烯烃不对称还原反应
jacobsen 不对称环氧化反应的最新进展

图6 卟啉环的结构图
有效模拟物可在温和的条件下活化分 子氧, 从而实现烯烃的环氧化。 4个 meso和8个β位都可以引入手性 基团,形成手性金属卟啉(图6)。
8
手性salen催化剂的研究进展
• 1990 年, Jacobsen 和 Katsuki报道了含手性碳
jacobsen 不对称环氧 化反应的最新进展
报告人
1
jacobsen 不对称环氧化反应的最新进展
1.生物酶催化的非官能化 烯烃不对称环氧化反应
2.手性salen催化剂的研 究进展
2
生物酶催化的非官能化烯烃不对称环氧化反应
1.氧化酶细胞色素P450
salen络合物是一个与氧化酶细胞色素P450有关的仿生试剂。
图 7 非对称手性 Mn(salen)化合物的催化剂 4
图 8
非对称手性 Mn(salen)化合物的催化剂 5
11
手性salen催化剂的研究进展
1997 年, Hashihayata 用非手性的 salen Mn(Ⅲ)催 化剂(图 9), 加入助催化剂4-PPNO 时催化烯烃环氧 化反应, 得到了较好的产率。
的催化效果及对映选择性。
•
1993 年, Katsuki第二代手性催化剂 (图 6), 催化顺式烯烃时, 取得了 86%~91%的 ee 值。
图 5
Katsuki 催化剂 2
图 6
Katsuki 第二代手性催化剂 3
10
手性salen催化剂的研究进展
20 世纪 90 年代中后期 Kureshy 与Kim报道了一系列的非对称手性 Mn(salen) 化合物的催化剂(图 7、图 8), 并用于烯烃的环氧化反 应.打开了不对称 Schiff 碱化合物合成的新局面. 这种方法很容易获得不同的立体效应与电子效应, 而这 两点是 salen 配合物之所以拥有很好催化性能的重要 因素.
不对称双羟基化反应

催化导论——不对称双羟基化反应学号:10110310班级:1011031姓名:戴明明摘要不对称双羟基化反应又名为夏普莱斯不对称双羟基化反应,是巴里·夏普莱斯在Upjohn双羟基化反应的基础上,于 1987 年发现的以金鸡纳碱衍生物催化的烯烃不对称双羟基化反应。
与sharpiess环氧化反应一样,该反应也是现代有机合成中最重要的反应之一。
原理不对称二羟基化反应(asymmetric dihydroxylation,AD)是一类重要的催化不对称反应[1],它不仅是许多手性药物,如紫杉醇C13侧链、美托洛尔、普萘洛尔、氨苄青霉素、昆虫激素和维生素D活性代谢物合成中的关键步骤[2],而且还为不对称催化反应中新型配体的合成提供了必需的手性砌块[3].研究该反应的核心问题之一是手性配体的设计与合成.迄今为止,文献已经报道了许多行之有效的配体,但是有些配体制备复杂、分离难度大、价格昂贵,因此设计合成简单,价廉和高效的手性配体仍然是目前的研究重点[4].本研究以天然金鸡纳生物碱奎宁和辛可宁为原料,将其结构中的活性基团羟基转换为碱性更强的氨基,与对氯苯甲酰氯反应得到新的手性配体1和2,考察这两种配体在AD反应中的催化活性及不对称诱导作用.典型的反应条件是四氧化锇(OsO4)和二氢奎宁(DHQ)或二氢奎尼丁(DHQD)的手性配体衍生物作为催化剂,以计量的铁氰化钾、N-甲基吗啉N-氧化物(NMO)或叔丁基过氧化氢作为再氧化剂,并加入其他添加剂如碳酸钾和甲磺酰胺等。
现实条件中常用非挥发性的锇酸盐K2OsO2(OH)4 代替OsO4。
[8][9] 市售的二羟化混合物试剂称为AD-mix,有 AD-mix α(含(DHQ)2-PHAL)和AD-mix β(含 (DHQD)2-PHAL)两种。
大多数烯烃在上述条件下,能都以高产率、高ee值生成光学活性的邻二醇,而且反应条件温和,无需低温、无水、无氧等条件。
DHQ 和DHQD 衍生物可分别用于一对对映异构邻二醇的合成,反应产物的立体构型可根据烯烃的结构,利用下图来进行预测。
烯烃还原反应 -回复

