模具支架铸造工艺设计说明书
支架零件铸造工艺设计说明书

支架零件铸造工艺设计一、零件的生产条件、结构及技术要求1、生产性质:大批量生产2、材料:HT2003、零件加工方法:零件上有多个孔,除中间的大孔需要铸造以外,其他孔在考虑加工余量后不宜铸造成型,采用机械方法加工,均不铸出。
造型方法:机器造型;造芯方法:机器制芯4、主要技术要求:满足HT200的机械性能要求,去毛刺及锐边,铸件表面不允取有缺陷。
二、零件图及立体图结构分析1、零件图如下:零件主视图零件俯视图2、立体图如下:三、工艺设计过程1、铸造工艺设计方法及分析(1)铸件壁厚为了避免浇不到、冷隔等缺陷,铸件不应太薄。
铸件的最小允许壁厚与铸造的流动性密切相关。
在普通砂型铸造的条件下,铸件最小允许壁厚见表1。
表1. 铸件最小允许壁厚查得灰铁铸件在100~200mm的轮廓尺寸下,最小允许壁厚为5~6mm。
由零件图可知,零件中不存在壁厚小于设计要求的结构,在设计过程中,也没有出现壁厚小于最小壁厚要求的情况。
(2)造型、制芯方法造型方法:该零件需批量生产,为中小型铸件,因此,采用湿型粘土砂机器造型,模样采用金属模,采用技术先进的机器造型。
制芯方法:在造芯用料及方法选择中,如用粘土砂制作砂芯原料成本较低,但是烘干后容易产生裂纹,容易变形。
在大批量生产的条件下,由于需要提高造芯效率,且常要求砂芯具有高的尺寸精度,此工艺所需的砂芯采用热芯盒法生产砂芯,以增加其强度及保证铸件质量。
选择使用射芯工艺生产砂芯。
采用热芯盒制芯工艺热芯盒法制芯,是用液态固性树脂粘结剂和催化剂制成的一种芯砂,填入加热到一定的芯盒内,贴近芯盒表面的砂芯受热,其粘结剂在很短的时间内硬化。
而且只要砂芯表层有数毫米的硬壳即可自芯取出,中心部分的砂芯利用余热可自行硬化。
(3)砂箱中铸件数目的确定及排布初步确定一箱中放几个铸件,作为进行浇冒口设计的依据。
一箱中的铸件数目,应该是在保证铸件质量的前提下越多越好。
本铸件在一砂箱中高约130mm,长约200mm,宽约110mm,体积约99.7cm^3,密度7.2g/cm^3,重约0.8Kg。
铸造工艺设计说明书

铸造工艺设计说明书一、引言铸造工艺设计是针对特定铸件的生产过程进行规划和安排的过程。
本文旨在详细介绍铸造工艺设计的内容,确保读者能够全面理解并掌握该过程的要点。
二、铸造工艺设计的目标铸造工艺设计的目标是实现高质量的铸件生产。
具体而言,主要包括以下几个方面:1. 确定适宜的材料:根据铸件的要求和使用环境,选择合适的铸造材料,确保其具备良好的机械性能和耐腐蚀性能。
2. 设计合理的结构:在铸造工艺设计中,需要考虑到铸件的结构特点,合理设计铸件的形状和尺寸,以确保在铸造过程中易于铸造和冷却。
3. 确定适宜的工艺参数:通过合理选择浇注温度、保温时间、浇注速度等工艺参数,以确保铸件的成形质量。
4. 确保铸件的表面质量:通过采用适当的除砂、除气和清洁工艺,确保铸件表面的光洁度和平整度符合要求。
三、铸造工艺设计的步骤铸造工艺设计的步骤可以分为以下几个阶段:1. 铸件设计分析:在铸造工艺设计之前,需要对铸件的结构和形状进行分析。
通过对铸件进行结构强度分析、模具结构分析以及热力学分析等,确定铸造工艺的基本要求和技术指标。
2. 模具设计:根据铸件的形状和尺寸要求,进行模具设计。
包括模具的整体结构设计、分型面设计、模腔和冷却系统的设计等。
