =1对称解析:由=-)(x f 111122+-+--+x x x x , ∴ =-)(x f =11111122+++-++xx xx =)1(1)1(122x x x x +++++- =-)(x f∴ )(x f 是奇函数,图象关于原点对称. 答案:C【技巧提示】 用定义判定函数的奇偶性需要对函数解析式进行恒等变形,不要轻易断定是非奇非偶函数. (2)分段函数奇偶性的判定又例:函数⎩⎨⎧>-+-<++=0,320,32)(22x x x x x x x f 的奇偶性. 解析:当0>x 时,0<-x3)(2)()(2+-+-=-x x x f =322+-x x =)(x f -;当0<x 时,0>-x3)(2)()(2--+--=-x x x f =322---x x =)(x f -∴)(x f 是奇函数.[例2]已知)(x f 是偶函数而且在(0,+∞)上是减函数,判断)(x f 在(-∞,0)上的增减性并加以证明. 解析:函数)(x f 在(-∞,0)上是增函数.设x 1<x 2<0,因为)(x f 是偶函数,所以)(1x f -=)(1x f ,)(2x f -=)(2x f ,由假设可知-x 1>-x 2>0,又已知)(x f 在(0,+∞)上是减函数,于是有)(1x f -<)(2x f -, 即)(1x f <)(2x f ,由此可知,函数)(x f 在(-∞,0)上是增函数.【技巧提示】 具有奇偶性的函数,其定义域D 关于原点的对称性,使得函数在互为对称的区间的单调性具有对应性.“偶函数半增半减,奇函数一增全增”.[例3]定义在区间(-∞,+∞)上的奇函数)(x f 为增函数,偶函数)(x g 在区间[0,+∞)上的图象与)(x f 的图象重合,设a >b >0,给出下列不等式:(1)f (b )-f (-a )>g (a )-g (-b ); (2)f (b )-f (-a )<g (a )-g (-b ); (3)f (a )-f (-b )>g (b )-g (-a ); (4)f (a )-f (-b )<g (b )-g (-a ). 其中成立的是( )A . (1)与(4)B . (2)与(3)C . (1)与(3)D . (2)与(4) 解析:根据函数)(x f 、)(x g 的奇偶性将四个不等式化简,得: (1)f (b )+f (a )>g (a )-g (b ); (2)f (b )+f (a )<g (a )-g (b ); (3)f (a )+f (b )>g (b )-g (a ); (4)f (a )+f (b )<g (b )-g (a ).再由题义,有 )(a f =)(a g >)(b f =)(b g >0)0()0(==g f .显然(1)、(3)正确,故选C .【技巧提示】 具有奇偶性的函数可以根据某个区间的单调性判定其对称的区间的单调性,因而往往与不等式联系紧密.又例:偶函数)(x f 在定义域为R ,且在(-∞,0]上单调递减,求满足)3(+x f >)1(-x f 的x 的集合. 解析:偶函数)(x f 在(-∞,0]上单调递减,在[0,+∞)上单调递增.根据图象的对称性,)3(+x f >)1(-x f 等价于|3|+x >|1|-x .解之,1->x ,∴ 满足条件的x 的集合为(-1,+∞).[例4]设)(x f 是(-∞,+∞)上的奇函数,)2(+x f =-)(x f ,当0≤x ≤1时,)(x f =x ,x 则)5.7(f 等于( )A .0.5B . -0.5C . 1.5D . -1.5解析:)5.7(f =)25.5(+f =-)5.5(f =-)25.3(+f =)5.3(f =)25.1(+f =-)5.1(f =-)25.0(+-f =)5.0(-f =-)5.0(f =-0.5.答案:B【技巧提示】 这里反复利用了)(x f =-)(x f 和)2(+x f =-)(x f ,后 面的学习我们会知道这样的函数具有周期性.又例:如果函数)(x f 在R 上为奇函数,且在(-1,0)上是增函数,试比较)31(f ,)32(f ,)1(f 的大小关系_________. 解析:∵)(x f 为R 上的奇函数,∴ )31(f =-)31(-f ,)32(f =-)32(-f ,)1(f =-)1(-f ,又)(x f 在(-1,0)上是增函数且-31>-32>-1. ∴ )31(-f >)32(-f >)1(-f ,∴ )31(f <)32(f <)1(f .答案:)31(f <)32(f <)1(f .[例5]函数)(x f 的定义域为D ={}0≠∈x R x ,且满足对于任意D x x ∈21,,有1212()()()f x x f x f x ⋅=+ (1)求(1)f 的值; (2)判断函数)(x f 的奇偶性,并证明;解:(1)令121x x ==,得()10f =;(2)令121x x ==-,得()10f -=,令121,x x x =-=,得()()()1f x f f x -=-+∴ ()()f x f x -=,即)(x f 为偶函数.【技巧提示】 赋值法是解决抽象函数问题的切入点.常赋值有0,1,―1,2,―2,等等.[例6]已知函数)(x f 在(-1,1)上有定义,)21(f =-1,当且仅当0<x <1时)(x f <0,且对任意x 、y ∈(-1,1)都有)(x f +)(y f =)1(xyyx f ++,试证明: (1) )(x f 为奇函数;(2) )(x f 在(-1,1)上单调递减. 证明:(1) 由)(x f +)(y f =)1(xyyx f ++,令x =y =0,得)0(f =0, 令y =-x ,得)(x f +)(x f -=)1(2x xx f --=)0(f =0,∴ )(x f =-)(x f -, ∴)(x f 为奇函数. (2)先证)(x f 在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴21121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1, ∴0<21121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1).∴ )(x f 在(0,1)上为减函数,又)(x f 为奇函数且f (0)=0.∴)(x f 在(-1,1)上为减函数.【技巧提示】 这种抽象函数问题,往往需要赋值后求特殊的函数值,如(0),(1),(2)f f f ±±等等,一般(0)f 的求解最为常见.赋值技巧常为令0==y x 或y x -=等。
第三讲 函数的奇偶性(教师版)

