工业自动化系统的基本组成

合集下载

自动化的基本原理

自动化的基本原理

自动化的基本原理自动化技术是现代工业生产中不可或者缺的一部份,它通过运用各种技术手段,实现对生产过程的自动控制和管理。

本文将详细介绍自动化的基本原理,包括自动化的定义、自动化系统的组成、自动化控制的基本原理和自动化技术的应用。

一、自动化的定义自动化是指通过使用各种控制设备和技术手段,使机械、电子、计算机等设备能够自动完成生产过程中的各种操作和控制,从而提高生产效率、降低成本、提高产品质量和安全性。

二、自动化系统的组成自动化系统通常由以下几个组成部份构成:1. 传感器:用于感知和采集各种物理量和信号,如温度、压力、流量等。

2. 执行器:根据控制信号执行相应的操作,如开关、机电等。

3. 控制器:接收传感器采集的信号,根据预定的控制算法生成控制信号,控制执行器的工作。

4. 人机界面:提供与自动化系统进行交互的界面,如触摸屏、键盘等。

5. 通信网络:用于实现自动化系统之间的数据传输和通信,如以太网、无线通信等。

6. 数据处理与存储:对采集到的数据进行处理和分析,并将其存储备份。

三、自动化控制的基本原理自动化控制的基本原理是通过对采集到的数据进行处理和分析,根据预定的控制算法生成控制信号,从而实现对执行器的控制。

具体包括以下几个步骤:1. 传感器采集数据:传感器感知和采集各种物理量和信号,并将其转化为电信号。

2. 数据处理与分析:对采集到的数据进行处理和分析,如滤波、放大、数字化等。

3. 控制算法生成:根据预定的控制算法,对处理后的数据进行计算和判断,生成相应的控制信号。

4. 控制信号输出:将生成的控制信号通过控制器输出给执行器,控制其工作。

5. 反馈控制:通过传感器再次采集执行器工作状态的数据,并与预定的目标值进行比较,调整控制算法和控制信号,实现闭环控制。

四、自动化技术的应用自动化技术广泛应用于各个领域,如工业生产、交通运输、农业、医疗等。

以下是几个常见的应用场景:1. 工业生产:自动化生产线可以实现对产品的自动装配、检测和包装,提高生产效率和产品质量。

工业生产过程中的自动化控制系统

工业生产过程中的自动化控制系统

工业生产过程中的自动化控制系统一、引言自动化技术在当今工业生产中发挥着越来越重要的作用。

工业生产过程中的自动化控制系统是指通过计算机或其他设备控制工业生产中的各种设备和机械实现生产自动化。

本文将深入探讨工业生产过程中的自动化控制系统的原理与应用。

二、自动化控制系统的基本原理自动化控制系统通过传感器、执行器和控制器组成,实现对工业生产环境中的物理量的测量、处理和控制。

传感器用于感知物理量,例如温度、压力、流量等。

执行器用于控制设备和机械的运动,例如电动机、气动执行机构等。

控制器则负责处理传感器收集到的数据并产生控制信号,以实现对执行器的控制。

三、自动化控制系统的分类根据不同的应用场景和需求,自动化控制系统可以分为以下几类:1. 过程控制系统:用于控制化工、石化、电力等过程工业的生产过程,保持系统在预定范围内工作。