3. 工艺参数确定:根据铸件的特点和模具设计,确定适宜的浇注温度、浇注速度、保温时间等工艺参数。
这些参数对于保证铸件成形质量和提高生产效率具有重要作用。
4. 检验和调整:在铸造工艺设计结束后,需要进行试验验证和工艺调整。
通过对铸件进行质量检验,查找潜在问题并进行相应的调整,以确保最终生产的铸件质量达到要求。
四、铸造工艺设计的注意事项在铸造工艺设计的过程中,需要特别注意以下几个方面:1. 材料特性:铸造工艺设计需要充分了解所选材料的特性和性能,确保其适用于特定的铸件要求。
同时,需要根据材料的熔化温度和流动性,合理选择浇注温度和浇注系统。
2. 模具设计:模具设计需要兼顾铸件的结构特点和生产效率。
铸造工艺设计说明书

铸造⼯艺设计说明书铸造⼯艺设计说明书⽬录1. 零件结构分析 (3)1.1. 零件信息 (3)1.2. 技术要求 (3)2. 铸造⼯艺⽅案分析 (5)2.1. 铸造⽅法的确定 (5)2.2. 分型⾯的选择 (5)2.3. 铸件浇注位置的确定 (7)3. 铸造⼯艺参数 (9)3.1. 铸件尺⼨公差 (9)3.2. 铸件重量公差 (9)3.3. 机械加⼯余量 (9)3.4. 铸造收缩率 (9)3.5. 起模斜度 (9)3.6. 最⼩铸出孔及槽 (10)3.7. ⼯艺补正量 (10)3.8. 分型负数 (10)3.9. 反变形量 (10)3.10. 砂芯负数 (11)3.11. ⾮加⼯壁厚的负余量 (11)3.12. 分型负数 (11)4. 砂芯设计 (12)4.1. 砂芯的概念 (12)4.2. 芯头设计 (12)5. 浇注系统设计 (16)5.1. 浇注系统设计原则 (16)5.2. 浇注系统位置确定 (17)5.3. 浇注系统类型确定 (17)5.4. 浇注系统尺⼨计算 (17)6. 冒⼝及冷铁 (22)6.1. 冒⼝补缩原则 (22)6.2. 冒⼝及冷铁位置个数的选择 (22)6.3. 冒⼝种类选择及参数计算 (23)6.4. 铸件成品率 (25)1. 零件结构分析1.1. 零件信息产品名称:⽀架材料:铸钢外形尺⼨:91×42×66cm 3 质量:463Kg g 463000cm 58983cm g 85.7v m 33=≈?=?=ρ⽣产批量:成批⼤量⽣产。
造型⽅法:⼿⼯造型其零件⽰意图如下图1.2. 技术要求铸件重要的⼯作表⾯,在铸造是不允许有⽓孔、砂眼、渣孔等缺陷。
2.铸造⼯艺⽅案分析2.1.铸造⼯艺的确定铸造⼯艺包括:造型⽅法、造芯⽅法、铸造⽅法及铸型种类的选择2.1.1.造型⽅法、造芯⽅法的选择根据⼿⼯造型和机器造型的特点,选择⼿⼯造型2.1.2.铸造⽅法的选择根据零件的各参数,对照表格中的项⽬⽐较,选择砂型铸造。
支座铸造课程设计说明书

摘要支座铸造工艺设计其实是对金属零件的铸造工艺分析、铸造工艺方案拟定、铸造工艺文件制定等的综合考察。
同时也在其中让我们学习绘制铸造工艺图、铸型图、铸件图等。
这既考察我们对CAD的运用,也让我们了解图形的绘制步骤及要求。
铸造生产通常是指用熔融的合金材料制作产品的方法,将液态合金注人预先制备好的铸型中使之冷却、凝固,而获得毛坯或零件,这种制造过程称为铸造生产,简称铸造,所铸出的产品称为铸件。
大多数铸件作为毛坯,需要经过机械加工后才能成为各种机器零件;有的铸件当达到使用的尺寸精度和表面粗糙度要求时,可作为成品或零件直接应用。