第三讲函数的奇偶性1.奇、偶函数的概念一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称.2.奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(2)在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.3.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.一条规律奇、偶函数的定义域关于原点对称.函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.两个性质(1)若奇函数f(x)在x=0处有定义,则f(0)=0.(2)设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.三种方法判断函数的奇偶性,一般有三种方法:(1)定义法;(2)图象法;(3)性质法.三条结论(1)若对于R上的任意的x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.(2)若对于R上的任意x都有f(2a-x)=f(x),且f(2b-x)=f(x)(其中a<b),则:y=f(x)是以2(b -a )为周期的周期函数.(3)若f (x +a )=-f (x )或f (x +a )=1f (x )或f (x +a )=-1f (x ),那么函数f (x )是周期函数,其中一个周期为T =2a ;(3)若f (x +a )=f (x +b )(a ≠b ),那么函数f (x )是周期函数,其中一个周期为T =2|a -b |.1.(课本改编题)已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________.2.(课本改编题)下列函数中,所有奇函数的序号是________.①f (x )=2x 4+3x 2;②f (x )=x 3-2x ;③f (x )=x 2+1x ;④f (x )=x 3+1.3.(2011·广东)设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.4.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.5.定义在R 上的函数y =f (x )是奇函数,且满足f (1+x )=f (1-x ).当x ∈[-1,1]时,f (x )=x 3,则f (2 013)的值是( )A .-1B .0C .1D .26.(2011·全国)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=( ). A.-12 B.-14 C.14 D.127.(2012·福州一中月考)f (x )=1x -x 的图象关于( ).A .y 轴对称B .直线y =-x 对C .坐标原点对称D .直线y =x 对称8.(2011·广东)设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ).A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|-g (x )是奇函数10.(2011·浙江)若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解析 法一 ∵f (-x )=f (x )对于x ∈R 恒成立,∴|-x +a |=|x +a |对于x ∈R 恒成立,两边平方整理得ax =0对于x ∈R 恒成立,故a =0. 法二 由f (-1)=f (1), 得|a -1|=|a +1|,得a =0. 答案011.(2005年北京西城区模拟题)定义在R 上的奇函数f (x )在(0,+∞)上是增函数,又f (-3)=0,则不等式xf (x )<0的解集为 A.(-3,0)∪(0,3) B.(-∞,-3)∪(3,+∞) C.(-3,0)∪(3,+∞) D.(-∞,-3)∪(0,3)解析:由奇偶性和单调性的关系结合图象来解. 答案:A12.定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )单调递减,若g (1-m )<g (m ),求m 的取值范围________.解:由g (1-m )<g (m )及g (x )为偶函数,可得g (|1-m |)<g (|m |).又g (x )在(0,+∞)上单调递减,∴|1-m |>|m |,且|1-m |≤2,|m |≤2,解得-1≤m <21.题型一 函数奇偶性的判断及奇偶性质的运用 例1 判断下列函数的奇偶性.(1)f (x )=9-x 2+x 2-9; (2)f (x )=(x +1)1-x 1+x ; (3)f (x )=4-x 2|x +3|-3. 探究提高 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域对解决问题是有利的;(2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立. 分段函数指在定义域的不同子集有不同对应关系的函数,分段函数奇偶性的判断,要分别从x >0或x <0来寻找等式f (-x )=f (x )或f (-x )=-f (x )成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.判断下列函数的奇偶性.(1)f (x )=lg 1-x 1+x ;(2)f (x )=(x -1) 2+x2-x;(3)f (x )={ x 2+x (x >0), x 2-x (x <0);(4)f (x )=lg (1-x 2)|x 2-2|-2.例2已知函数1222)(+-+⋅=xx a a x f 是定义在实数集上的奇函数,求函数的解析式。
函数奇偶性教案

函数奇偶性教案教案标题:函数的奇偶性教案教学目标:1. 知道函数奇偶性的定义和判断方法。
2. 能够根据函数的公式,判断函数的奇偶性。
教学重点:1. 函数奇偶性的定义和判断方法。
2. 函数奇偶性的应用。
教学难点:1. 理解函数的奇偶性与图像的关系。
2. 掌握函数奇偶性的判断方法。
教学准备:1. 教师准备:黑板、粉笔、投影仪、电脑。
2. 学生准备:教科书、笔记本电脑。
教学过程:步骤一:导入新知识1. 教师通过提问或展示一幅函数图像,引发学生对函数奇偶性的思考。
