不定积分的概念和性质课件
合集下载
课件+经济数学基础+罗国湘+高等教育出版社-第3章 不定积分

(12) ∫
d
1− 2
= arcsin + ;
= arctan + .
注意 (1)与基本求导公式一样,这些基本积分公式必须熟记,它们是积分运算的基础;
(2) 上述积分公式中积分变量换成其他变量仍成立. 如 ∫ e d = e + , ∫ cos d = sin + .
න
1
1
令 =3 1
cos 3 d = න cos 3 d(3)
=
න cos d = sin +
3
3
3
回代 1=3 + . Nhomakorabea3
验证可知, 结论正确.
第二节 不定积分的积分方法
二、第一换元积分法(凑微分法)
一般地, 有
න ()d = න [()]′ ()d = න [()]d()
(8) ∫
(9) ∫
1
sin2
d = ∫ csc 2 d = −cot +
(11) ∫ csc cot d = −csc + ;
(13) ∫
d
1+ 2
1
cos2
d = ∫ sec 2 d = tan + ;
(10) ∫ sec tan d = sec + ;
注意, 求 ∫ ()d 时, 切记 “ + ”, 否则求出的只是一个原函数而不是不定积分.
第一节 不定积分的概念与性质
一、不定积分的概念——几何意义
在直角坐标系中,()的任意一个原函数()的图形
是一条曲线 = (),这条曲线上任意点(,())处
的切线的斜率F′(x)恰为函数值(),称这条曲线为()
高职课件《高等数学》第四章不定积分课件

9 csc2x dx cotx C ;
10
dx arcsinx C ;
1 x2
11
dx arctanx C ; 1 x2
例4.1.2 求
x2
x
1 x2
dx
。
解 根据基本积分表中的公式(2)及不定积分的性质(4)得:
x2
x
1 x2
dx
x2
1
x2
1 x2
dx
例4.1.1 求 cosxdx 。
解 因为sinx' cosx,所以 cosxdx sinx C
如果忘记写常数 C,那就意味着你只找到了cosx 的一个原函数。
4.1.2不定积分的性质
根据不定积分的概念,可以推得如下性质:
(1)
d dx
f
x
dx
f x ;
(2) f ' x dx f x C
4.1.3 不定积分的几何意义
由 f x 的原函数族所确定的无穷多条曲线 y F x C 称为f x 的积 分曲线族。在 f x 的积分曲线族上,对应于同一 x 的点,所有曲线都
有相同的切线斜率,这就是不定积分的几何意义。 例如
2xdx x2 C
被积函数 2x 的积分曲线族就是 y x2 C ,即一族抛物线。对 应于同一 x 的点,这些抛物线上的切线彼此平行且具有相同的斜 率2x,如图4-1所示。
(由性质(1)和(2)可知,求导与求积是两个互逆的运算);
(3) k f x dx k f x dxk为常数
(4) f x g x dx f x dx g x dx ; (5) d f x dx f x dx ; (6) df x = f ' x dx f x C 。
不定积分的概念及其性质省名师优质课赛课获奖课件市赛课一等奖课件

1
1
x4
dx
x2(1
x
2
dx )
1 x4
dx
[
1 x2
1
1 x2
]dx
1 x3 x1 arctan x C 3
例7.
2
3x
3x
5
2
x
dx;
解:
2
3x
3x
5
2
x
dx
2
dx
5
(
2 ) x dx 3
2x 5 (2 / 3)x C ln(2 / 3)
例8. 设函数 f ( x) 定义于 (0, ) 上,并且满足
积分号
原函数存在定理: 如果函数 f ( x) 在区间 I 内连续, 那么在区间 I 内存在可导函数 F ( x),使 x I ,都有 F ( x) f ( x).
连续函数一定有原函数.
例1 求 x5dx.
解
x6 x5 , x5dx x6 C .
6
6
例2
求
1
1 x
2
dx.