铸造是将金属炼成符合一定要求的液体并里,经冷却凝固,清除处理后得到预定形状、尺寸和性能的铸件工艺过程,铸件毛坯因近乎成形而达到免机械加工或少量加工的目的,降低了成本并在一定程度上减少了时间。
铸造是现代机械制造工业的基础之一。
铸造种类很多,按造型方法习惯上分为:普通砂型铸造和特种铸造。
铸造工艺通常包括铸型准备,铸造金属的溶化与浇注,铸件处理和检验。
关键词:铸造,铸型,浇注目录第1章选材 (3)1.1材料的选择 (3)第2章零件铸造工艺方案的确定 (3)2.1 支座生产要求、结构及技术要求 (3)2.2铸造工艺方法的确定 (4)2.3支座结构的铸造工艺性 (4)2.4造型,造芯方法的选择 (5)2.5分型方案的确定 (5)第3章铸造工艺方案参数的确定 (7)3.1 工艺设计参数确定 (7)3.2铸造收缩率 (7)3.3切削加工余量 (7)3.4铸件尺寸公差 (7)3.5 起模斜度及圆角 (8)第4章浇注系统设置 (8)4.1 浇注系统的作用 (8)4.2浇注位置的确定 (8)4.3浇冒口设置方案 (9)4.4浇冒口尺寸 (9)第5章铸造工艺图绘制 (10)第6章铸造工艺卡绘制 (11)总结 (12)致谢 (13)参考文献 (14)第1章选材1.1材料的选择铸造毛坯适用于不宜用型材作坯料的场合,例如当零件形状很复杂或呈流线型外形时,若在用型材制坯,不仅成形困难而需增加设备及模具费用,还需增加许多切削加工余量,从而增加材料耗费和加工费。
热加工工艺支座铸造工艺设计课程设计说明书

热加工工艺课程设计支座铸造工艺设计课程:热加工工艺课程设计题目:支座铸造工艺设计姓名:XXXX专业:机械设计制造及其自动化班级:XX级机电X班学号:XXXXXX指导教师:XXXX时间:20XX年X月X日黄河科技学院课程设计任务书工学院机械系机械设计制造及其自动化专业xxxx级x 班学号xxxxxxxxxxxx 姓名XXXX 指导教师XXXX题目: 支座铸造工艺设计课程: 热加工工艺课程设计课程设计时间:x月x日至x月x日共x周课程设计工作内容与基本要求(已知技术参数、设计要求、设计任务、工作计划、所需相关资料)(纸张不够可加页)1、已知技术参数:图1 支座零件图2、设计任务与要求(完成后需提交的文件和图表等):(1)设计任务1)选择零件的铸型种类,并选择零件的材料牌号。
2)分析零件的结构,找出几种分型方案,并分别用符号标出。
3)从保证质量和简化工艺两方面进行分析比较,选出最佳方案,标出教主位置和造型方法。
4)患处零件的铸造工艺图(图上标出最佳浇注位置与分型面位置、画出机加工余量、起模斜度、铸造圆角、型芯及型芯头,图下注明收缩量)。
5)绘制出铸件图。
(2)设计要求1)设计图样一律按工程制图要求,采用手绘或机绘完成,并用三号图纸出图。
2)按所设计内容及相应顺序要求,认真编写说明书(不少于1500字)。
3、工作计划(进程安排)熟悉设计题目,查阅资料,做准备工作1天确定铸造工艺方案1天工艺设计和工艺计算2天绘制铸件铸造工艺图1天确定铸件铸造工艺步骤2天编写设计说明书3天答辩 1天4、主要参考资料《热加工工艺基础》、《金属成形工艺设计》、《机械设计手册》系主任审批意见:审批人签名:时间:20XX年月日摘要支座铸造设计,首先在确定支座的铸造工艺方案是,先了解合金的品种、生产批量及铸件的质量要求等,分析铸件的结构,确定铸件的浇注位置,绘制铸造工艺图,主要包括:浇注位置,铸型分型面,型芯的数量、形状、尺寸及固定方法,加工余量,收缩率,浇注系统,起模斜度,冒口和冷铁的尺寸和位置等。