2. 教师解释函数的奇偶性是指当自变量变为相反数时,函数值的变化情况。
步骤二:函数奇偶性的定义和判断方法1. 教师通过示例,介绍函数奇偶性的定义和判断方法:- 定义:若对于定义域内的任意实数x,有f(-x) = f(x),则函数f(x)为偶函数;若对于定义域内的任意实数x,有f(-x) = -f(x),则函数f(x)为奇函数。
- 判断方法:通过替换变量,检查函数值是否满足奇偶性定义。
2. 教师通过多个函数的例子,引导学生进行奇偶性的判断练习。
步骤三:函数奇偶性的图像特征1. 教师展示奇函数和偶函数的特点:- 奇函数的图像关于原点对称,如y = x^3。
- 偶函数的图像关于y轴对称,如y = x^2。
2. 教师通过样例展示函数奇偶性与图像关系,帮助学生理解函数奇偶性的图像特征。
步骤四:函数奇偶性的应用1. 教师引导学生思考函数奇偶性的应用场景,如解方程、求曲线的对称点等。
2. 教师与学生一起讨论并解决奇偶性在实际问题中的应用示例。
步骤五:小结与作业布置1. 教师对本节课内容进行小结,强调函数奇偶性的基本概念和判断方法。
2. 教师布置课后作业:要求学生判断一些函数的奇偶性,并解释判断依据。
拓展活动:1. 让学生自行查找函数奇偶性相关的问题,进行小组讨论和展示。
2. 分组进行奇偶性判断竞赛,增加趣味性和互动性。
教学反思:本节课通过引入函数奇偶性的概念,并结合示例和图像,帮助学生理解函数奇偶性的定义和判断方法。
函数的奇偶性教案2篇

函数的奇偶性教案第一篇:函数的奇偶性教案目标:1. 了解函数的奇偶性的定义和性质。
2. 判断函数的奇偶性。
3. 通过练习题加深对函数的奇偶性的理解。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以用一个简单的问题引入话题,例如:你知道什么是函数的奇偶性吗?为什么需要关注函数的奇偶性?学生可以自由发言,激发学生们的兴趣。
步骤二:讲解奇偶性的概念(10分钟)教师简要讲解函数的奇偶性的概念,可以借助一些例子来说明。
奇函数和偶函数是对称的关系,奇函数关于y轴对称,而偶函数关于原点对称。
步骤三:奇偶性的判断方法(15分钟)教师讲解奇偶性的判断方法。
一般来说,对于一元函数,可以通过以下两种方法判断函数的奇偶性。
方法1:使用函数的定义式。
对于奇函数,f(-x)=-f(x)成立;对于偶函数,f(-x)=f(x)成立。
方法2:使用函数的图象。
对于奇函数,其图象关于原点对称;对于偶函数,其图象关于y轴对称。
步骤四:练习题(15分钟)教师提供一些练习题,让学生在纸上完成,然后进行讲解和讨论。
例如:1. 判断函数f(x)=x^3+3x^2-5x是否为奇函数。
2. 判断函数g(x)=2x^2-4是否为偶函数。
3. 利用函数的奇偶性,简化函数h(x)=5x^3-x^2+2x-1的图象。
步骤五:总结(10分钟)教师对本节课内容进行总结,并强调函数的奇偶性的重要性和应用。
第二篇:函数的奇偶性教案(续)目标:1. 掌握奇函数和偶函数的一些常见函数的性质。
2. 进一步加深对函数的奇偶性的理解。
3. 练习函数的奇偶性的判断和应用。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以复习上节课的内容,然后提问学生,你还记得什么是奇函数和偶函数吗?奇函数和偶函数有哪些性质?步骤二:常见函数的性质(15分钟)教师讲解一些常见函数的性质,例如:1. 幂函数:对于非负整数n,当n为奇数时,函数f(x)=x^n是奇函数;当n为偶数时,函数f(x)=x^n是偶函数。
第二章第3讲函数的奇偶性及周期性(教师版)

第3讲 函数的奇偶性及周期性1.下列函数为偶函数的是( )A .f (x )=x -1B .f (x )=x 2+xC .f (x )=2x -2-xD .f (x )=2x +2-x[答案] D2.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13B .13C .12D .-12B [解析] 因为f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,所以a -1+2a =0,所以a =13.又f (-x )=f (x ),所以b =0,所以a +b =13. 3. 已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3B [解析] 法一:根据题意作出y =f (x )的简图,由图知选B.法二:当x ∈[-b ,-a ]时,-x ∈[a ,b ],由题意得f (b )≤f (-x )≤f (a ),即-3≤-f (x )≤4,所以-4≤f (x )≤3,即在区间[-b ,-a ]上f (x )min =-4,f (x )max =3,故选B.4. 函数f (x )的定义域为R ,且对于x ∈R ,恒有f (x +2)=f (x ).当x ∈[2,4]时,f (x )=x 2-2x ,则f (2 017)=________.[解析] 由f (x +2)=f (x ),知f (x )是周期T =2的周期函数.因为当x ∈[2,4]时,f (x )=x 2-2x , 所以f (2 017)=f (1 007×2+3)=f (3)=32-2×3=3,即f (2 017)=3.[答案] 35. 已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________.[解析] 当x <0时,则-x >0,所以f (-x )=(-x )(1-x ).又f (x )为奇函数,所以f (-x )=-f (x )=(-x )(1-x ),所以f (x )=x (1-x ).[答案] x (1-x )函数的奇偶性(1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.(2)判断下列函数的奇偶性.①f (x )=x 3-1x ;②f (x )=x 2-1+1-x 2;③f (x )=⎩⎪⎨⎪⎧x 2+2,x >0,0,x =0,-x 2-2,x <0.[解] (1)因为 f (x )为偶函数,所以f (-x )-f (x )=0恒成立,所以-x ln(-x +a +x 2)-x ln(x +a +x 2)=0恒成立,所以x ln a =0恒成立,所以ln a =0,即a =1.故填1.(2)①原函数的定义域为{x |x ≠0},关于原点对称,并且对于定义域内的任意一个x 都有f (-x )=(-x )3-1-x=-⎝⎛⎭⎫x 3-1x =-f (x ),从而函数f (x )为奇函数. ②f (x )的定义域为{-1,1},关于原点对称.