解
arctan
F ( x),使得: F ( x) f ( x),x X 或 dF ( x) f ( x)dx 则称 F ( x) 是 f ( x) 的一个原函数,f ( x)的全部原函 数称为 f ( x) 的不定积分(indefinite integral),记作: f ( x)dx 若 f ( x) 存在原函数,也称 f ( x) 可积。
分
表
(3)
dx x
ln
|
x
|
C;
阐明: x 0,
dx ln x C,
x
x 0, [ln( x)] 1 ( x) 1 ,
不定积分的概念与性质ppt课件

例4 求 tan2 xdx
例6 求
1 sin2 x cos2 x dx
22
小结
一、不定积分的概念
(原函数、不定积分的定义及几何意义)
二、不定积分的性质
(互逆性质、线性性质)
三、直接积分法
可导函数F(x),使对任一 x I 都有F ( x) f ( x)
➢唯一性
(F(x)) f (x) (F(x) C) f (x)
若函数f(x)在区间I上存在原函数,则原函数不唯一
➢结构
F(x)的一个原函数
{f (x)的原函数} {F(x)+C} 设( x)是f (x)的另一个原函数任,则意常数( x) F( x) C
三、直接积分法举例
(8)
dx cos 2
x
sec2
xdx
tan x C
(9)
d sin
x
2
x
csc2
xdx
cot x C
(10) sec x tan xdx sec x C (11) csc x cot xdx csc x C (12) ex dx ex C (13) a xdx a x C
( k 为常数)
(2)
x dx
1
1
x
1
C
( 1)
(3)
dx x
ln
x
C
(4)
1
dx x
2
arctan
x
C
或 arc cot x C
(5)
dx arcsin x C 1 x2
或 arc cos x C
(6) cos xdx sin x C (7) sin xdx cos x C
ln a
不定积分的概念和性质市公开课一等奖省赛课获奖课件

结论 既然积分运算和微分运算是互逆, 所以 能够依据求导公式得出积分公式.
第12页
基 (1) kdx kx C (k是常数);
本
积
(2)
xdx x1 C ( 1); 1
分 表
(3)
dx x
说明:
ln x x 0,
C;
dx x
ln
x
C
,
x 0, [ln( x)] 1 ( x) 1 ,
解
1
sin2 x cos2 xdx
4 sin 2
4 x cos2
xdx
22
22
4
1 sin2
dx x
4cot x C
说明: 以上几例中被积函数都需要进行恒 等变形, 才能使用基本积分表.
第23页
例 12 已知一曲线 y f ( x)在点( x, f ( x))处的 切线斜率为sec2 x sin x ,且此曲线与 y 轴的交 点为(0,5),求此曲线的方程. 解 dy sec2 x sin x,
1, x 0 在 (, ) 内是否存在原函数? 为何?
第29页
思索题解答
不存在.
假设有原函数 F ( x)
x C, x 0
F ( x) C,
x0
x C, x 0
但F ( x)在 x 0处不可微, 故假设错误
所以 f ( x) 在 (, ) 内不存在原函数.
结论 每一个含有第一类间断点函数都没 有原函数.
x3
C2 )
lim ( x
x1
C3 )
1 3
C2
1
C3
C
2 3
C3
1 x3 2 C x 1
33
不定积分讲解课件

也是f(x)的原函数.(2)f(x)的任意两个原函数之间仅相差一
个常数. 证明: (1)因为[F(x)+C]’=F’(x)=f(x).所以F(x)+C也是f(x)的 原函数 (2)设F(x)和G(x)是f(x)在区间I上的任意两个原函数,由于 [G(x)-F(x)]’=G’(x)-F’(x)=f(x)-f(x)=0 所以 G(x)-F(x)=C, G(x)=F(x)+C 。这表示f(x)如果存在原函数,则所有的原 函数只相差一个常数.
4
4
24
1sin2x,1cos2x,1cos2x.是同一函数的原函数.
2
4
2
所以在积分中可能出现的原函数的形式不一致, 但可以变形成相同的原函数,它们只相差一个常数
二、基本积分表
由于微分和积分是互为逆运算, 所以把第二章中的
基本微分公式逆写, 就得到基本积分表。
例5
d x
x
3
解 :d x3 xx 3 d xx 3 3 1 1C 2 x 1 2C
下面的问题是已知原函数的存在,怎样求? 定理1 若函数 f (x)在区间 I上连续,则它在 I上存在 原函数F(x), 即对于任意的x∈I,都有 F ’(x) = f (x).
例如所有的初等函数在各自的定义域内都连续, 它们都有原函数。
定理2 设F(x)是f(x)在区间I上的一个原函数,则(1)F(x)+C
代入初值条件,得到 2=1+C,C=2-1=1 f(x)=x2+1
[ f ( x ) d x ] f ( x ) d f ( x ) d x f ( x ) d x f(x )d x f(x ) C df(x ) f(x ) C
由此可见, 微分和积分是互为逆运算.先算不定积分后 求导, 则它们相互抵消,反之先微分再不定积分,则抵 消后相差一个常数.