支架铸造课程设计说明书

南昌航空大学铸造工艺专业课程设计题目:支架铸造工艺设计院系:航空制造工程学院专业:材料成型及控制工程学号: 09033104姓名:石婷指导老师:戴斌煜日期: 2012年11月30日目录1设计任务的分析 (1)铸件的结构特点 (1)铸件的材料及性能 (1)2铸造工艺方案的确定 (1)铸件在金属型中的位置 (1)铸件的凝固顺序 (2)浇注位置与分型面的选择 (2)2.3.1浇注位置的选择 (2)2.3.2分型面的选择 (2)铸造工艺参数的确定 (3)浇注系统类型的形式 (3)熔化与浇注 (5)3浇注系统的计算 (6)浇注时间的确定 (6)浇注系统截面积计算 (6)冒口设计计算 (7)4金属型的设计 (7)金属型设计 (7)4.1.1 金属型类型 (7)4.1.2主要结构形式 (7)4.1.3金属型壁厚 (7)4.1.4型腔尺寸计算 (8)4.1.5刚度强度 (8)4.1.6耐用性 (8)4.1.7 标准 (9)4.1.8其他尺寸要求 (9)4.1.10型腔的排气 (9)锁紧机构 (9)金属模材质选择 (9)5.铸造工艺 (10)金属型的准备 (10)5.1.1金属型的清理 (10)5.1.2金属型的涂料 (10)5.1.3金属型的预热 (10)浇注温度和速度 (10)参考文献 (11)设计总结 (13)1设计任务的分析铸件的结构特点铸件为支架,最大尺寸280mm,属小型铸件,支架基本壁厚为5mm,最大壁厚为18mm,有三个直径为11mm的孔,可采用机加工方法得到,不铸出。
有四个内凹空腔。
铸件的材料及性能材料为ZL201-T4,铸造铝铜合金,属Al-Mn-Cu-Ti合金,抗拉强度295MPa,硬度HB70,密度2.78g/cm³,熔化温度548-650℃。
(GB/T1173-1995)铸件的技术要求机加工余量:铸件最大尺寸为280mm,所以铸件机加工等级为D-F,D-1.3mm,E-1.4mm (GB/T 6414-1999)工艺余量:铸件支架壁厚5mm,设置冒口及高于铸件的浇口,作为充填铸型所必需的重力和补缩之用,作为工艺余量。
铸造工艺设计说明书

“永冠杯”第三届中国大学生铸造工艺设计大赛参赛作品铸件名称:B件---铰接支架自编代码:AB33510A方案编号:目录摘要 (1)1 零件简介 (2)1.1零件名称及用途 (2)1.2零件的技术要求 (2)1.3零件的结构 (2)2铸造工艺方案 (3)2.1材料选择 (3)2.2工艺方案的选择 (3)2.3工艺参数的确定 (5)2.3.1铸件的尺寸公差 (5)2.3.2铸件的质量公差 (5)2.3.3机械加工余量 (5)2.3.4模样的起模斜度 (5)2.3.5铸造收缩率 (5)2.3.6最小铸出孔 (5)2.4浇注系统的设计 (6)2.4.1浇注系统的选择 (6)2.4.2浇注系统尺寸的计算 (6)2.4.3浇注系统设计的校核 (8)2.5砂芯设计 (9)2.5.1砂芯设计的要点 (9)2.5.21#砂芯 (10)2.5.32#砂芯 (11)2.6冒口设计 (12)2.6.1冒口设计的说明 (12)2.6.2冒口的尺寸计算 (12)2.7出气孔的设计 (13)3砂箱的设计 (13)4铸件充型及凝固过程数值模拟 (14)4.1ViewCast 模拟软件 (14)4.2充型过程模拟 (14)4.3铸造凝固过程数值模拟 (17)4.4铸造工艺改进方案 (18)结论 (19)参考文献 (20)附图1 ——铸造工艺图附图2 ——合箱图附图3 ——铸造工艺卡片附图4 ——砂箱图摘要该铸件为驾驶室右铰接支架,通过分析零件的结构特点和性能要求,选用粘土砂湿型手工造型方法,采用两箱造型,确定了浇注位置和分型面等工艺方案,使零件整体位于下箱。