又f (-1)=f (1)=0,f (-1)=-f (1)=0,所以f (x )既是奇函数又是偶函数.③f (x )的定义域为R ,关于原点对称,当x >0时,f (-x )=-(-x )2-2=-(x 2+2)=-f (x );当x <0时,f (-x )=(-x )2+2=-(-x 2-2)=-f (x );当x =0时,f (0)=0,也满足f (-x )=-f (x ). 故该函数为奇函数.[通关练习]1.下列函数中,既不是奇函数,也不是偶函数的是( )A .y =1+x 2B .y =x +1xC .y =2x +12x D .y =x +e x D [解析] A 选项定义域为R ,由于f (-x )=1+(-x )2=1+x 2=f (x ),所以是偶函数.B 选项定义域为{x |x ≠0},由于f (-x )=-x -1x=-f (x ),所以是奇函数.C 选项定义域为R ,由于f (-x )=2-x +12-x =12x +2x =f (x ),所以是偶函数.D 选项定义域为R ,由于f (-x )=-x +e -x =1e x -x ,所以是非奇非偶函数.2.已知函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为( )A .3B .0C .-1D .-2B [解析] 设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-1,从而f (-a )=0.故选B.函数的周期性已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12.则f (6)=( ) A .-2 B .-1 C .0 D .2【解析】 当x >0时,x +12>12,所以f ⎝⎛⎭⎫x +12+12=f ⎝⎛⎭⎫x +12-12,即f (x +1)=f (x ), 所以f (6)=f (5)=f (4)=…=f (1)=-f (-1)=2.【答案】 D若将本例中“f (-x )=-f (x )”改为“f (-x )=f (x )”,其他条件不变,求f (6)的值.[解] 由-1≤x ≤1时,f (-x )=f (x )可知,f (x )为偶函数.又x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12, 即f (x +1)=f (x ),故f (x )的周期为1.所以f (6)=f (5×1+1)=f (1).而f (1)=f (-1)=(-1)3-1=-2,所以f (6)=-2.[通关练习]1.函数f (x )满足f (x +1)=-f (x ),且当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫52的值为( )A .12B .14C .-14D .-12A [解析] 因为f (x +1)=-f (x ),所以f (x +2)=f [(x +1)+1]=-f (x +1)=f (x ),即函数f (x )的周期为2.所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+2=f ⎝⎛⎭⎫12=2×12⎝⎛⎭⎫1-12=12. 2.已知函数f (x )=⎩⎪⎨⎪⎧2(1-x ),0≤x ≤1x -1,1<x ≤2,如果对任意的n ∈N *,定义f n (x )=f {f [f …f,\s \do 4( ,n 个)) (x )]},那么f 2 017(2)的值为( )A .0B .1C .2D .3B [解析] 因为f 1(2)=f (2)=1,f 2(2)=f (1)=0,f 3(2)=f (0)=2,所以f n (2)的值具有周期性,且周期为3,所以f 2 017(2)=f 3×672+1(2)=f 1(2)=1,故选B.函数性质的综合问题(高频考点)(1)已知偶函数f (x )在[0,+∞)上单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.(2)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (1)=__________. 【解析】 (1)因为f (x )是偶函数,所以图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)上单调递减,则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3.(2)因为f (x )是定义在R 上的奇函数,所以f (0)=0.又f (x )=-f (-x ),f (x +2)=f (x ),所以f (x +1)=-f (1-x ),令x =0,得f (1)=-f (1),所以f (1)=0.f ⎝⎛⎭⎫-52=f (-2-12)=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=-2.所以f ⎝⎛⎭⎫-52+f (1)=-2. 【答案】 (1)(-1,3) (2)-2[题点通关]角度一 函数的奇偶性与单调性相结合1.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是( )A .(-∞,12)B .(-∞,12)∪(32,+∞)C .(12,32)D .(32,+∞) C [解析] 由f (x )是偶函数得f (-2)=f (2),再由偶函数在对称区间上单调性相反,得f (x )在(0,+∞)上单调递减,所以由2|a -1|<2,得|a -1|<12,即12<a <32. 角度二 函数的奇偶性与周期性相结合2.已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x -1,则f ⎝⎛⎭⎫2 0152=( )A .3+1B .3-1C .-3-1D .-3+1D [解析] 因为f (x +2)=f (x )=-f (-x ),所以f ⎝⎛⎭⎫2 0152=f ⎝⎛⎭⎫1 006+32=f ⎝⎛⎭⎫32=-f ⎝⎛⎭⎫-32=-f ⎝⎛⎭⎫12.又当x ∈(0,1)时,f (x )=3x -1,所以f ⎝⎛⎭⎫12=3-1,f ⎝⎛⎭⎫2 0152=1- 3. 角度三 函数的奇偶性、周期性、单调性的综合问题3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)D [解析] 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).