定积分的计算方法
定积分计算方法

定积分计算方法定积分是微积分中的重要概念,用于求解曲线下面的面积、求解物体的质量和质心等问题。
本文将介绍三种常见的定积分计算方法:几何意义法、Riemann和法和不定积分法。
1. 几何意义法几何意义法是通过将曲线下面的面积分割为若干个几何图形的面积,并求和得出结果。
这种方法适用于简单曲线的定积分计算。
以求解函数f(x)在区间[a, b]上的定积分为例,我们可以将[a, b]区间等分为n个小区间,每个小区间宽度为Δx=(b-a)/n。
然后,从第一个小区间开始,计算f(x)在该小区间上的函数值,乘以Δx得到该小区间上的面积。
接着,将所有小区间的面积相加,即可得到整个[a, b]区间上的定积分结果。
2. Riemann和法Riemann和法是通过将函数f(x)逐步逼近为一系列简单的几何图形,计算这些几何图形的面积之和来求解定积分。
首先,将[a, b]区间等分为n个小区间,每个小区间宽度为Δx=(b-a)/n。
然后,在每个小区间上选择一个样本点xi,计算其函数值f(xi),乘以Δx得到该小区间上的面积。
最后,将所有小区间上的面积相加,即可得到整个[a, b]区间上的定积分结果。
3. 不定积分法不定积分法是通过求解函数的原函数来计算定积分。
不定积分与定积分是相互关联的,可以通过求解定积分来得到不定积分,也可以通过求解不定积分来计算定积分。
对于给定的函数f(x),如果存在一个函数F(x),使得F'(x)=f(x),那么F(x)称为f(x)的原函数。
在这种情况下,我们有∫f(x)dx=F(x)+C,其中C为常数。
通过求解不定积分,我们可以得到函数的原函数F(x),然后将原函数的上界和下界代入,计算得到定积分的结果。
总结定积分的计算方法有几何意义法、Riemann和法以及不定积分法。
根据不同的问题和曲线特点,选择合适的计算方法能够有效地求解定积分。
需要注意的是,在使用这些方法计算定积分时,正确地确定积分的上界和下界是非常重要的。
定积分计算方法总结

定积分计算方法总结定积分是微积分中的一种重要概念,用于计算曲线与x轴之间的面积、曲线的弧长、质量、质心等物理量。
本文将总结定积分的计算方法,包括基本定积分的计算、换元积分法、分部积分法等。
一、基本定积分的计算基本定积分是指形如∫f(x)dx的定积分,其中f(x)为已知函数。
基本定积分的计算方法主要包括常数法、分段法和凑微分法。
1. 常数法:当被积函数为常数函数时,可以直接利用积分性质计算。
如∫kdx=kx+C,其中k为常数,C为积分常数。
2. 分段法:当被积函数在不同区间上有不同的表达式时,可以将积分区间划分为不同的子区间,在每个子区间上分别计算积分,然后再求和得到整个区间上的积分值。
3. 凑微分法:当被积函数可以通过凑微分的方式转化为已知函数的微分形式时,可以利用凑微分法进行计算。
凑微分法的关键是找到合适的凑微分项,使得被积函数可以表示为一个函数的微分。
例如,对于∫x^2dx,可以将其转化为∫(x^2+1-1)dx,然后利用积分性质计算。
二、换元积分法换元积分法是一种常用的定积分计算方法,通过引入新的变量进行替换,将原来的积分转化为更容易计算的形式。
换元积分法的关键是选择合适的换元变量和适当的换元公式。
1. 一般换元法:当被积函数中存在形如f(g(x))g'(x)的部分时,可以选择g(x)作为新的变量进行替换。
然后利用链式法则计算新的微分形式,将原来的积分转化为新变量的积分。
2. 三角换元法:当被积函数中存在形如sin(x)或cos(x)等三角函数时,可以选择三角函数的反函数作为新的变量进行替换。
然后利用三角函数的导数和反函数的导数计算新的微分形式,将原来的积分转化为新变量的积分。
三、分部积分法分部积分法是一种常用的定积分计算方法,通过将积分中的乘积拆解为两个函数的乘积,利用分部积分公式进行计算。
分部积分法的关键是选择合适的分部函数和求导函数。
分部积分公式为∫u(x)v'(x)dx=u(x)v(x)-∫v(x)u'(x)dx。
6.3定积分的计算方法

二、分部积分法
设 u = u( x ) , v = v ( x ) 在区间 [a , b] 上连续可 导, b b b b ∫au v′dx = ∫au dv = uv −∫av du. a
1 例
∫ 2 例 ∫ x e dx
0
1 2 x 0
1
e−1
ln(1 + x)dx key : 1
key : e − 2
1 0 t 0 −1
x = 0 ⇒ t = −1
= ln 2 x)在[−a, a]上连续,证明: 2∫0 f ( x) dx, 当 f ( x) 为偶函数时 . ∫−a f ( x) dx = 0, 当 f ( x) 为奇函数时 a 0 a f ( x )dx = f ( x )dx + f ( x )dx 证明
a
a
则 (1) 若 f ( x ) 为偶函数, f ( − x ) = f ( x ), 为偶函数, a a a ∴∫ f ( x)dx = ∫ [ f ( x) + f (− x)]dx = 2 ∫ f ( x )dx;
−a 0
0
−a
0
( 2) 若 f ( x ) 为奇函数,则 f ( − x ) = − f ( x ), 为奇函数,
1 练习: 练习:0 ∫ 1 + 3 x dx.