烯烃还原反应-回复烯烃还原反应是有机化学中一种重要的反应类型。
烯烃是一类具有双键结构的碳氢化合物,而还原反应则是指将原本较高的氧化态还原为较低的氧化态的化学变化。
烯烃还原反应的目标通常是将烯烃中的双键还原为饱和烃的单键。
这篇文章将以烯烃还原反应为主题,详细介绍其机理和应用。
烯烃分子中的双键结构赋予了它们特殊的化学性质。
由于双键上存在较高的电子密度,烯烃与电子欠缺的剂发生加成反应,形成新的化学键。
然而,在一些情况下,我们希望将烯烃中的双键还原为饱和烃的单键,从而改变其性质和用途。
这就需要进行烯烃的还原反应。
烯烃的还原反应通常需要还原剂的参与。
常用的还原剂包括氢气(H2)和金属(如铂、钯或镍)催化剂。
在反应中,烯烃与还原剂发生反应,双键断裂,并将氢原子加到烯烃的碳原子上,形成一个新的碳碳单键。
这种烯烃的还原反应可以通过分子内还原或分子间还原两种机理进行。
分子内还原意味着双键上的氢原子直接与烯烃分子内的其他原子重新排列,形成一个新的碳碳单键。
分子间还原则意味着外部还原剂将氢原子转移给烯烃分子中的碳原子,形成一个新的碳碳单键。
实际上,这两种机理在反应中常常共存。
烯烃的还原反应常用于合成饱和烃。
由于烯烃与还原剂加成反应的发生与烯烃的双键位置无关,因此可以将烯烃中的任意一个双键还原为单键。
这为制备具有特定结构和性质的饱和烃提供了灵活性。
此外,烯烃的还原反应还可以用于制备功能化合物、药物和高分子材料的前体。
烯烃的还原反应还具有选择性,即在存在多个双键的烯烃中,可以选择性地还原其中一个或几个双键。
这种选择性可以通过调整反应条件和选择合适的催化剂实现。
例如,通过选择合适的温度和催化剂,可以使反应发生在烯烃中较活性的双键上,而不影响其他双键。
另外,烯烃的还原反应还可以通过控制还原剂的浓度和反应时间来实现。
较高浓度的还原剂和较长的反应时间可以使反应进行到底,将所有的双键还原为单键。
而较低浓度的还原剂和较短的反应时间则可以实现选择性地还原部分双键。
烯烃不对称还原反应

烯烃不对称还原反应是一种重要的有机合成反应,可以实现烯烃官能团的不对称转化,从而合成具有手性中心的有机化合物。
这种反应在医药、农药、香料等领域具有广泛的应用价值。
烯烃不对称还原反应通常需要使用手性催化剂或手性辅剂来控制反应的对映选择性。
其中,手性催化剂可以通过与反应物形成手性中间体,从而诱导反应沿着特定的对映体途径进行。
手性辅剂则可以与反应物形成手性络合物,从而影响反应的立体选择性。
近年来,研究者们不断探索和发展新的烯烃不对称还原反应方法和策略。
例如,通过设计新型的手性催化剂、优化反应条件、利用新的还原剂等手段,可以实现更高效、高选择性的烯烃不对称还原反应。
此外,烯烃不对称还原反应还可以与其他有机合成反应相结合,形成更为复杂的合成路线,从而合成具有更复杂结构和功能的有机化合物。
例如,可以将烯烃不对称还原反应与碳-碳键形成反应、官能团转化反应等相结合,实现多步骤的有机合成。
总之,烯烃不对称还原反应是一种重要的有机合成方法,具有广泛的应用前景和研究价值。
随着科学技术的不断发展和进步,相信这一领域将会取得更多的突破和进展。
烯烃的不对称双羟基化

烯烃的不对称双羟基化烯烃的不对称双羟基化是有机化学中的一种常见反应,其特点是在不对称的位置上引入两个羟基官能团。
这种反应在制药、化妆品、涂料等领域都有广泛应用。
下面将对这种反应进行深入探讨。
一、反应机制烯烃的不对称双羟基化反应是通过活性氧化剂和还原剂协同作用下实现的。
反应机制主要分为三步:1. 活性氧化剂的加成:例如过氧化氢、过氧酸等,将烯烃中的双键加成成环氧化合物,形成一个不稳定的介质。
2. 还原剂的作用:还原剂将环氧化合物开裂,同时加入羟基官能团,形成不对称的双羟基化物质。
3. 中和反应:反应产生的酸类会与还原剂发生酸碱中和反应,水分子则作为副产物放出。
二、实验条件实现烯烃的不对称双羟基化反应需要一定的实验条件,包括温度、压力、催化剂等。
以下是几个常用的条件:1. 温度:反应通常在室温下进行,但有些烯烃需要在高温下反应。
2. 压力:一般情况下不需要高压,但仍有些烯烃需要在高压下反应。
3. 催化剂:反应需要催化剂的参与,催化剂种类较多,常用的有钌催化剂、磷钼酸盐等。
三、应用领域烯烃的不对称双羟基化反应在化妆品、制药、涂料、农药等领域有着广泛的应用。
以下列举几个应用案例:1. 化妆品:佳丽宝公司通过烯烃的不对称双羟基化反应,成功合成了一种添加到护肤品中的成分,可以改善肌肤干燥,提高肌肤保湿能力。
2. 制药:利用烯烃的不对称双羟基化反应可以合成具有药物活性的化合物,例如抗肿瘤药物。
3. 涂料:烯烃的不对称双羟基化反应可以产生具有特殊性能的化学物质,例如防腐涂料、自清洁涂料等。
总之,烯烃的不对称双羟基化反应具有广泛的应用前景,不仅能够为化妆品、制药、涂料等领域提供重要的功能性化合物,也可以带来巨大的经济效益。
有机合成-不对称合成