——函数的新定义问题如果定义在R 上的函数f (x )对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数:①y =-x 3+x +1;②y =3x -2(sin x -cos x );③y =e x +1;④f (x )=⎩⎪⎨⎪⎧ln|x |,x ≠0,0,x =0. 以上函数是“H 函数”的是________.(填上所有正确的序号)【解析】 若函数f (x )为“H 函数”,则有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),x 1·[f (x 1)-f (x 2)]>x 2[f (x 1)-f (x 2)],即(x 1-x 2)[f (x 1)-f (x 2)]>0.所以“H 函数”f (x )就是R 上的单调递增函数.①y ′=-3x 2+1,由y ′>0,解得-33<x <33,所以该函数的单调递增区间为⎝⎛⎭⎫-33,33, 而在区间⎝⎛⎭⎫-∞,-33和⎝⎛⎭⎫33,+∞上单调递减,显然在R 上不是单调递增函数,即不是“H 函数”. ②y ′=3-2(cos x +sin x )=3-22sin ⎝⎛⎭⎫x +π4.因为sin ⎝⎛⎭⎫x +π4∈[-1,1],所以y ′=3-22sin ⎝⎛⎭⎫x +π4≥3-22>0,故该函数在R 上是单调递增函数,即“H 函数”.③因为函数y =e x 在R 上是单调递增函数,所以y =e x +1在R 上也是单调递增函数,即“H 函数”.④f (x )=⎩⎪⎨⎪⎧ln|x |,x ≠0,0,x =0=⎩⎪⎨⎪⎧ln x ,x >0,ln (-x ),x <0,0,x =0.故该函数在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以在R 上不是单调递增函数,即不是“H 函数”.综上,填②③.【答案】 ②③设函数f (x )的定义域为D ,如果存在非零常数T ,对任意的x ∈D ,都有f (x +T )=T ·f (x ),则称函数f (x )是“似周期函数”,非零常数T 为函数f (x )的“似周期”.现有四个关于“似周期函数”的命题:①如果“似周期函数”f (x )的“似周期”为-1,那么它是周期为2的周期函数;②函数f (x )=x 是“似周期函数”;③函数f (x )=2-x 是“似周期函数”;④如果函数f (x )=cos ωx 是“似周期函数”,那么“ω=k π,k ∈Z ”.其中真命题有________.(写出所有真命题的序号)[解析] 对于①,如果“似周期函数”f (x )的“似周期”为-1,则f (x -1)=-f (x ),所以f (x -1)=-f (x )=-[-f (x +1)]=f (x +1),故它是周期为2的周期函数,故①正确;对于②,若函数f (x )=x 是“似周期函数”,则存在非零常数T ,对任意的x ∈R ,都有f (x +T )=T ·f (x ),即x +T =Tx ,即(1-T )x +T =0对任意的x ∈R 恒成立,显然不成立,故②不正确;对于③,若函数f (x )=2-x 是“似周期函数”,则存在非零常数T ,对任意的x ∈R ,都有2-x -T =T ·2-x ,即(T -2-T )·2-x =0对任意的x ∈R 恒成立,则T -2-T =0,由函数y =x -12x 的单调性可知,存在T >0,使得T -2-T =0,故函数f (x )=2-x 是“似周期函数”,故③正确;对于④,若函数f (x )=cos ωx 是“似周期函数”,则存在非零常数T ,使得cos[ ω(x +T )]=cos(ωx +ωT )=T ·cos ωx ,故T =1或T =-1,且ωT =k π,k ∈Z ,故ω=k π,k ∈Z ,故④正确.[答案] ①③④1.下列函数中,既是偶函数又在(0,+∞)上是减函数的是( )A .y =x -1B .y =ln x 2C .y =cos x xD .y =-x 2 D [解析] 由函数的奇偶性排除A 、C ,由函数的单调性排除B ,由y =-x 2的图象可知当x >0时此函数为减函数,又该函数为偶函数,故选D.2.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫52=( ) A .0 B .1 C .12D .-1 D [解析] 因为f (x )是周期为3的周期函数,所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫-12+3=f ⎝⎛⎭⎫-12=4×⎝⎛⎭⎫-122-2=-1,故选D.3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( )A .2B .-2C .-98D .98B [解析] 因为f (x +4)=f (x ),所以函数f (x )的周期T =4,又f (x )在R 上是奇函数,所以f (7)=f (-1)=-f (1)=-2.4.奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2A [解析] 设g (x )=f (x +1),因为f (x +1)为偶函数,则g (-x )=g (x ),即f (-x +1)=f (x +1), 因为f (x )是奇函数,所以f (-x +1)=f (x +1)=-f (x -1),即f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ),则f (4)=f (0)=0,f (5)=f (1)=2,所以f (4)+f (5)=0+2=2,故选A.5.已知函数f (x )是定义域为R 的偶函数,且f (x +1)=1f (x ),若f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数A [解析] 由题意知f (x +2)=1f (x +1)=f (x ),所以f (x )的周期为2,又函数f (x )是定义域为R 的偶函数,且f (x )在[-1,0]上是减函数,则f (x )在[0,1]上是增函数,所以f (x )在[2,3]上是增函数.6.若函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)C [解析] f (x )的图象如图.当x ∈[-1,0)时,由xf (x )>0,得x ∈(-1,0);当x ∈[0,1)时,由xf (x )>0,得x ∈∅;当x ∈[1,3]时,由xf (x )>0,得x ∈(1,3).