确定了机械加工余量、起模斜度、铸件收缩率等工艺参数。
根据各铸造工艺参数用Pro/Engineer软件画出铸件的三维实体图。
根据零件的形状特征,选用两个竖直放置的砂芯,1#砂芯采用盖板砂芯的形式固定。
选用了封闭式底注式浇注系统,采用了两个内浇道,用奥赞公式计算了浇注系统各部分的截面面积和尺寸,根据工艺方案在铸件顶部放置了两个用于补缩的暗冒口。
支架冲压工艺及模具设计说明书

1. 引言本课题为支架冲压工艺及模具设计。
该件结合生产实践,是为XXX厂生产制氮机控制系统配电柜内仪表支架。
旧加工工艺是采用单工序模成形,具体工艺过程为:冲孔落料、成形、撕口弯曲、最终弯曲成形,需要4副模具,且多次定位,易造成零件精度低,外观质量差,生产效率低,不能满足生产需要。
新工艺采用采用级进模生产,效率高,零件表面质量及精度也高。
这样要求进行冲裁、弯曲工序计算、零件展开计算。
图1. 支架零件图支架其零件结构如图2所示:选用材料为20钢,厚度为1mm。
它的各项机械性能在表1中描述,该零件为典型的冲压件,其特点是具有竖直轴向的对称性,水平方向四个切口与水平对称线成8°夹角,孔型间相对位置精度要求较高。
成型时,应全面考虑级进模的排样设计、弯曲回弹角以及工件的尺寸精度要求。
弯曲圆角半径R=0.8mm,回弹角为1°30′,尺寸精度均IT12级,机械性能要求有一定的强度和抗冲击性。
该零件外形对称,尺寸不大,轮廓线主要由直线和圆弧组成,其中有四个底孔,侧壁有两个不通孔。
加工精度要求不高,符合一般冲压件生产的要求。
传统加工工艺需要多次反复定位,使得零件的精度不高,况且需要设计多套模具,使得加工成本较高。
如果采用级进模加工,多道工序在一套模具中成型,零件精度相对高。
因此,对该工件的加工采用级进模,能节省生产成本,提高工作效率,以及提高零件的精度,符合批量生产的要求。
2. 材料分析2. 1 冲压对板料的基本要求冲压对板料的要求首先要满足对产品的技术要求,如强度、刚度等力学性能指标要求,还有一些物理化学等方面的特殊要求,如电磁性、防腐性等;其次还必须满足冲压工艺的要求,即应具有良好的冲压成形性能[1]。
1、力学性能的要求一般说来,伸长率大、屈强比小、弹性模数大、硬化指数高和后向异性系数大有利于各种冲压成型工序[2];2、对于化学成分的要求如钢中存在碳、硅、锰、磷、硫等元素的含量增加,就会使材料的塑性降低、脆性增加,导致材料冲压成型性能变坏[3]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球墨铸铁模具支座一、生产条件及技术要求1、生产性质试制研发。
2、材质材质为QT400—15。
3、零件图4、主要技术要求力学性能:σb>400MPa;δ≥15%;130-180HBW。
金属组织:球化等级≤4级;石墨大小5.8级;φ(P)≤20%;ω(Fe3C)≤3%.二、造型、制芯1、造型采用手工造型;砂箱尺寸600mm*620mm*250mm,每型4件。