2. 离散控制系统:用于控制离散制造工业中的生产过程,例如汽车制造、机械制造等。

3. 机器人控制系统:用于控制工业机器人的运动和操作,广泛应用于汽车制造、电子组装等行业。

4. 智能化控制系统:利用人工智能、机器学习等技术实现对工业生产过程的智能化管理和控制。

四、自动化控制系统的关键技术1. 传感技术:传感器是自动化控制系统的重要组成部分,能够将物理量转化为电信号。

目前常用的传感技术包括压力传感技术、温度传感技术、流量传感技术等。

2. 控制算法:控制算法是自动化控制系统中的核心部分,能够根据传感器数据生成控制信号,如PID控制算法、模糊控制算法等。

3. 通信技术:自动化控制系统需要实现设备和机械之间的通信,常用的通信技术包括以太网、无线通信等。

4. 可靠性技术:工业生产过程需要保证系统的可靠性和安全性,因此可靠性技术十分重要,如备份系统、故障诊断技术等。

五、自动化控制系统在工业生产中的应用1. 提高生产效率:自动化控制系统可以减少人工操作,提高生产效率和产量,减少人为操作误差。

2. 降低生产成本:自动化控制系统可以减少人工成本,提高生产效益,降低生产成本。

工业自动化解决方案

工业自动化解决方案

工业自动化解决方案工业自动化是指通过使用各种控制设备、传感器和计算机技术,对工业生产过程进行自动化控制和管理的一种技术手段。

随着科技的不断进步和发展,工业自动化在现代制造业中扮演着极为重要的角色。

本文将介绍工业自动化的概念、应用领域以及解决方案。

一、工业自动化的概念工业自动化是一种将生产流程中的任务交由机械设备或自动化设备完成的方式。

通过自动控制系统,可以实现对生产过程的自动监测、自动控制和自动调节,从而提高生产效率和产品质量。

工业自动化的核心是自动化控制系统。

该系统由传感器、执行器、控制器和人机界面等多个组成部分组成。

传感器用于采集物理量信号,执行器用于执行指令,控制器用于控制过程或系统的关键参数,而人机界面则用于人机交互。

这些组成部分相互配合,协同工作,实现了现代化的生产流程。

二、工业自动化的应用领域工业自动化广泛应用于各个领域,包括制造业、化工、电力、石油、交通运输、航天航空等。

下面以几个具体应用领域为例进行介绍。

1. 制造业在制造业中,工业自动化可以帮助企业提高生产效率和降低生产成本。

例如,在汽车制造业中,工业机器人可以完成零部件的加工、焊接、喷涂等工作,代替了传统的人工操作。

这不仅可以提高生产效率,还可以改善产品质量。

2. 化工在化工行业中,工业自动化可以帮助企业实现生产过程的连续化和自动化。

通过自动化控制系统,可以实时监测和调节生产过程中的温度、压力、流量等参数,从而保证生产过程的安全性和稳定性。

3. 电力在电力行业中,工业自动化可以帮助企业实现电力系统的自动化运行和监控。

例如,通过自动化控制系统,可以实时监测电力系统的负荷情况,自动调节发电机组的输出功率,以保证电力系统的稳定供应。

4. 石油在石油行业中,工业自动化可以帮助企业实现油田采油、炼油和储运等过程的自动化。

例如,通过自动化控制系统,可以实时监测油井的生产状态、油罐的油位情况,并根据需要自动调节泵的工作状态。

5. 交通运输在交通运输领域,工业自动化可以帮助企业实现交通管理的自动化和智能化。

工业自动化控制

工业自动化控制

工业自动化控制工业自动化控制是指利用计算机、仪器仪表和控制设备等技术手段,对工业生产过程中的各种参数进行实时监测、分析和控制的一种技术体系。

其目的是提高生产效率、降低生产成本、提高产品质量和稳定性。

一、概述工业自动化控制是通过对工业生产过程中的各种参数进行实时监测、分析和控制,实现生产过程的自动化和智能化。

它涵盖了工业生产的各个环节,包括生产计划、生产调度、生产执行、质量控制等。

工业自动化控制系统由硬件设备和软件系统组成,硬件设备包括传感器、执行器、控制器等,软件系统包括监控系统、数据采集系统、数据处理系统等。