故x ∈(-1,0)∪(1,3).7.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________.[解析] 因为f (x )为奇函数,当x >0时,f (x )=x +1,所以当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1.[答案] --x -18.若偶函数y =f (x )为R 上周期为6的周期函数,且满足f (x )=(x +1)(x -a )(-3≤x ≤3),则f (-6)等于________.[解析] 因为y =f (x )为偶函数,且f (x )=(x +1)(x -a )(-3≤x ≤3),所以f (x )=x 2+(1-a )x -a ,1-a =0.所以a =1.f (x )=(x +1)(x -1)(-3≤x ≤3).f (-6)=f (-6+6)=f (0)=-1.[答案] -19.函数f (x )=e x +x (x ∈R )可表示为奇函数h (x )与偶函数g (x )的和,则g (0)=________.[解析] 由题意可知h (x )+g (x )=e x +x ①,用-x 代替x 得h (-x )+g (-x )=e -x -x ,因为h (x )为奇函数,g (x )为偶函数,所以-h (x )+g (x )=e -x -x ②.由(①+②)÷2得g (x )=e x +e -x 2,所以g (0)=e 0+e 02=1. [答案] 110.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. [解析] 依题意知:函数f (x )为奇函数且周期为2,所以f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)+f (0)=21-1+21-1+20-1= 2.[答案] 211.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.[解] (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)由(1)知f (x )在[-1,1]上是增函数,要使f (x )在[-1,a -2]上单调递增.结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.设函数f (x )=(x +1)2+sin x x 2+1的最大值为M ,最小值为m ,则M +m =________. [解析] f (x )=(x +1)2+sin x x 2+1=1+2x +sin x x 2+1.设g (x )=2x +sin x x 2+1,则g (-x )=-g (x ), 所以g (x )是奇函数.由奇函数的图象可知g (x )max +g (x )min =0,所以M +m =[g (x )+1]max +[g (x )+1]min =2+g (x )max +g (x )min =2.[答案] 213.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成的图形的面积.[解] (1)由f (x +2)=-f (x ),得f (x +4)=f ((x +2)+2)=-f (x +2)=f (x ),所以f (x )是以4为周期的周期函数.所以f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4.(2)由f (x )是奇函数与f (x +2)=-f (x ),得f ((x -1)+2)=-f (x -1)=f (-(x -1)),即f (1+x )=f (1-x ).从而可知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.设当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝⎛⎭⎫12×2×1=4. 14.已知函数f (x )的定义域为D ={x |x ≠0},且满足对任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.[解] (1)因为对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),所以令x 1=x 2=1,得f (1)=2f (1), 所以f (1)=0.(2)f (x )为偶函数.证明如下:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),所以f (-1)=12f (1)=0. 令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),所以f (-x )=f (x ),所以f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,所以f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.所以0<|x -1|<16,解之得-15<x <17且x ≠1.所以x 的取值范围是(-15,1)∪(1,17).。
2020年高三总复习数学人教旧版-必修1[第5讲 函数的奇偶性]讲义(教师版)
![2020年高三总复习数学人教旧版-必修1[第5讲 函数的奇偶性]讲义(教师版)](https://img.taocdn.com/s3/m/aa593de46edb6f1afe001f64.png)
第3页
∴y=xf(x)是偶函数. 对于 C,g(﹣x)=(﹣x)2+f(﹣x)=x2﹣f(x), ∴y=x2+f(x)为非奇非偶函数, 对于 D,g(﹣x)=(﹣x)2f(﹣x)=﹣x2f(x)=﹣g(x), ∴y=x2f(x)是奇函数. 故选 B.
函数奇偶性用定义判断,看 f(﹣x)和 f(x)的关系,注意奇偶函数的定义域的对称性,若 定义域不关于原点对称,一定是非奇非偶函数.
练习 1. 已知函数 f(x)=ax3+bx+1,若 f(a)=8,则 f(﹣a)=
【答案】﹣6 【解析】∵函数 f(x)=ax3+bx+1, ∴f(﹣x)=a(﹣x)3+b(﹣x)+1=﹣ax3﹣bx+1, ∴f(﹣x)+f(x)=2,
.
第4页
∴f(﹣a)+f(a)=2. ∵f(a)=8, ∴f(a)=﹣6. 故答案为﹣6.
练习 2. 定义在(﹣1,1)上的奇函数 f(x)=
,则常数 m= ,n= .