2、制芯设备芯盒制芯。
三、熔炼工艺1、铁液的化学成分ω(C)=3.6%-3.9%;ω(Si) ≤3.0%;ω(Mn)<0.5%;ω(P) ≤0.07%;ω(S)<0.03%;ω(Mg)残=0.03%-0.05%;ω(Re)残=0.01%-0.03%。
2、球化剂稀土镁硅铁合金,加入量为铁液质量分数的1.5%-1.7%。
3、出炉温度 1420-1440℃。
4、浇注温度 1320-1380℃。
5、孕育剂 75Si-Fe合金孕育,加入量为包内铁液质量分数的0.3%-0.7%。
6、熔炼设备0.5t无芯工频感应电炉熔炼原铁液;在100Kg铁液包中进行球化处理;转50Kg浇包进行浇注。
四、主要工艺参数1、加工余量 2-3mm,模具支座面机械加工余量取3mm;模具支座底面及侧面机械加工余量取2mm。
2、收缩率 1%。
3、拔模斜度 1°。
4、砂型硬度砂型硬度大于40(C型硬度计)。
5、吃砂量吃砂量为30-60mm。
6、型砂性能湿压强度为0.12-0.14MPa,透气性≥100cm2/(Pa*s),紧实率为40%-48%(夏季),41%-47%(冬季)。
7、铸造圆角铸造圆角为R2。
五、铸造工艺方案1、浇注位置及分型面的选择由于本铸件采用试制研发的方案进行设计,其可能的分型面的选取有如下图所示的6种:但是,根据分析及铸件实际分型面的选取原则,我们不难发现方案3、4、5是根本无法起模的,故应舍弃;再由于方案2不能很好的保证铸件孔的同轴度,且容易发生错型、不易合箱,故也应舍弃;方案1使得大部分铸件都处在下型,且能很好的保证铸件孔的同轴度及圆度;方案6下芯方便,上下模样相同;故最终,确定方案1和方案6为本铸件的可行分型面选择方案。
2、对于方案12.1 型芯设计根据铸件孔的基本尺寸及其加工余量,确定型芯的相关尺寸。
砂型的实际工作长度L=101mm,垂直芯头与芯座之间的间隙S=0.5mm,垂直芯头与芯座之间的侧隙=30mm,垂直芯头的斜度α=9°,砂型直径D=46mm,相关数s/2=0.25mm,垂直芯头高度h=h1据参数如下图所示:2.2、工艺分析图的确定根据对零件结构优化、分型面、加工余量、拔模斜度以及型芯的相关设计,作出铸件的工艺分析图如下所示:2.3、铸件图的确定根据之铸件的分型面选择以及铸件加工余量和拔模斜度的确定,作出连杆铸件图如下所示:2.4、冒口设计根据球墨铸铁凝固特点,此件采用控制压力冒口进行补缩。
这是因为当铸件以液态收缩为主时,冒口内铁液补给铸件以消除集中缩孔。
共晶膨胀初期,由于砂型硬度高,铸件内部压力大,多余铁液倒回入冒口,以降低铸件内部膨胀压力,防止铸件膨胀。
而当冒口颈凝固后,共晶膨胀造成内压力自补缩,克服缩松缺陷,因此冒口大小选择以及冒口颈尺寸选择尤为重要。
(1)铸件相关参数计算通过运用三维设计软件UG,测算出铸件的体积V=2157.5㎝3进而计算出铸件质量m=V*ρ=2157.5*7.3=15.75Kg(2)铸件关键模数的确定①对于φ62的热节圆铸件模数 M c1=Dr b/[2*(Dr+b)]=62*101/[2*(62+101)]=19.2mm②对于φ40的热节圆铸件模数M c2= Dr b/[2*(Dr+b)]=40*101/[2*(40+101)]=14.3mm根据以上分析,M c1> M c2,M c1是计算冒口时起决定性作用的模数,故选择M c1为铸件的关键模数较合适。