二、工业自动化控制的基本原理1. 实时监测:通过传感器对生产过程中的各种参数进行实时监测,如温度、压力、流量等。

2. 数据采集:将传感器采集到的数据进行采集和存储,以备后续分析和控制使用。

3. 数据处理:对采集到的数据进行处理和分析,提取实用的信息,如异常检测、趋势分析等。

4. 控制策略:根据数据处理的结果,制定相应的控制策略,如PID控制、含糊控制等。

5. 执行控制:通过执行器对生产过程进行控制,如调节阀门、机电驱动等。

6. 监控系统:通过监控系统对整个生产过程进行实时监控和管理,及时发现问题并采取措施。

三、工业自动化控制的应用领域1. 创造业:工业自动化控制可以实现生产线的自动化,提高生产效率和产品质量。

2. 石油化工:工业自动化控制可以对化工生产过程进行精确控制,提高生产效率和安全性。

3. 电力系统:工业自动化控制可以对电力系统进行实时监测和控制,提高供电可靠性和稳定性。

4. 矿山冶金:工业自动化控制可以对矿山冶金过程进行精确控制,提高生产效率和资源利用率。

5. 污水处理:工业自动化控制可以对污水处理过程进行自动化控制,提高处理效率和环保性能。

四、工业自动化控制的优势1. 提高生产效率:自动化控制可以实现生产过程的连续化和高效化,提高生产效率。

2. 降低生产成本:自动化控制可以减少人工操作,降低生产成本。

自动化系统和自动化装置介绍

自动化系统和自动化装置介绍

自动化系统和自动化装置介绍随着科技的不断进步,自动化技术也在不断发展。

自动化系统和自动化装置已经成为现代工业生产的重要组成部分,其应用范围不仅限于工业生产,还涉及到交通、医疗、农业等领域。

本文将介绍自动化系统和自动化装置的概念、分类以及应用。

一、自动化系统自动化系统是指由传感器、执行器、控制器和人机界面等组成的自动化控制系统。

其中,传感器用于获取被控对象的信息,执行器用于对被控对象进行控制,控制器用于对传感器和执行器进行控制,并通过人机界面与操作者进行交互。

自动化系统可以分为开环控制系统和闭环控制系统两种。

1.开环控制系统开环控制系统是指控制器仅根据输入信号进行控制,无法对输出进行反馈调节的控制系统。

该系统的特点是简单、易于实现,但受到外界干扰较大,控制精度较低。

常见的开环控制系统有计时控制系统、计数控制系统等。

2.闭环控制系统闭环控制系统是指控制器不仅根据输入信号进行控制,还能通过反馈调节输出信号的控制系统。

该系统的特点是稳定、精度高,但较为复杂。

常见的闭环控制系统有PID控制系统、自适应控制系统等。

二、自动化装置自动化装置是指利用自动化技术实现工业生产过程中各种操作的自动化设备。

自动化装置可以分为传动装置、控制装置和执行装置等三种。

1.传动装置传动装置是指利用电机、减速机等传动机构实现运动传递的装置。

常见的传动装置有传送带、链式输送机等。

2.控制装置控制装置是指利用控制器、继电器等设备对工业生产过程进行控制的装置。

常见的控制装置有PLC控制系统、机器人控制系统等。

3.执行装置执行装置是指能够将控制信号转化为运动或其他物理效应的装置。

常见的执行装置有气动元件、液压元件等。

三、自动化系统和自动化装置的应用自动化系统和自动化装置已经广泛应用于现代工业生产过程中。

例如,利用自动化系统和自动化装置可以实现工业生产自动化、智能化、柔性化,提高生产效率和质量。

同时,还可以降低能源消耗、减少环境污染,实现可持续发展。

工业自动化系统的架构与组成要素

工业自动化系统的架构与组成要素

监控与调度中心
数据采集与监控系统(SCADA)
监控调度中心是工业自动化系统的“大脑”,负责整个系统的监控、调度和管理。数据 采集与监控系统负责对各环节的数据进行采集、处理和显示,以及对整个系统的运行状
态进行监控。
数据库与管理软件