【答案】m=0,n=0. 【解析】因为函数 f(x)是定义在(﹣1,1)上的奇函数,所以必定有 f(0)= 0,
⇒m=
此时 f(x)=
,
7.函数的性质(教师版) WPS文字 文档

函数的性质(一)基础知识回顾: 1.函数的单调性:设函数f(x)的定义域为I , 如果对于定义域I 内某个区间D 上的任意两个自变量的值21x ,x ,当21x x <时,都有____________,那么就说函数f(x)在区间D 上是增函数;如果对于定义域I 内某个区间D 上的任意两个自变量的值21x ,x ,当21x x <时,都有____________,那么就说函数f(x)在区间D 上是减函数如果函数y=f(x)在区间D 上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)__________,区间D 叫做函数y=f(x)的____________.2.判定函数的单调性常用的方法有:(1)定义证明法 (2)图像法 3. 函数的奇偶性:如果对于函数f(x)的定义域内任意一个x 都有______________________,那么函数f(x)就叫做奇函数,奇函数的图像关于_______对称;如果对于函数y=f(x)的定义域内任意一个x 都有___________,那么函数f(x)就叫做偶函数,偶函数的图像关于_______对称。
当函数f(x)是奇函数或偶函数时,称函数具有________性。
4.函数单调性性质:5.函数奇偶性性质:二、题型归类(一)函数的单调性1、根据单调性定义判断证明单调性1. 试判断1()1xg x x+=-在(1,)+∞上的单调性,并加以证明.2. 讨论函数()1(0)f x a x a =-≠,在1x ≥时的单调性。
2、常见函数判断单调性问题1. 下列函数中, 在区间 (-∞, 0)上是增函数的是 ( )A 2 ()48 f x x x =-+B ()3 (g x a x a =+≥C 2()1h x x =-+ D 12()l o g ()s x x =- 2. 1)若函数y ax =与by x=-在(0,)+∞上都是减函数,则函数2y ax bx =+在(0,)+∞上是单调递_______函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的奇偶性一、函数奇偶性定义 1、图形描述:函数()f x 的图像关于y 轴对称⇔()f x 为偶函数;函数()f x 的图像关于原点轴对称⇔()f x 为奇函数 定量描述一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,则称()f x 为偶函数;如果都有()()--f x f x =,则称()f x 为奇函数;如果()()f x f x -=与()()--f x f x =同时成立,那么函数()f x 既是奇函数又是偶函数;如果()()f x f x -=与()()--f x f x =都不能成立,那么函数()f x 既不是奇函数又不是偶函数,称为非奇非偶函数。
如果函数()f x 是奇函数或偶函数,则称函数()y f x =具有奇偶性。
特别提醒: 1、函数具有奇偶性的必要条件是:函数的定义域在数轴上所表示的区间关于原点对称。
换言之,若所给函数的定义域不关于原点对称,则这个函数一定不具备奇偶性。
2、用函数奇偶性的定义判断函数是否具有奇偶性的一般步骤:(1)考察函数的定义域是否关于原点对称。
若不对称,可直接判定该函数不具有奇偶性;若对称,则进入第二步;(2)判断()()f x f x -=与()()f x f x -=-这两个等式的成立情况,根据定义来判定该函数的奇偶性。
二、函数具有奇偶性的几个结论1、()y f x =是偶函数⇔()y f x =的图像关于y 轴对称;()y f x =是奇函数⇔()y f x =的图像关于原点对称。
2、奇函数()f x 在0x =有定义,必有()00f =。
3、偶函数在定义域内关于原点对称的两个区间上单调性相反;奇函数在定义域内关于原点对称的两个区间上单调性相同。
4、()(),f x g x 是定义域为12,D D 且12D D 要关于原点对称,那么就有以下结论:奇±奇=奇 偶±偶=偶 奇⨯奇=偶 偶⨯偶=偶 奇⨯偶=奇5、复合函数的奇偶性特点是:“内偶则偶,内奇同外”。
6、多项整式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项的系数和常数项全为零; 多项式函数()P x 是偶函数⇔()P x 的奇次项的系数全为零。
类型一 函数奇偶性的判断例1:判断下列函数是否具有奇偶性:(1)f (x )=2x 4+3x 2; (2)f (x )=1x+x ;解析:(1)函数f (x )的定义域为R ,又∵f (-x )=2(-x )4+3(-x )2=2x 4+3x 2=f (x ),∴函数f (x )=2x 4+3x 2是偶函数.(2)函数f (x )的定义域为(-∞,0)∪(0,+∞), 又∵f (-x )=1-x -x =-(1x +x )=-f (x ),∴函数f (x )=1x+x 是奇函数.答案:(1)偶函数 (2)奇函数 练习1:判断下列函数的奇偶性: (1)f (x )=x 2+1;(2)f (x )=|x +1|-|x -1|;答案:(1)偶函数 (2)奇函数练习2:下列函数中,既是奇函数又是增函数的是( ) A .y =x +1 B .y =-x 2C .y =1xD .y =x |x |答案:D类型二 分段函数奇偶性的判定例2:用定义判断函数f (x )=⎩⎪⎨⎪⎧-x 2+x x 2-x的奇偶性.解析:任取x >0,则-x <0. ∴f (-x )=(-x )2-1=x 2-1 =-(-x 2+1)=-f (x ). 又任取x <0,则-x >0.∴f (-x )=-(-x )2+1=-x 2+1 =-(x 2-1)=-f (x ).对x ∈(-∞,0)∪(0,+∞)都有f (-x )=-f (x )成立.∴函数f (x )为奇函数. 答案:奇函数练习1:判断函数f (x )=⎩⎪⎨⎪⎧x 2+2 x 0x =-x 2-x的奇偶性.答案:奇函数. 练习2:如果F (x )=⎩⎪⎨⎪⎧2x -3 x fxx是奇函数,则f (x )=________.的单调性答案:2x +3类型三 利用奇(偶)函数图象的对称特征,求关于原点对称的区间上的解析式例3:若f (x )是定义在R 上的奇函数,当x <0时,f (x )=x (1-x ),求:当x ≥0时,函数f (x ) 的解析式.