三、不对称反应的原理和基本方法 一个不对称合成反应中必须至少有一种的不对称因素 存在,这种不对称因素可来自于底物、试剂、催化剂 (化学的或生物的)、溶剂或物理))(光、电磁场)等。根 据不对称因素的来源, 可将不对称反应分为: (1)手性底物控制; (2)手性辅助基团控制; (3)手性试剂控制 (4)手性催化剂控制的四个主要反应类型。
Ph 2P PPh 2
F F O N Me
N COOBu' BiI 3 ( 碘化铋)
F F O NH S Me
Me N
O F N O Me COOH
N
(1) (2) (3) 环状烯胺(1)以(2S,4S)-BPPM与碘化铋(III)催化氢 化以96%产率得到(2)。 从(2)很容易经六步反应制 备到(3)左氟砂星。
其中S为含潜手性基团的底物,A*为光学纯的手性辅助试剂, S—A*为连上辅助基团的底物,P*—A*为连着辅助基团的产物, 而P*则为去除辅助基团后的最终产物。其中手性辅助试剂A* 一般可回收再使用。
以(S)—1—氨基—2—甲氧甲基吡咯烷(SAMP,8)为手性辅助基团合 成高光学纯度的食叶蚁警戒 信息素9就是这类不对称反应的一个典型例子
由光学纯1,1‘-联萘-2,2’-二酚
是手性氢负离子还原剂。
(2) 过渡金属络合物催化的 羰基化合物的氢化
Noyori等发现手性联二萘膦(BINAP)与过渡金属 形成配合物还可以还原羰基得到醇。
酮的不对称氢化是制备手性醇的一个有 效方法,BINAP-Ru (II)催化剂对于官能 化酮的不对称氢化是极为有效的:
一个好的不对称合成反应首先应具有好的立体选择性, 即高的对映或非对映过量。此外,温和的反应条件、高 的收率、两种立体异构体合成的通用性、原料经济性等 亦是衡量其优劣的指标。
烯烃不对称还原反应 -回复

烯烃不对称还原反应-回复烯烃不对称还原反应(Asymmetric Reduction of Alkenes)导言:烯烃是碳原子上具有两个π键的有机分子。
它们是有机合成中相当重要的一类化合物,广泛应用于药物合成、材料科学和化学生物学等领域。
然而,对于一些手性烯烃,传统的对称催化还原反应不再适用。
因此,对于不对称还原烯烃的方法研究具有重要意义,可以制备出具有高立体选择性和优良天然构型的化合物。
第一部分:背景知识1.1 烯烃烯烃是碳原子上具有双键的有机分子。
根据双键的位置不同,可以分为内烯烃和外烯烃。
内烯烃双键紧挨着一个碳原子,外烯烃双键间有一个或多个碳原子。
1.2 不对称催化还原反应对称催化还原反应是指由手性催化剂催化的对称还原反应。
该反应通常可以得到两种对映异构体的产物,但对于手性烯烃而言,只有一种异构体是有意义的。
因此,不对称催化还原反应能够提供一种制备单一立体异构体的有效方法。
第二部分:反应机制不对称催化还原反应涉及到多个步骤,下面将逐步介绍这些步骤:2.1 生成催化剂底物配合物不对称催化还原反应通常需要一种手性催化剂。
首先,手性催化剂与底物中的烯烃发生配位作用,生成催化剂底物配合物。
这一步骤决定了立体选择性。
2.2 不对称还原在催化剂底物配合物存在下,发生不对称还原反应。
这一步骤可以通过多种不同的机制进行,包括氢转移、负性离子协助催化和羰基酯还原等。
2.3 产物分离与纯化完成不对称还原反应后,需要对产生的产物进行分离和纯化。
这一步骤通常采用色谱层析、结晶、萃取等技术,以获得纯净的产物。
第三部分:应用案例3.1 药物合成不对称还原反应在药物合成中特别受到关注。
通过控制烯烃的对称催化还原反应,可以选择性地制备具有高立体选择性的手性药物分子。
例如,利用Rh催化剂对某些手性烯烃进行不对称还原反应,可以合成出治疗乳腺癌的药物Tamoxifen。
3.2 化学生物学不对称还原反应还被广泛应用于化学生物学领域。
有机合成中的不对称催化