个常数. 证明: (1)因为[F(x)+C]’=F’(x)=f(x).所以F(x)+C也是f(x)的 原函数 (2)设F(x)和G(x)是f(x)在区间I上的任意两个原函数,由于 [G(x)-F(x)]’=G’(x)-F’(x)=f(x)-f(x)=0 所以 G(x)-F(x)=C, G(x)=F(x)+C 。这表示f(x)如果存在原函数,则所有的原 函数只相差一个常数.
4
4
24
1sin2x,1cos2x,1cos2x.是同一函数的原函数.
2
4
2
所以在积分中可能出现的原函数的形式不一致, 但可以变形成相同的原函数,它们只相差一个常数
二、基本积分表
由于微分和积分是互为逆运算, 所以把第二章中的
基本微分公式逆写, 就得到基本积分表。
例5
d x
x
3
解 :d x3 xx 3 d xx 3 3 1 1C 2 x 1 2C
下面的问题是已知原函数的存在,怎样求? 定理1 若函数 f (x)在区间 I上连续,则它在 I上存在 原函数F(x), 即对于任意的x∈I,都有 F ’(x) = f (x).
例如所有的初等函数在各自的定义域内都连续, 它们都有原函数。
定理2 设F(x)是f(x)在区间I上的一个原函数,则(1)F(x)+C
代入初值条件,得到 2=1+C,C=2-1=1 f(x)=x2+1
[ f ( x ) d x ] f ( x ) d f ( x ) d x f ( x ) d x f(x )d x f(x ) C df(x ) f(x ) C
由此可见, 微分和积分是互为逆运算.先算不定积分后 求导, 则它们相互抵消,反之先微分再不定积分,则抵 消后相差一个常数.
高等数学 课件 PPT 第四章 不定积分

如果一个函数存在原函数,那么这些原函数之间有什 么关系呢?
一、原函数的概念
定理2
若F(x)是函数f(x)在区间I上的一个原函数,则F(x)+C(C为任意 常数)是fx在区间I上的全体原函数.
定理2说明,若一个函数有原函数,则它必有无穷多个原函数,且 它们彼此相差一个常数. 事实上,设F(x)和G(x)都是f(x)的原函数,则
g(x)=f[φ(x)]φ′(x). 作变量代换u=φ(x),并将φ′(x)dx凑微分成dφ(x),则可将关 于变量x的积分转化为关于变量u的积分,于是有
∫f[φ(x)]φ′(x)dx=∫f(u)du. 如果∫f(u)du 可以求出,那么∫g(x)dx 的问题也就解决了,这就 是第一类换元积分法,又称为凑微分法.
一、第一类换元积分法
【例1】
解 本题的关键是将2xdx凑微分得dx2,然后令u=x2,则
【例2】
解 先将被积表达式中的sec2xdx凑微分得dtanx,然后令 u=tanx,再积分,即
一、第一类换元积分法
【例3】
一、第一类换元积分法
注意
(1)求不定积分的方法不唯一,不同方法算出的 答案也不相同,但它们的导数都是被积函数,经过恒等 变形后可以互化,其结果本质上只相差一个常数.
对于给定的函数fx具备什么条件才有原函数?这个问题将 在下一章讨论,这里先介绍一个结论.
一、原函数的概念
定理1
(原函数存在定理)若函数f(x)在区间I上连续,则函数 f(x)在区间I上存在原函数F(x).
由于初等函数在其定义区间上都是连续的,所以初等函 数在其定义区间上都存在原函数. 如果一个函数存在原函数,那么它的原函数是否唯一?事 实上,函数fx的原函数不是唯一的.例如,x2是2x的一个原 函数,而(x2+1)′=2x,故x2+1也是2x的一个原函数.
一、原函数的概念
定理2
若F(x)是函数f(x)在区间I上的一个原函数,则F(x)+C(C为任意 常数)是fx在区间I上的全体原函数.
定理2说明,若一个函数有原函数,则它必有无穷多个原函数,且 它们彼此相差一个常数. 事实上,设F(x)和G(x)都是f(x)的原函数,则
g(x)=f[φ(x)]φ′(x). 作变量代换u=φ(x),并将φ′(x)dx凑微分成dφ(x),则可将关 于变量x的积分转化为关于变量u的积分,于是有
∫f[φ(x)]φ′(x)dx=∫f(u)du. 如果∫f(u)du 可以求出,那么∫g(x)dx 的问题也就解决了,这就 是第一类换元积分法,又称为凑微分法.