监控调度中心还需要建立数据库以存储大量的实时数据和历史数据,并配备相应的管理 软件对数据库进行管理,以便对生产过程进行分析和优化。
改善工作环境
自动化系统可以减轻工人的劳 动强度,改善工作环境,提高
工作效率。
工业自动化系统的历史与发展
历史回顾
工业自动化系统的历史可以追溯 到20世纪50年代,当时出现了第 一代工业机器人和自动生产线。
发展趋势
随着技术的不断进步,工业自动 化系统正朝着智能化、网络化、 集成化的方向发展。
技术创新
未来工业自动化系统将不断涌现 新的技术创新,如物联网、云计 算、大数据等技术的应用将进一 步推动工业自动化的发展。
06
工业自动化系统的案例分析
案例一:智能制造工厂的自动化系统架构
总结词
智能制造工厂的自动化系统架构是一个复杂且高度集 成的系统,它通过各种传感器、控制器和执行器实现 生产过程的自动化和智能化。
详细描述
智能制造工厂的自动化系统架构通常包括传感器、控制 器、执行器、人机界面和通信网络等组成部分。传感器 用于检测各种物理量,如温度、压力、流量等,并将这 些信息传输到控制器。控制器根据接收到的信息进行计 算和控制,然后通过执行器驱动相应的设备或机构进行 操作。人机界面可以让操作员监控和控制整个系统,而 通信网络则负责将各个组件连接在一起,实现信息的共 享和交互。
边缘计算在工业自动化中的应用
数据处理与分析

PLC的基本组成和工作原理

PLC的基本组成和工作原理

PLC的基本组成和工作原理PLC(Programmable Logic Controller)是一种用于实现工业自动化控制的计算机控制系统。

其组成和工作原理如下。

1.基本组成PLC系统通常由中央处理器CPU、内存模块、输入模块、输出模块和通信模块组成。

-中央处理器(CPU):是PLC系统的核心部件,负责执行控制程序并进行数据处理和逻辑运算。

-内存模块:用于存储程序代码、数据和中间结果等信息。

-输入模块:负责接收来自外部的传感器、开关等输入信号,并将其转换为数字信号供CPU处理。

-输出模块:负责将CPU处理后的数字信号转换为电流、电压等输出信号,控制执行器、驱动器等执行设备。

-通信模块:用于与其他PLC系统、计算机或设备进行数据交换和通信。

2.工作原理PLC系统的工作原理可以分为五个步骤:扫描输入、执行程序、更新输出、循环扫描和通信。

-扫描输入:将输入模块接收到的外部信号转换为数字信号,并存储在内存中。

这些外部信号通常来自传感器、开关等设备,如温度传感器、按钮开关等。

-执行程序:CPU根据存储在内存中的控制程序进行逻辑运算和数据处理。

控制程序通常由用户通过编程语言编写,用于实现控制逻辑和算法。

-更新输出:根据CPU执行程序的结果,将输出信号存储在内存中。

输出模块将内存中的数字信号转换为电流、电压等输出信号,控制执行设备的执行器、驱动器等,如电机、电磁阀等。

-循环扫描:PLC系统以循环的方式不断扫描输入、执行程序和更新输出的过程,实现对工业控制系统的持续监测和控制。

-通信:PLC系统可以通过通信模块与其他PLC系统、计算机或设备进行数据交换和通信,实现远程监测和控制。

PLC系统的工作原理可以通过一个简单的例子来说明。

假设有一个自动灯控系统,根据光照强度自动控制灯的开关。

传感器将光照强度转换为输入信号,并将其传递给PLC系统的输入模块。

CPU执行存储在内存中的控制程序,判断光照强度是否低于设定值。

如果低于设定值,则CPU更新内存中的输出信号。

工业自动化系统操作与维护手册

工业自动化系统操作与维护手册

工业自动化系统操作与维护手册第1章系统概述 (4)1.1 系统简介 (4)1.2 系统组成 (4)1.3 系统功能 (5)第2章系统操作准备 (5)2.1 操作环境要求 (5)2.1.1 温度要求:操作环境温度应保持在5℃至40℃范围内,避免极端温度对设备造成损害。