8
(2)∫ x2 a2 − x2 dx
0
a
a4 key : (1)3 ln 3; ( 2) π 16
在作三角代换时, 要当心条件 是否满足!!! 2是否满足!!! 在作三角代换时,尤其
1 ∫−11 + x2dx =
1
令x =
1 t
1 1 ∫−1 1 2 ⋅ (− t 2 )dt 1+ t
定积分计算方法总结

定积分计算方法总结定积分是微积分中的一个重要概念,用于计算曲线与坐标轴之间的面积、曲线长度、质量、动量等问题。
本文将总结几种常见的定积分计算方法。
1.基本积分法:也称为不定积分法,是定积分的基础。
通过求导的逆过程,可以将一些简单的函数反求积分。
例如,对于常数函数、幂函数、指数函数、三角函数等,都可以直接得到不定积分的表达式。
但对于复杂函数,基本积分法可能不适用。
2. 牛顿-莱布尼茨公式:也称为换元积分法。
该方法通过引入新的变量,将原积分转化为更简单的形式。
常见的换元变量有正弦函数、指数函数、幂函数等。
换元积分法的关键在于选择合适的换元变量,使得被积函数的形式变得更简单。
例如,对于∫sin(2x)dx,可以通过令u=2x进行换元,得到新的积分∫sin(u)du,再求解即可。
3. 分部积分法:也称为乘法积分法,是对乘积形式的积分进行处理的方法。
通过对乘积函数中的一个函数求导,另一个函数积分,可以将原积分转化为更简单的形式。
分部积分法的公式为∫udv=uv-∫vdu,其中u和v是可以求导或积分的函数。
该方法适用于许多复杂函数的积分计算,例如多项式函数与指数函数的积分。
4. 凑微分法:也称为凑常数法,是对积分式进行代换,使得被积函数的微分形式展开后更简单,从而进行积分的方法。
例如,对于∫x/(1+x^2)dx,可以通过令u=1+x^2进行代换,得到新的积分∫(1/u)du,再求解即可。
5. 变限积分法:该方法常用于计算曲线与坐标轴之间的面积。
当被积函数为连续函数时,可以通过使用反函数求解,将定积分转化为一系列不定积分的差值。
例如,对于求解曲线y=f(x)与x轴所围成的面积,可以将其表示为∫[a,b]f(x)dx=[F(x)]a^b,其中F(x)是f(x)的原函数。
通过求F(x)的反函数,可以将定积分简化为计算两个不定积分的差值。
6. 参数方程法:该方法适用于计算平面曲线围成的面积。
当曲线由参数方程给出时,可以通过将x或y表示为参数的函数,进而将面积转化为定积分的形式。
求定积分的四种方法

求定积分的四种方法定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法.一、定义法例1 用定义法求230x dx ⎰的值.分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限.解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n. (2)近似代替:△32()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭(3)求和:33111222n n n i i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ =443332244221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦ =224(21)lim n n n n→∞++==4. ∴230x dx ⎰=4..评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲.二、微积分基本定理法例2 求定积分221(21)x x dx ++⎰的值.分析:可先求出原函数,再利用微积分基本定理求解.解:函数y =221x x ++的一个原函数是y =323x x x ++.所以.221(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.三、几何意义法例3 求定积分11dx -⎰的值.分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积.因为2S π=半圆,又在x 轴上方. 所以11dx -⎰=2π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.四、性质法例4 求下列定积分: ⑴44tan xdx ππ-⎰;⑵22sin 1x x dx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.解:由被积函数tan x 及22sin 1x x x +是奇函数,所以在对称区间的积分值均为零.所以⑴ 44tan xdx ππ-⎰=0;⑵22sin 1x x dx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a a f x dx -⎰=20()a f x dx ⎰;②当f (x )为奇函数时,()a a f x dx -⎰=0.。