有机合成中的不对称催化不对称催化是一种在有机合成中广泛应用的重要方法。
它通过引入手性配体,使得对称的反应转化为具有手性产物的反应。
在这篇文章中,将介绍不对称催化的原理、应用以及发展趋势。
一、不对称催化的原理不对称催化的原理基于手性配体和手性催化剂的应用。
手性配体是具有手性结构的有机化合物,可以与金属离子配位形成手性配位化合物。
这些手性配体能够通过选择性吸附、空间位阻等方式影响反应的立体选择性,从而实现对称反应的不对称性转化。
而手性催化剂则是由手性金属配合物和手性有机分子组成的复合物,能够通过催化作用使反应产生手性产物。
二、不对称催化的应用1. 不对称还原反应不对称还原反应是不对称催化中的一种重要应用。
通过引入手性配体和催化剂,可以实现对不对称有机物的还原,得到具有手性的醇、胺等化合物。
这种方法在医药、农药、香料等领域中有广泛的应用。
2. 不对称氧化反应不对称氧化反应是不对称催化的另一种重要应用。
通过引入手性配体和催化剂,可以使对称的氧化反应转化为不对称的氧化反应,得到手性醛、酮等化合物。
这种方法在合成有机中间体和天然产物的过程中起着重要的作用。
3. 不对称烯烃化反应不对称烯烃化反应是一种在不对称催化中较具挑战性的应用。
通过引入手性配体和催化剂,可以实现对不对称烯烃化反应的控制,得到具有手性的烯醇、烯醛等化合物。
这种方法在生物活性分子的合成中具有广阔的应用前景。
三、不对称催化的发展趋势随着合成化学的发展,不对称催化在有机合成中的应用越来越重要。
未来,不对称催化的发展趋势主要体现在以下几个方面:1. 发展更多的手性配体和催化剂为了提高不对称催化的效率和选择性,需要开发更多的手性配体和催化剂。
这些新型配体和催化剂能够应对更广泛的反应类型,提高催化剂的稳定性和反应活性。
2. 开发新的反应类型目前,大多数不对称催化反应都是针对特定的反应类型。
未来,需要发展更多新的反应类型,探索更广泛的不对称催化反应。
这将有助于拓宽不对称催化的应用范围,并提供更多的合成路线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烯烃不对称还原反应
烯烃是一种具有双键结构的碳氢化合物。
在有机合成中,烯烃常被用作重要的
中间体,可以通过不对称还原反应将其还原为不对称的醇或醛。
这种反应能够有效地构建手性碳原子,产生具有手性的有机分子,对于制备手性药物和天然产物具有重要意义。
不对称还原反应是利用手性催化剂催化的还原反应,其中某些手性催化剂能够
高选择性地将一个立体异构体转化为另一种立体异构体。
在烯烃不对称还原反应中,常用的手性催化剂有金属配合物、有机催化剂和酶等。
金属配合物催化的烯烃不对称还原反应是一种常见的方法。
以铑配合物和钌配
合物为代表的过渡金属催化剂,能够将烯烃还原为不对称的醇或醛。
这种催化剂具有良好的催化活性和高选择性,可以选择性地将一个立体异构体还原为另一种立体异构体。
金属配合物催化的烯烃不对称还原反应在有机合成中有着广泛的应用,为合成手性药物和天然产物提供了重要的手段。
有机催化剂也是实现烯烃不对称还原的重要手段。
以有机亚胺催化剂为代表,
这类催化剂能够通过形成协同作用的氢键和π-π相互作用,使烯烃发生不对称还原
反应。
这种催化剂具有手性结构,能够识别并选择性地催化醛或酮的还原反应,从而合成具有手性的醇或醛。
有机催化剂催化的烯烃不对称还原反应在有机合成中具有广泛的应用潜力。
酶是自然界中存在的生物催化剂。
在酶催化的烯烃不对称还原反应中,通过利
用酶的手性结构,能够对烯烃进行高选择性的还原。
酶催化的烯烃不对称还原反应具有良好的立体选择性和活性,能够在温和的条件下进行。
酶催化的烯烃不对称还原反应在生物合成和药物合成中具有重要的应用价值。
总的来说,烯烃不对称还原反应是合成手性化合物的重要手段之一。
通过不对
称还原反应,可以有效地构建手性碳原子,合成具有手性的有机分子。
金属配合物
催化、有机催化剂和酶催化是常见的烯烃不对称还原反应方法。
这些方法在有机合成中具有重要的应用价值,为制备手性药物和天然产物提供了关键的合成途径。
随着催化剂的不断发展和优化,研究人员将进一步拓展烯烃不对称还原反应的应用范围,并为有机合成领域带来更多的机会和挑战。