(5)2.1.2 湿度要求:操作环境湿度应保持在10%至90%范围内,无凝露现象,以保证设备正常运行。

(5)2.1.3 通风要求:操作环境应具备良好的通风条件,以保证设备散热良好,避免因过热导致的设备故障。

(5)2.1.4 �照明要求:操作环境应提供充足的照明,以便操作人员能够清晰地观察设备运行状态。

(5)2.1.5 电源要求:操作环境应提供稳定、可靠的电源,电压波动范围应在±10%以内,频率波动范围应在±5%以内。

(5)2.2 操作前检查 (5)2.2.1 设备外观检查:检查设备表面是否有异常磨损、变形、松动等现象,保证设备外观完好。

(6)2.2.2 连接线缆检查:检查设备连接线缆是否齐全、无损坏,连接是否牢固。

(6)2.2.3 仪表检查:检查设备上的仪表是否显示正常,有无异常报警。

(6)2.2.4 传感器检查:检查传感器是否安装到位,反应是否灵敏。

(6)2.2.5 零部件检查:检查设备零部件是否齐全,有无缺失、损坏。

(6)2.3 操作流程 (6)2.3.1 开机准备: (6)2.3.2 自检: (6)2.3.3 设备运行: (6)2.3.4 停机操作: (6)2.3.5 设备维护: (6)第3章控制系统操作 (6)3.1 PLC编程与操作 (7)3.1.1 PLC概述 (7)3.1.2 PLC编程语言 (7)3.1.3 PLC编程操作步骤 (7)3.1.4 PLC操作注意事项 (7)3.2 人机界面操作 (7)3.2.1 人机界面概述 (7)3.2.2 人机界面操作步骤 (7)3.2.3 人机界面操作注意事项 (8)3.3 操作 (8)3.3.1 概述 (8)3.3.2 操作步骤 (8)3.3.3 操作注意事项 (8)第4章传动系统操作 (8)4.1 电机操作与调试 (8)4.1.1 电机概述 (8)4.1.2 电机操作步骤 (8)4.1.3 电机调试 (9)4.2 变频器操作与调试 (9)4.2.1 变频器概述 (9)4.2.2 变频器操作步骤 (9)4.2.3 变频器调试 (10)4.3 伺服驱动器操作与调试 (10)4.3.1 伺服驱动器概述 (10)4.3.2 伺服驱动器操作步骤 (10)4.3.3 伺服驱动器调试 (11)第5章传感器与执行器操作 (11)5.1 传感器操作与调试 (11)5.1.1 传感器概述 (11)5.1.2 传感器操作步骤 (11)5.1.3 传感器调试方法 (11)5.2 执行器操作与调试 (11)5.2.1 执行器概述 (11)5.2.2 执行器操作步骤 (11)5.2.3 执行器调试方法 (12)5.3 传感器与执行器的维护 (12)5.3.1 传感器维护 (12)5.3.2 执行器维护 (12)第6章系统调试与优化 (12)6.1 系统调试流程 (12)6.1.1 调试前的准备工作 (12)6.1.2 单机调试 (13)6.1.3 联机调试 (13)6.1.4 系统调试 (13)6.1.5 调试记录与分析 (13)6.2 系统功能优化 (13)6.2.1 硬件优化 (13)6.2.2 软件优化 (13)6.2.3 系统参数优化 (13)6.2.4 系统集成优化 (13)6.3 故障诊断与分析 (13)6.3.1 故障诊断方法 (13)6.3.2 故障分析 (14)6.3.3 故障处理 (14)6.3.4 预防措施 (14)第7章系统维护与保养 (14)7.1 日常维护与保养 (14)7.1.1 日常检查 (14)7.1.2 日常保养 (14)7.2 定期维护与保养 (14)7.2.1 定期检查 (14)7.2.2 定期保养 (15)7.3 系统备份与恢复 (15)7.3.1 系统备份 (15)7.3.2 系统恢复 (15)第8章安全生产与防护 (15)8.1 安全操作规程 (15)8.1.1 操作前的安全检查 (15)8.1.2 操作中的安全规范 (16)8.1.3 操作后的安全整理 (16)8.2 安全防护措施 (16)8.2.1 电气安全防护 (16)8.2.2 机械安全防护 (16)8.2.3 环境安全防护 (16)8.3 紧急处理 (16)8.3.1 紧急停机 (16)8.3.2 报告 (16)8.3.3 调查与处理 (17)第9章常见故障排除 (17)9.1 故障诊断方法 (17)9.1.1 观察法 (17)9.1.2 分段法 (17)9.1.3 参数检查法 (17)9.1.4 替换法 (17)9.1.5 诊断软件法 (17)9.2 PLC故障排除 (17)9.2.1 检查电源 (17)9.2.2 查看报警信息 (17)9.2.3 检查输入/输出信号 (17)9.2.4 检查程序 (18)9.2.5 更新固件 (18)9.3 传动系统故障排除 (18)9.3.1 检查电机 (18)9.3.2 检查驱动器 (18)9.3.3 检查传动机构 (18)9.3.4 检查传感器 (18)9.3.5 检查控制信号 (18)第10章技术支持与售后服务 (18)10.1 技术支持 (18)10.1.1 技术咨询 (18)10.1.2 技术培训 (18)10.1.3 技术更新与升级 (19)10.2 售后服务 (19)10.2.1 三包服务 (19)10.2.2 故障排查与维修 (19)10.2.3 定期巡检与保养 (19)10.3 配件供应与维修 (19)10.3.1 配件供应 (19)10.3.2 配件维修 (19)10.3.3 配件库存管理 (19)第1章系统概述1.1 系统简介工业自动化系统是现代工业生产过程中不可或缺的技术手段,它融合了计算机技术、自动控制技术、通信技术及机械电子技术等多种先进技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统控制功能:

辊缝和轧制力控制


自动厚度控制
凸度调整 中间辊窜辊 平直度控制 轧机顺序控制 辅助系统顺序控制 诊断系统具有在线诊断、故障报警、报警分析、事故记录
自学习的数学模型:

输入数据和预设值 轧制表模型 张力模型 速度模型 机座辊缝模型 屈服应力模型 摩擦模型 平直度模型 位置模型 轧制线模型 反馈参数模型 自适应模型
1、 控制器

通用控制器——可编程控制器PLC PLC是将逻辑运算、顺序控制、定时、计数和算术运算等操作,以指令的形式存 贮于可编程的存储器中,并经过数字式或模拟式的输入输出部件,对生产设备和 过程进行控制的数字运算操作电子装置。 PLC是基于计算机技术和自动控制理论发展而来的,它既不同于普通的计算机, 又不同于一般的计算机控制系统,作为一种特殊形式的计算机控制装置,它在系 统结构,硬件组成,软件结构以及I/O通道,用户界面诸多方面都有其特殊性。 专用控制器—— 温度调节器、速度调节器等。
电磁阀
电磁换向阀
步进电机
3、 检测仪表
压力仪表、温度仪表、电压电流检测仪表、各类传感器、各种特殊仪表。电磁传感器Fra bibliotek压力传感器
温度传感器
光纤传感器
超声波传感器
显示仪表
编码器
4、 网络设备

交换器、集线器HUB、工业以太网交换机。
四、系统发展
控制系统的传统实现方法:

顺序控制系统:继电逻辑控制系统。 过程控制系统:常规仪表控制系统。 运动控制系统:拖动控制系统。 监控系统:常规显示、记录或报警仪表。

可靠性与适应性。 操作性与友好性。 灵活性与扩展性。 实时性。
五、实例分析
钛金板带轧机二级自动化系统 典型工业计算机网络控制系统:L1+L2 机电系统 + 计算机系统 + 网络拓扑 → 生产过程控制