解析:当x >0时,-x <0, ∵当x <0时,f (x )=x (1-x ), ∴f (-x )=-x (1+x ),又f (x )为奇函数,∴f (-x )=-f (x ), ∴-f (x )=-x (1+x ),∴f (x )=x (1+x ), 又f (0)=f (-0)=-f (0),∴f (0)=0, ∴当x ≥0时,f (x )=x (1+x ). 答案:x (1+x )练习1:已知函数f (x )是R 上的奇函数,当x >0时,f (x )=2x +1,则函数f (x )的解析式为________________.答案: f (x )=⎩⎪⎨⎪⎧2x +1 x 0x =2x -1x练习2:函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=-x +1,则当x <0时,f (x )的表达式为( )A .f (x )=x +1B .f (x )=x -1C .f (x )=-x +1D .f (x )=-x -1答案:D类型四 抽象函数奇偶性的证明例4:已知函数y =f (x )(x ∈R ),若对于任意实数a 、b 都有f (a +b )=f (a )+f (b ),求证: f (x )为奇函数.解析:令a =0,则f (b )=f (0)+f (b ),∴f (0)=0,再令a =-x ,b =x ,则f (0)=f (-x )+f (x ),∴f (-x )=-f (x ),且定义域x ∈R 关于原点对称,∴f (x )是奇函数. 答案:见解析练习1:已知函数y =f (x )(x ∈R ),若对于任意实数x 1、x 2,都有f (x 1+x 2)+f (x 1-x 2)=2f (x 1)·f (x 2),求证: f (x )为偶函数.答案:令x 1=0,x 2=x , 得f (x )+f (-x )=2f (0)·f (x ),① 令x 1=x ,x 2=0,得f (x )+f (x )=2f (0)·f (x ),②由①②得, f (-x )=f (x ),且定义域x ∈R 关于原点对称, ∴函数f (x )为偶函数.2:已知()f x 是定义在R 上的任意一个增函数,()()()G x f x f x =--,则()G x 必定为( ) A 、增函数且为奇函数 B 、增函数且为偶函数 C 、减函数且为奇函数 D 、减函数且为偶函数 答案:A类型五 含有参数的函数的奇偶性的判断例5:设a 为实数,讨论函数f(x)=x2+|x -a|+1的奇偶性.解析:当a =0时,f(x)=x2+|x|+1, ∴f(-x)=(-x)2+|-x|+1 =x2+|x|+1=f(x),∴当a =0时,函数f(x)为偶函数. 当a ≠0时,f(1)=2+|1-a|, f(-1)=2+|1+a|, 假设f(1)=f(-1),则|1-a|=|1+a|,(1-a)2=(1+a)2, ∴a =0,这与a ≠0矛盾,假设f(-1)=-f(1),则2+|1+a|=-2-|1-a|这显然不可能成立(∵2+|1+a|>0,-2-|1-a|<0),∴f(-1)≠f(1),f(-1)≠-f(1), ∴当a ≠0时,函数f(x)是非奇非偶函数. 答案:非奇非偶.练习1:已知函数f (x )=x 2+a x,常数a ∈R ,讨论函数f (x )的奇偶性,并说明理由. 答案:偶函数练习2:已知函数f (x )=ax +b x (其中a 、b 为常数)的图象经过两点(1,2)和(2,52).(1)求函数f (x )的解析式; (2)判断函数f (x )的奇偶性.答案:(1)f (x )=x +1x.(2)f (x )为奇函数.类型六 利用奇偶性确定函数中字母的值例6: 已知函数f (x )=ax 2+23x +b 是奇函数,且f (2)=53.求实数a 、b 的值;解析:∵f(x)为奇函数, ∴f(-x)+f(x)=0, ∴ax 2+2-3x +b =-ax 2+23x +b , ∴-3x +b =-3x -b ,∴b =0. 又f(2)=53,∴4a +26=53,∴a =2.答案:a =2.b =0.练习1:已知函数f (x )=x +b1+x2为奇函数.求b 的值;答案:b=0练习2: 若函数(0)y kx b k =+≠是奇函数,则b = ;若函数2(0)y ax bx c a =++≠为偶函数,则b = 。
答案: 0 ; 0类型七:利用奇偶性解不等式例7:已知函数f(x)是定义在(-2,2)上的奇函数且是减函数,若f(m -1)+f(1-2m)≥0,求实数m 的取值范围.解析:由题意知⎩⎪⎨⎪⎧-2<m -1<2-2<1-2m <2,得-12<m <32.由函数f (x )是定义在(-2,2)上的奇函数及f (m -1)+f (1-2m )≥0,得f (m -1)≥f (2m -1). ∵函数f (x )在(-2,2)上是减函数, ∴m -1≤2m -1,得m ≥0. ∴实数m 的取值范围是[0,32).答案:[0,32).练习1:定义在[-2,2]上的偶函数f(x),当x ≥0时单调递减,设f(1-m)<f(m),求m 的取值 范围.答案:⎣⎢⎡⎭⎪⎫-1,12. 练习2:已知偶函数f (x )在区间(-∞,0]上单调递减,则满足f (2x -1)<f (13)的x 的取值范围是( )A .⎝ ⎛⎭⎪⎫13,23B .⎣⎢⎡⎭⎪⎫13,23C .⎝ ⎛⎭⎪⎫12,23 D .⎣⎢⎡⎭⎪⎫12,23 答案:C类型八 利用奇偶性求函数值例8:已知函数f(x)与g(x)满足f(x)=2g(x)+1,且g(x)为R 上的奇函数,f(-1)=8,求 f(1).解析:∵f(-1)=2g(-1)+1=8, ∴g(-1)=72.又∵g(x)为奇函数,∴g(-1)=-g(1). ∴g(1)=-g(-1)=-72.∴f(1)=2g(1)+1=2×(-72)+1=-6.答案:-6.练习1:已知f(x)为奇函数,在区间[3,6]上是增函数,且在此区间上的最大值为8,最小值为-1,则2f(-6)+f(-3)=( ) A .-15B .-13C .-5D .5答案:A练习2:设函数f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)等于( )A .0B .1C .52 D .5 答案:C1、判断下列函数的奇偶性:(1)()11f x x x =+--; (2)()()1f x x =-∙ 答案:(1)奇函数 (2)既不是奇函数也不是偶函数。