一、第一类换元积分法
【例1】
解 本题的关键是将2xdx凑微分得dx2,然后令u=x2,则
【例2】
解 先将被积表达式中的sec2xdx凑微分得dtanx,然后令 u=tanx,再积分,即
一、第一类换元积分法
【例3】
一、第一类换元积分法
注意
(1)求不定积分的方法不唯一,不同方法算出的 答案也不相同,但它们的导数都是被积函数,经过恒等 变形后可以互化,其结果本质上只相差一个常数.
对于给定的函数fx具备什么条件才有原函数?这个问题将 在下一章讨论,这里先介绍一个结论.
一、原函数的概念
定理1
(原函数存在定理)若函数f(x)在区间I上连续,则函数 f(x)在区间I上存在原函数F(x).
由于初等函数在其定义区间上都是连续的,所以初等函 数在其定义区间上都存在原函数. 如果一个函数存在原函数,那么它的原函数是否唯一?事 实上,函数fx的原函数不是唯一的.例如,x2是2x的一个原 函数,而(x2+1)′=2x,故x2+1也是2x的一个原函数.
《高等数学》教学课件 第4章

〔4-3〕
例1 求 2exdx 。
解
2exdx 2 exdx 2ex C
性质2 两个函数代数和的积分等于它们积分的代数和,即
[ f (x) g(x)]dx f (x)dx g(x)dx
〔4-4〕
例2 求 (2x cos x)dx 。
解
(2x cos x)dx 2xdx cosxdx x2 sin x C
令us100
1
1
0.05 u 2du 0.1u 2 C
回代
1
0.1(s 100)2 C
又因为 Q(0) 0,得 C 1 ,故
1
Q 0.1(s 100)2 1
3
例2 求 (1 2x) dx 。
解 将dx凑成 dx 1 d(1 2x) ,则 2
(1
3
2x) dx
1 2
(1
2x)3
二、不定积分的概念
定义2 如果函数 F (x) 是 f (x) 的一个原函数,那么表达式 F (x) C
( C为任意常数)称为 f (x) 的不定积分,记为 f (x)dx ,即
f (x)dx F (x) C
其中“ ”称为积分号,x 称为积分变量,f (x) 称为被积函
数,f (x)dx 称为被积表达式, C 称为积分常数。dx
1 2a
a
1
x
dx
a
1
x
dx
1 ( ln a x ln a x ) C 2a
1 ln a x C. 2a a x
同理有
1
1 xa
dx ln
C
x2 a2 2a x a
例10 求 csc xdx 。
解
csc xdx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)3axdx lna
x
a
C
;
(1)4sin xd h cxoxsh C ;
(1)5coxsd h sxin x h C;
以上15个公式是求不定积分的基础,
称为基本积分表,必须熟练掌握。
15
例4 求积分 x2 xdx.
5
解 x2 xdx x2dx
根据积分公式(2)
xdx x1 C
1
51
x2 51
F (x)d x F (x)C , d(F x)F (x)C .
结论:微分运算与求不定积分的运算是互逆的.
11
二、 基本积分表
实例
x1 x
1
xdxx1 C. 1
(1)
启示 能否根据求导公式得出积分公式?
结论 既然积分运算和微分运算是互逆的, 因此可以根据求导公式得出积分公式.
12
基 (1 )k dkx x C(k 是常数);
C
2
7
x2
C.
7
2
16
三、 不定积分的性质
(1 ) [f(x ) g (x )d ] x f(x)d xg(x)d;x
证 f(x)d x g(x)dx f(x )dx g (x )d xf(x)g (x).
等式成立.
此性质可推广到有限多个函数之和的情况
[f1(x)fn(x)d ] x f1 (x )d x fn (x )dx 17
原函数存在定理:
如 果 函 数 f ( x ) 在 区 间 I 内 连 续 ,
那 么 在 区 间 I内 存 在 可 导 函 数 F (x ),
使 x I , 都 有 F ( x ) f ( x ) .
6
简言之:连续函数一定有原函数.
(证明待下章给出)
(2)原函数是否唯一?若不唯一,它们之间有 什么联系?