集成的三电一体化系统: 电气设备、电子仪表、电子计算机 + 联网通信
钛金板带轧机二级自动化系统配置图
六、结束语
现代工业自动化系统技术的应用为我们创建一流的现代化企业、生产一流的 优质产品提供了有力的保证,是我们促进产品市场开拓、推动企业持续创新发展的 有效途径。
自动化技术方兴未艾,不少新的技术有待我们去开拓应用。愿每个有志于从事 自动化技术工作的工程技术人员不断掌握本领域一流的最新技术。
●顺序控制与回路控制 顺序控制开关逻辑控制 如:继电器矩阵控制、可编程序控制器 I/O模块输入输出控制。


回路控制连续调节控制 如: FM 458-1 DP 应用模块专为自由组态的高性能闭环控制和技术应用 (如运动控制)而设计。
●现代工业自动化系统
现代工业自动化系统是在现代工业企业大型化、连续化、高速化、快节奏生产的必 然产物。 基础自动化L1(控制层):现场设备控制系统
过程自动化L2(运行层):生产过程监控系统
工厂自动化L3(管理层):MES制造执行系统 企业自动化L4(经营层):ERP企业资源规划 工业自动化最新技术:工业计算机网络控制系统
三、常用器件
组成工业自动化系统的最基本的单元器件: 各类电器:主令器、断路器、接触器、继电器、驱动器等; 各类仪表: 传感器、热工仪表、专用仪表等; 各类计算机:可编程序控制器、工业计算机等。
电磁传感器
系统配置:




1、电气驱动系统 设备运行控制、电机调速控制、机械运动控制、流体介质控制。包括: 可回馈交/直整流逆变器+公共直流母线+可回馈逆变器(TDC控制)、ACS800系列驱动控制器 、电机 控制中心MCC等。 2、仪表检测系统 过程参数传感器、信号变换、采集、处理、传输。包括: 板形仪、X射线测厚仪、激光测速仪、张力计、辊缝位置传感器、轧辊压力传感器、线性绝对值编码 器,旋转多圈绝对值编码器,接近开关,温度传感器,压力传感器等。 3、计算机控制系统 控制模型、实时过程数据采集、状况分析、决策指令、系统管理、生产管理。包括: 硬件配置:L1基础控制器 AC800 PEC,L2服务器/工作站/工程师站、PDA远程数据采集机(IBA FOB-2i采集卡); 软件配置:Windons XP, Windows Server2003、Control IT基础开发软件、上位组态软件自动化扩 展系统800XA、IBA-PDA软件包、数据库管理软件等 。 4、网络通信系统 总线拓扑、系统集成、通信协议、信息交换。包括: 工业以太网+DP网、以太网交换器等。
计算机技术对工业控制技术的影响
实现计算机控制到几种尝试方案

直接数字控制系统(DDC)。 单片机控制。 总线式工控机。 可编程调节器。
计算机控制的现状及发展

可编程控制器(PLC)。 集散控制系统(DCS)。 现场总线控制系统(FCS)。 工业以太网。
计算机控制的设计原则
自动化系统结构
一个简单自动控制系统结构图
输入信号 控制器
控制信号
执行器 过程对象
输出信号
反馈信号
检测器

自动控制是基于反馈的技术。反馈理论的要素包括三个部分:测量、比较和 执行。测量关心的变量,与期望值相比较,用两者之间的偏差来纠正调节系 统的响应。因此,自动化技术的核心思想是反馈,通过反馈建立起输入(原 因)和输出(结果)之间的联系。使控制器可以根据输入与输出的实际情况 来决定控制策略,以便达到预定的系统功能。 系统构成前向通道和反馈通道两个通道,前向通道是任务执行的功能主体。
执行器-系统的手脚 执行器在自动控制系统中的作用就是相当于人的四肢,它接受调节 器的控制信号,改变操纵变量,使生产过程按预定要求正常运行。在生产现场,执行器直接 控制工艺介质,若选型或使用不当,往往会给生产过程的自动控制带来困难。因此执行器的 选择、使用和安装调试是个重要的环节。 传感器-系统的耳目 传感器被用来测量各种物理量,种类有温度传感器、流量传感器、压 力传感器等等。传感器要满足可靠性的要求,从传感器的输出信号中得到被测量的原始信息, 如果传感器不稳定,那么对同样的输入信号,其输出信号就不一样,则传感器会给出错误的 输出信号,也就失去了传感器应有的作用。