(3)冒口模数及冒口颈模数的确定根据《材料成型工艺》图4-35控制压力冒口的模数和铸件关键模数的关系,取冒口模数M r=13.0mm。
又冒口颈模数M n=0.67M r,故M n=8.7mm,取M n=9mm。
(4)冒口尺寸的确定查阅标注冒口系列尺寸关系,由M r=0.189d得:d=68.8mm,取d=70mm。
冒口高度h=1.5d=1.5*70=105mm;冒口质量m=1.04d3ρ=2.6Kg。
选用矩形冒口颈,由M n=ab/(a+b),a为冒口颈宽度,b为冒口颈高度;取a=50mm,b=8mm。
冒口形状及冒口颈尺寸如下图所示:(5)冒口补缩能力较核①冒口补缩距离与传统冒口的补缩概念不同,控制压力冒口的补缩距离,不是表明冒口把铁液输送到铸件的凝固部位,而是表明有凝固部位向冒口回填铁液能输送多大距离。
该距离与铁液冶金质量和之间模数密切相关,由于该铸件模数较大,显然冒口补缩距离足够。
○2冒口的位置及数目冒口应安放在铸件模数大的关键部位,该铸件采用内浇道通过侧冒口的引入方式。
经分析,由于冒口内金属液体积足以补缩铸件的液态收缩量,故此方案只用采用一个冒口即可。
2.5、浇注系统设计采用封闭式浇注系统,内浇道阻流,挡渣作用较好。
(1)浇注时间由经验公式确定T=AM n式中 A---经验系数,取2.3;M---浇冒系统重量+铸件重量,预设工艺出品率65%,每箱4件,则M 可取96.9Kg;n---指数,球墨铸铁取0.33。
代入上式,计算的t=10.8s,根据生产确定浇注时间为11s。
(2)内浇道A阻的计算根据奥赞公式A阻= m/[ρ*t*μ*(2*g*Hp)1/2]式中 m---铸型内铁液重量,由于每箱4件,故m=M/4= 24.2Kg;μ---流量系数,取0.4;t---浇注时间,取11s;g---重力加速度,取10m/s2Hp---平均静压头,取250mm。
代入计算得:A阻=390mm2=A内。
(3)浇道比取浇道比 A内:A横:A直=1:1.2:1.4A内=390 mm2,依浇道比计算得:A横=468 mm2;A直=546 mm2。
根据《常用球墨铸铁件浇注系统尺寸》,取A内=400 mm2;A横=480 mm2;A=560mm2。
直浇道截面如下图所示:2.6、工艺出品率校验最终,整箱中铸件重量为:15.75Kg;浇冒系统总重量为:15.2Kg。
故实际工艺出品率为:ω=(15.75*4)/(15.75*4+15.2)=80.6%,符合预期设计要求。
2.7、模样设计取铸件的体收缩率为1%,则其模样图如下:2.8、砂箱布置根据吃砂量及砂箱内框尺寸,作出砂箱布置图如下:3、对于方案63.1、型芯设计根据铸件孔的基本尺寸及其加工余量,确定型芯的相关尺寸。
砂型的实际工作长度L=101mm,水平芯头与芯座之间的间隙S=0.5mm,水平芯头长度l=35mm,砂型直径D=46mm,相关数据参数如下图所示:3.2、工艺分析图的确定根据对零件结构优化、分型面、加工余量、拔模斜度以及型芯的相关设计,作出铸件的工艺分析图如下所示:3.3、铸件图的确定根据之铸件的分型面选择以及铸件加工余量和拔模斜度的确定,作出连杆铸件图如下所示:3.4、冒口设计根据球墨铸铁凝固特点,此件采用控制压力冒口进行补缩。
这是因为当铸件以液态收缩为主时,冒口内铁液补给铸件以消除集中缩孔。