定积分的计算方法与技巧

定积分的计算方法与技巧定积分是高等数学中重要的一部分,它在数学、物理学、工程学等领域都有广泛应用。
本文将介绍定积分的基本概念和计算方法,以及一些常用的技巧。
一、定积分的基本概念定积分是对连续函数在一定区间上的面积进行求解的方法。
设f(x) 在区间 [a,b] 上连续,则它在该区间上的定积分为:∫(b,a) f(x) dx其中,∫是积分符号,f(x) 是被积函数,dx 表示积分变量。
二、定积分的计算方法1. 基本积分公式对于一些常见的函数,有一些基本积分公式可供使用。
比如:∫x^n dx = x^(n+1) / (n+1) + C (n≠-1)∫e^x dx = e^x + C∫sinx dx = -cosx + C∫cosx dx = sinx + C等等,使用这些基本积分公式可以简化复杂的计算过程。
2. 函数的分段积分对于一些在区间上不连续的函数,可以尝试将区间划分成几个子区间,然后在每个子区间上分别进行积分计算。
这个方法被称为分段积分。
3. 反常积分对于某些函数,其在一定区间上可能无法被积分,这时需要使用反常积分的方法进行计算。
反常积分分为两种情况:无穷积分和间断积分。
无穷积分是对于某些函数在无穷区间上的积分。
间断积分是对于某些函数在一定区间上存在间断点的积分。
三、定积分的技巧1. 积分中的代换对于一些复杂的积分式,可以使用代换的方法将其转化成一些已知的积分式,从而简化计算。
例如,对于∫cos(x^2)dx ,可以使用代换 y=x^2 ,将积分式转化成∫cos(y)dy 。
2. 微积分基本定理微积分基本定理指出,对于连续函数 f(x) ,其在区间 [a,b] 上的定积分可以表示成其原函数 F(x) 在区间 [a,b] 上的值之差,即:∫(b,a) f(x) dx = F(b) - F(a)这个定理可以用来简化一些定积分的计算。
3. 奇偶对称性对于一些奇偶对称的函数,其在区间 [a,b] 上的定积分可以简化为:∫(b,a) f(x) dx = 2∫(b,a/2) f(x) dx (偶函数)∫(b,a) f(x) dx = 0 (奇函数)例如,对于 f(x) = sin(x) ,其在区间 [0,π] 上的定积分可以简化为:∫(π,0) sin(x) dx = 2∫(π/2,0) sin(x) dx = 24. 积分中的分数分解对于一些积分式中含有分数的情况,可以使用分数分解的方法将其拆分成一些已知的积分式。
定积分基本计算公式

定积分基本计算公式定积分是微积分中的一种重要的概念。
它是对连续函数在一定区间上的积分运算,可以用于计算曲线下的面积、曲线的弧长、曲线的平均值等。
在求定积分时,可以使用一些基本的计算公式来简化运算过程。
下面将介绍一些定积分基本计算公式。
1.基本积分公式(1) 常数积分:∫kdx=kx+C (k为常数,C为常数)(2) 幂函数积分:∫x^ndx=1/(n+1)·x^(n+1)+C (n≠-1,C为常数)(3) 指数函数积分:∫e^xdx=e^x+C (C为常数)(4) 对数函数积分:∫1/xdx=ln,x,+C (C为常数)(5)三角函数积分:∫sinxdx=-cosx+C (C为常数)∫cosxdx=sinx+C (C为常数)∫sec^2xdx=tanx+C (C为常数)∫csc^2xdx=-cotx+C (C为常数)2.基本定积分公式(1)以x为变量的定积分:∫kdx=kx (其中k为常数)∫x^ndx=1/(n+1)·x^(n+1) (其中n≠-1)∫e^xdx=e^x∫1/xdx=ln,x∫sinxdx=-cosx∫cosxdx=sinx∫sec^2xdx=tanx∫csc^2xdx=-cotx∫secx·tanxdx=secx (其中x≠π/2+kπ,k为整数)∫cscx·cotxdx=-cscx (其中x≠kπ,k为整数)(2)基本函数的定积分:∫sin(ax+b)dx=-1/a·cos(ax+b)+C (C为常数)∫cos(ax+b)dx=1/a·sin(ax+b)+C (C为常数)∫e^(ax+b)dx=1/a·e^(ax+b)+C (C为常数)(3)积分的线性性质:若f(x)和g(x)都是可积函数,k为常数,则有:∫(kf(x)+g(x))dx=k∫f(x)dx+∫g(x)dx3.牛顿-莱布尼茨公式若函数F(x)是连续函数f(x)的一个原函数,即F'(x)=f(x),则有:∫f(x)dx=F(x)+C (C为常数)4.分部积分法若函数u(x)和v(x)都是可导函数,则有:∫u(x)v'(x)dx=u(x)v(x)-∫v(x)u'(x)dx5.代换法当计算定积分过程中,可以进行变量代换,将原来的积分变为更简单的形式。