复杂自动化系统往往是多变量,多回路,多类型的系统。
X K X’ Y G
Y’ F
X = { x0,x1,x2,…xn } Y = { y0,y1,y2,…yn }
●主要组成部分及其作用
控制器-系统的大脑 自动控制系统中控制器在整个系统中起着重要的作用,扮演着系统 管理和组织核心的角色。系统性能的优劣很大程度上取决于控制器的好坏。
工业自动控制系统基本类型:

顺序控制系统:顺序控制是按照预先规定的时间顺序(或逻辑关系), 逐步对各设备或对象进行控制到方法。如电梯等。 过程控制系统:对工业生产过程中的各物理量(如温度、压力、液位 等)进行闭环控制,使其按照要求的规律变化。


运动控制系统:控制运动物体的转速或位置,使其按照要求的规律变 化。如调速系统,位置随动系统等。
自动控制:指在无人直接参与的情况下,利用控制装置使被控对 象(机器、设备)的某一个物理量自动地按照预定的规律运行. 控制系统:为实现某一控制目标所需要的物理部件(及软件)的 有机组合,通常由控制器和被控对象组成。 自动控制理论:是研究自动控制共同规律的科学,它包括以反馈 控制理论为基础的古典控制理论(单输入、单输出),以状态空 间为基础的现代控制理论(多输入、多输出)以及以模糊控制和 神经网络为代表的智能控制(不需精确数学模型)。
自动化基础技能
工业自动化系统的基本组成


一、概述
二、系统组成
三、常用器件 四、控制系统的发展 五、实例分析
一、概述
自动化(Automation),是指机器或装置在无人干预的情况下按规定的程序 或指令自动地进行操作或运行。
自动化装置是指无需人的参与就可以自动进行工作,完成特定任务的机器。 工业自动化系统是运用控制理论、仪器仪表、计算机和其它信息技术, 对工业生产过程实现检测、控制、优化、调度、管理和决策,以达到增 加产量、提高质量、降低消耗、确保安全为目标的集成系统。

2、 执行器

电动调节装置——


伺服阀——
电磁阀——是用电磁控制的工业设备,用在工业控制系统中调整介质的方向、流量、 速度和其他的参数。电磁阀不但能够应用在气动系统中,在油压的系统、水压的系 统中也能够得到相同或者类似的应用.

步进电机——作为执行元件,是机电一体化的关键产品之一, 广泛
应用在各种自动化控制系统中。



●传统控制与现代控制
PID控制——比例、积分、微分 PID控制器作为最早实用化的控制器已有50多 年历史,现在仍然是应用最广泛的工业控制器。PID
控制器简单易懂,使用中不需精确的系统模型等先
决条件,因而成为应用最为广泛的控制器。 现代控制——最优控制、自适应控制、预测控制、
自学习控制。。。
智能控制——模糊控制、专家系统、神经网络
监控系统:对生产过程中的大量运行参数进行采集、显示、记录或报 警。

二、系统组成
一个自动化系统无论结构多么复杂都有下面几个主要组成部分:

检测器:主要是获得反馈信息,计算目标值与实际值之间的差值; 控制器:相当于大脑在分析决策上的作用,适时地决定系统应该实施 怎样的调节控制;

执行器:完成控制器下达的决定; 对象: 被控制的客观实体。
相关文档
最新文档