共晶膨胀初期,由于砂型硬度高,铸件内部压力大,多余铁液倒回入冒口,以降低铸件内部膨胀压力,防止铸件膨胀。
而当冒口颈凝固后,共晶膨胀造成内压力自补缩,克服缩松缺陷,因此冒口大小选择以及冒口颈尺寸选择尤为重要。
(1)铸件相关参数计算通过运用三维设计软件UG,测算出铸件的体积V=2152.1㎝3进而计算出铸件质量m=V*ρ=2152.1*7.3=15.71Kg(2)铸件关键模数的确定③对于φ80的热节圆铸件模数 M c1=Dr b/[2*(Dr+b)]=80*101/[2*(80+101)]=22.3mm④对于φ47的热节圆铸件模数M c2= Dr b/[2*(Dr+b)]=47*101/[2*(47+101)]=16.0mm根据以上分析,M c1> M c2,M c1是计算冒口时起决定性作用的模数,故选择M c1为铸件的关键模数较合适。
(3)冒口模数及冒口颈模数的确定根据《材料成型工艺》图4-35控制压力冒口的模数和铸件关键模数的关系,取冒口模数M r=13.9mm。
又冒口颈模数M n=0.67M r,故M n=9.3mm,取M n=9.5mm。
(4)冒口尺寸的确定查阅标注冒口系列尺寸关系,由M r=0.189d得:d=73.5mm,取d=76mm。
冒口高度h=1.5d=1.5*75=114mm,取h=115mm;冒口质量m=1.04d3ρ=3.33Kg。
选用矩形冒口颈,由M n=ab/(a+b),a为冒口颈宽度,b为冒口颈高度;取a=50mm,b=6mm。
冒口形状及冒口颈尺寸如下图所示:(5)冒口补缩能力较核①冒口补缩距离与传统冒口的补缩概念不同,控制压力冒口的补缩距离,不是表明冒口把铁液输送到铸件的凝固部位,而是表明有凝固部位向冒口回填铁液能输送多大距离。
该距离与铁液冶金质量和之间模数密切相关,由于该铸件模数较大,显然冒口补缩距离足够。
○2冒口的位置及数目冒口应安放在铸件模数大的关键部位,该铸件采用内浇道通过侧冒口的引入方式。
经分析,由于冒口内金属液体积足以补缩铸件的液态收缩量,故此方案只用采用一个冒口即可。
3.5、浇注系统设计采用封闭式浇注系统,内浇道阻流,挡渣作用较好。
(1)浇注时间由经验公式确定T=AM n式中 A---经验系数,取2.3;M---浇冒系统重量+铸件重量,预设工艺出品率65%,每箱4件,则M 可取96.7Kg;n---指数,球墨铸铁取0.33。
代入上式,计算的t=10.7s,根据生产确定浇注时间为11s。
(2)内浇道A阻的计算根据奥赞公式A阻= m/[ρ*t*μ*(2*g*Hp)1/2]式中 m---铸型内铁液重量,由于每箱4件,故m=M/4= 24.2Kg;μ---流量系数,取0.4;t---浇注时间,取11s;g---重力加速度,取10m/s2Hp---平均静压头,取250mm。
代入计算得:A阻=390mm2=A内。
(3)浇道比取浇道比 A内:A横:A直=1:1.2:1.4A内=390 mm2,依浇道比计算得:A横=468 mm2;A直=546 mm2。
根据《常用球墨铸铁件浇注系统尺寸》,取A内=400 mm2;A横=480 mm2;A=560mm2。
直浇道截面如下图所示:3.6、工艺出品率校验最终,整箱中铸件重量为:15.71Kg;浇冒系统总重量为:17.27Kg。
故实际工艺出品率为:ω=(15.71*4)/(15.71*4+17.27)=78.4%,符合预期设计要求。