1
重点
原函数与不定积分的概念 基本积分公式 换元积分法 分部积分法 有理函数积分
难点
换元积分 分部积分 有理函数积分
2
基本要求
①正确理解原函数和不定积分概念 ②熟记基本积分公式 ③熟练地运用换元积分法和分部积分法 ④会用待定系数法求有理函数积分 ⑤会用万能代换和三角代换求三角有理式积分 ⑥会求简单无理函数的积分
2xdx2C, f(x)x2C,
由曲线通过点(1,2) C1, 所求曲线方程为 yx21.
10
函 数 f(x )的 原 函 数 的 图 形 称 为 f(x )的 积 分 曲 线 . 显然,求不定积分得到一积分曲线族. 由不定积分的定义,可知
ddxf(x)dxf(x), d[f(x)d]x f(x)d,x
3
一、原函数与不定积分的概念
定义: 如 果 在 区 间 I内 , 可 导 函 数F(x)的 导函数为f(x), 即 xI, 都 有 F (x)f(x) 或 dF (x)f(x)d, x那 么 函 数 F(x)就 称 为 f(x)
或 f(x)d在 x 区 间 I内 原 函 数 .
例 six ncoxs six n 是 cox的 s原 函 数 . lnx1 (x0)
不定积分的概念和性质
前面我们已经研究了一元函数微分学。但在科学 技术领域中,还会遇到与此相反的问题:即寻求一 个可导函数,使其导数等于一个已知函数。从而产 生了一元函数积分学。积分学分为不定积分和定积 分两部分。
本章我们先从导数的逆运算引出不定积分的概念 然后介绍其性质,最后着重系统地介绍积分方法。
7
不定积分的定义:
在区间I内,函数f(x)的带有任意 常数项的原函数称 为f(x)在 区 间 I内 的
不 定 积 分 , 记 为 f(x )d. x
f(x)d xF (x)C
积 分 号
被 积 函 数
被 积 表 达
式
积 分 变 量
任 意 常 数
为求不定积分,只须求出被积函数的一个原函数 再加上积分常数即可
(6) coxsdxsix nC;
(7) six ndxcox sC ; (8) cod2sxxse2cxdxtaxn C;
(9) sidn2xxcs2cxdxco x tC ;
14
(1)0se xtca xn d sx excC;
(1)1cs xcco xtd x csx cC ;
(1)2exdx ex C;
x ln x是 1在 区 间 (0,) 内 的 原 函 数 .
x
4
关于原函数的说明:
对原函数的研究须讨论解决以下两个问题
(1) 是否任何一个函数10
x0 x0
若存在可导函数 F (x )使 F (x ) f(x )
则由 f (x) 的定义
当x0时F (x )f(x ) 0 F(x)C 1
(2) k(fx)d xk f(x)dx.( k是 常 数 , k0)
本
积
(2)
xd xx1C(1); 1
分 表
(3)说明dx:xlxnx0,C ; dxxlnxC,
x 0 ,[l n x )] (1 (x) 1,
x
x
dxxln(x)C, dxxln|x|C, 简写为 dxxlnxC.
13
(4) 11x2dxarcxtaC;n
(5)
1 dxarcxsC i;n 1x2
当x0时F (x )f(x ) 0 F (x)C 2
由 F (x )可 导 F (x )在 x0 处连续
5
C1C2 (左、右极限存在且相等) F(x)C F(0)0 而已知 F (0 )f(0 ) 1 矛盾 这说明 f (x) 没有原函数
既然不是每一个函数都有原函数,那么我们自然 要问:具备什么条件的函数才有原函数?对此我们 给出如下的结论:
①若 F (x)f(x),则对于任意常数 C,
F (x ) C 都 是 f(x )的 原 函 数 .
②若 F(x)和 G(x)都是 f (x)的原函数, 则 F (x ) G (x ) C( C为任意常数)
证 F ( x ) G ( x ) F ( x ) G ( x )
f(x ) f(x ) 0 F (x ) G (x ) C( C为任意常数)
8
例1 求 x5dx. 解 x6 x5,
6
x5dxx6C.
6
例2
求
1 1 x2
dx.
解 arcxta 1n 1x2,
1 1x2d xarcxtC a.n
9
例3 设曲线通过点(1,2),且其上任一点处的 切线斜率等于这点横坐标的两倍,求此曲线方程.
解 设曲线方程为 yf(x), 根据题意知 dy 2 x, dx 即 f(x)是 2x的 一 个 原 函 数 .