定积分计算方法总结

定积分计算方法总结定积分是微积分中的重要概念,用于计算曲线下方的面积、变量间的平均值、曲线的长度等问题。
在计算定积分时,有几种常见的方法可以使用。
一、基本定积分计算方法1.函数不可导情况下的计算方法:当函数在闭区间上不可导时,可以将该区间划分成多个子区间,然后在各子区间上分别求积,最后求和。
2. 函数可导情况下的计算方法:对于可导函数,可以使用Newton-Leibniz公式求解定积分。
若函数F(x)是f(x)的一个原函数,即F'(x) = f(x),则有∫[a,b] f(x) dx = F(b) - F(a)。
二、几何意义的计算方法1.面积计算:当被积函数为非负函数时,定积分表示积分区间上的曲线与x轴之间的面积。
使用定积分计算面积时,要先找到积分区间,并选择一个适当的被积函数。
2.长度计算:当被积函数为非负函数时,定积分可以表示曲线的弧长。
通过将曲线分成小线段,并用小线段长度之和逼近曲线的弧长,然后取极限即可得到曲线的弧长。
三、换元法换元法是一种常用的定积分计算方法,通过代换变量的方式来简化被积函数。
具体步骤如下:1.将被积分函数中的变量替换为一个新的变量,使得替换后的函数能够更容易积分。
2. 计算新变量的微分形式dx,然后求解出新的积分上下限。
3.将原函数转化为新变量的函数,并根据新的上下限计算定积分。
4.最后要将新变量换回原变量的形式。
四、分部积分法分部积分法是通过Leibniz公式的一个特殊情况来进行定积分计算的方法。
具体步骤如下:1. 选择u和dv,其中u是整个被积函数的一个部分,dv是剩余的部分。
2. 求解du和v分别对x的积分。
3. 将原函数表示为uv积分减去∫vdu,其中v需要对x进行积分。
4.根据上述公式计算定积分。
五、极坐标下的计算方法当被积函数围成的区域具有对称性或者特殊的形状时,可以使用极坐标进行计算。
1.将被积函数与曲线转化为极坐标形式,即用r和θ表示。
2. 根据极坐标的面积元素dA=rdrdθ,计算出面积元素dA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原式
/4 tan 2 t sec2 t
0
sec4 t dt
/ 4 sin2 t dt 1
/4
(1 cos 2t)dt
0
20
1 sin2t /4 1 .
84
0 84
7
第7页/共31页
例8 求函数 y x2 在区间[1 , 3 ] 上的平均值.
1 x2
22
解
3
2 1
2
1
30 (t 1 1 t )dt
3( 1 2
t2
t
ln | 1
t
|
)2 0
3ln 3 .
5
第5页/共31页
例6 计算 ln3 e x 1 dx . 0
解 令 ex 1 t ,e x 1 t 2 ,x ln(t 2 1) ,
dx
2t t2
1
dt
,x
:0
ln 3 ,
t
:
2 2,
x t
f ( x)dx
a
f (t)dt
a f ( x)dx ,
a
0
0
a
f ( x)dx
a
[ f (x)
f ( x)]dx ,
a
0
10
第10页/共31页
a
a
f ( x)dx [ f ( x) f ( x)]dx
a
0
(1) f ( x)为偶函数, 则
y y f (x)
f (x) f (x),
1
2 x
1
1 x 2 (e x e x 1) dx 2 1 x2 dx 2 .
1
0
3
12Leabharlann 第12页/共31页例11 设 f ( x) 是以 T 为周期的连续函数,证明:
aT f ( x)dx
T f ( x)dx .
a
0
aT
证
f (x)dx
a
0
T
aT
a f ( x)dx 0 f (x)dx T f (x)dx ,
奇函数
1 (x
1 x2 )2 dx
1 ( x2 2x 1 x2 1 x2 )dx
1
1
1
1dx
1
2x
1 x2 dx 2 .
1
1
奇函数 奇函数
1 ln( x
1 x2 )dx 0 ,
1
1
(
1
1 2x
1
1 ) dx
2
0
,
1
2 x
1
(1 ln )dx dx 2 ,
aT f ( x)dx x T t
a
f (t T )dt
T
0
a
0
0 f (t)dt a f ( x)dx ,
a T
T
a f ( x)dx 0 f ( x)dx .
13
第13页/共31页
例12 设 f (x) 在[0,1] 上连续,证明:
/2
(1) 0 f (sin x)dx 20 f (sin x)dx .
0 1 x2
2 0 1 x2
2
1 x2 5 1.
0
3
第3页/共31页
例4 计算 sin x sin3 x dx . 0
解
原式
sin x cos 2 x dx
| cos x |
sin x dx
0
0
2 cos x
0
sin x dx
cos x
sin x dx
2
2 0
sin x dsin x
a
a
f ( x) dx 2 f ( x) dx
a
0
(2) f ( x)为奇函数, 则
o
x
y y f (x)
f (x) f (x),
a
f ( x)dx 0 . a
o
x
11
第11页/共31页
sin x cos x
例10
dx 0 .
1 a2 sin2 x b2 cos 2 x
设 f (x) 在[a, a] 上连续,那么
a
a
(1) 若 f ( x) 为偶函数,则 f ( x)dx 2 f ( x)dx ;
a
0
a
(2) 若 f ( x) 为奇函数,则 f ( x) dx 0 . a
证
a
f ( x)dx
a
f ( x)dx
0 f ( x)dx ,
a
0
a
0
x0 x0,
求
2
f ( x 1)dx .
0
解 令 x1 t,
原式
1
f (t)dt
1
f ( x)dx
1
1
1
0 1 x
2xdx
dx
0
1 1 x
x2 1
0
(1
2 )dx
0
1
1 x
1 1 2ln(1 x) 0 2 ln 2 . 1
9
第9页/共31页
利用函数的奇偶性简化计算.
2
第2页/共31页
例1 / 2 cos 5 x sin x dx / 2 cos 5 x d cos x
0
0
1 cos6 x / 2 1 .
6
0
6
例2 3
dx
2
3d
x 2arctan
3 2 x .
0 x (1 x) 0 1 x
03
例3 2 x dx 1 2 1 dx2
sin x dsin x
2
2
s
in
2 3
x
2
2
s
2
in3
x
4
.
3
03
23
4
第4页/共31页
8 dx
例5 计算
.
01 3 x
解 令 3 x t ,x t 3 ,dx 3t 2dt , x : 0 8, t : 0 2,
原式
2 3t 2
2 t2 11
dt 3
dt
01 t
0 1 t
2
x2 dx x sint 1 x2
3 6
sin2 t cos t
cos t
dt
3
sin2
t
dt
6
1 2
3
(1
cos 2t)dt
6
12
1 sin2t / 3
4
/6
,
12
所以平均值等于
12
(
3 2
1 2
)
3 1 .
12
8
第8页/共31页
例9
设
f
(x)
12xx, 1 x
,
1
第1页/共31页
b
f ( x)dx
f [(t)] (t)dt
a
注意:
(1) 应用定积分的换元法时,与不定积分比较, 多一事:换上下限; 少一事:不必回代;
(2) x (t ) 应单调,当 t 从 变到 时, x 从 a 变 到 b,不重复,不遗漏;
(3) 逆用上述公式,即为“凑微分法”,不必换限.
b
f ( x)dx
f [(t)] (t)dt
a
证 因为 f ( x) 在 [a, b] 上连续,故原函数存在,设 F(x)是 f (x) 的一个原函数,则有
f [(t)](t)dt f [(t)]d(t)
F[ (t )]
F[ (
)]
F[ ( )]
b
F (b) F (a) a f ( x)dx .
原式
2 2t
2
1
2
t
t2
dt 1
2
2
(1
t
2
) dt 1
2(2 2) ln t 1 2 2(2 2) ln 1 ln
t1 2
3
2 1 2 1
2(2 2 ) ln 3 2 ln( 2 1) .
6
第6页/共31页
例7
计算
1 x2 0 (1 x 2 )2 dx .
解 令 x tant, dx sec2t dt , t : 0