常用复杂控制系统

合集下载

化工自动化及仪表第八章复杂控制系统 第一节串级控制系统

化工自动化及仪表第八章复杂控制系统  第一节串级控制系统

图8-4 加热炉温度串级控制系统方块图
图8-5
副回路(副控制系统)
串级
控制 系统 组成 原理 及术
主设 定值
主控 制器
副设 定值
副控 制器
干扰
操纵
变量
副被控
变量
执行器 副对象
-
-
副测量值
副测量、变送

主测量值
主测量、变送
(1) 组成原理
①将原被控对象分解为两个串联的被控对象。
干扰 主对象
主被控 变量
TC
TT
PC
PT
燃料油 气开阀
被加热原料
T 出口温度
解答:
(1)阀的气开、气关特性
依据安全原则,当供气中断时,应使控制阀处于 全关闭状态,不致烧坏加热炉,所以应选气开阀
TC燃料油 气开阀
被加热原料
T 出口温度
(2)控制器的正、反作用
副控 制器
因为:P ys e
P 燃料量 阀开度 u
根据系统的结构和所担负的任务来分:串级、均
匀、比值、分程、选择性、前馈、多冲量等
本章研究内容:
8.1 串级控制系统 8.2 均匀控制系统 8.3 比值控制系统 8.4 分程控制系统 8.6 前馈控制系统
8.1 串级控制系统
复杂控制系统中用的最多的一种。
适用场合:当对象的滞后较大,干扰比较剧烈、
频繁,采用简单控制质量较差,或要求被控变量 的误差范围很小,简单控制系统不能工艺满足要 求。
人们研究出了一种不需要增加太多的仪表就可以 使被控变量达到较高的控制精度的方法——串级控制 系统。
串级控制系统的思想:
把时间常数较大的被控对象分解为两 个时间常数较小的被控对象。

常用复杂控制系统

常用复杂控制系统

0
20
T01 T02' T01T02'
02
1
Kc1K02' K01Km1 T01T02'
标准形式: s2 20s 02 0
串级控制系统的工作频率为:
串 0
12
1 2 T01 T02'
2
T01T02 '
(2)提高了系统的工作频率
单回路系统特征方程为 1 Gc (s)Gv (s)G02 (s)G01(s)Gm1(s) 0
K
' 02
1
Kc2 Kv K02 Kc2 Kv K02 Km2
K
' 02
1 Km2
当K02或KV随操作条件或负荷变化时,K02’几乎不变.
当采用串级控制时,主环是一个定值系统,而副环 却是一个随动系统。主调节器能够根据操作条件和负荷 变化的情况,不断修改副调节器的给定值,以适应操作 条件和负荷的变化。
5.应用于非线性过程 特点:负荷或操作条件改变导致过程特性改变。若单回路控 制,需随时改变调节器整定参数以保证系统的衰减率不变; 串级控制,则可自动调整副调节器的给定值。
合成反应器温度串级控制:换热器呈非线性特性
注意
串级控制虽然应用范围广,但必 须根据具体情况,充分利用优点,才 能收到预期的效果。
整定原则: 尽量加大副调节器的增益,提高副回路的频率,
使主、副回路的工作频率错开,以减少相互影响。 先整副环后整主环。
1. 逐步逼近整定法
1)主开环、副闭环,整定副调的参数;记为 GC2(s)1
2) 副回路等效成一个环节,闭合主回路,整定主调节器参数,
记为
GC1(s)1
3)观察过渡过程曲线,满足要求,所求调节器参数即为

常用复杂控制系统之串级控制原理共27页

常用复杂控制系统之串级控制原理共27页

常用复杂控制系统之串级控制原理
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭

串级、比值、前馈-反馈、选择性、分程以及三冲量六种复杂控制系统

串级、比值、前馈-反馈、选择性、分程以及三冲量六种复杂控制系统

1、串级控制系统
串级控制系统是应用最早,效果最好,使 用最广泛的一种复杂控制系统,它的特点 是两个调节器相串联,主调节器的输出作 为副调节器的设定,当对象的滞后较大, 干扰比较剧烈、频繁时,可考虑采用串级 控制系统。
1、基本概念
串级控制系统(Cascade Cont ro1System)是一 种常用的复杂控制系统,它根据系统结构
主回路(外回路):断开副调节器的反馈回路 后的整个外回路。
副回路(内回路):由副参数、副调节器及所 包括的一部分对象所组成的闭合回路(随
动回路)
主对象(惰性区):主参数所处的那一部分工 艺设备,它的输入信号为副变量,输出信 号为主参数(主变量)。
副对象(导前区):副参数所处的那一部分工 艺设备,它的输入信号为调节量,其输出 信号为副参数(副参数 将要达到危险值时,就适当降低生产要求, 让它暂时维持生产,并逐渐调整生产,使 之朝正常工况发展。能实现软限控制的控 制系统称为选择性控制系统,又称为取代 控制系统或超驰控制系统。
通常把控制回路中有选择器的控制系统称 为选择性控制(selective control)系统。选择 器实现逻辑运算,分为高选器和低选器两 类。高选器输出是其输入信号中的高信号, 低选器输出是其输入信号中的低信号。
控制系统一般又可分为简单控制系统和复 杂控制系统两大类,所谓复杂,是相对于 简单而言的。凡是多参数,具有两个以上 变送器、两个以上调节器或两个以上调节 阀组成多回路的自动控制系统,称之为复 杂控制系统。
目前常用的复杂控制系统有串级、比值、 前馈-反馈、选择性、分程以及三冲量等, 并且随着生产发展的需要和科学技术进步, 又陆续出现了许多其他新型的复杂控制系 统。
路外,使调整k时不影响控制回路稳定性。

常见的复杂控制系统

常见的复杂控制系统


串级控制系统主、副被控变量的选择 选择原则如下: 根据工艺过程的控制要求选择主被控变量;主被控 变量应反映工艺指标。 副被控变量应包含主要扰动,并应包含尽可能多的 扰动。 主、副回路的时间常数和时滞应错开,即工作频率 错开,以防止共振现象发生。 主、副被控变量之间应有一一对应关系。 主被控变量的选择应使主对象有较大的增益和足够 的灵敏度。 应考虑经济性和工艺的合理性。

采用外部积分的防饱和积分系统
y
x1
yep

G2
K
T | |




G1
K

T | |
2-6(a)采用外部积分的防饱和积分系统
yep
1
K2

2
1 TI 2 s


3
G1外部积分的防饱和环节的主环开环系统方框图
最终得到输入节点e1与输出节点x1之间的传递函 数: K 1 G (s)W (s) K G (s)W (s) K G (s)W (s)(1 1 )
=
1-
2 T1 x串 g
+ T 2 + K T 2K Z K f K m 2K 2T 1 1 g T 1T 2 2x串
w单 =
1-
1 2 T1 + T 2 x单 g g T 1T 2 2x单
假定串级控制系统和单回路控制以同样的衰减率工作,即令
x串 = x单
T 1 + T 2 + K T 2K Z K f K m 2K 2T 1 w串 = = w单 T1 + T 2 K T 2K Z K f K m 2K 2T 1 = 1+ T1 + T 2 1+ T1 (1 + K T 2K Z K f K m 2K 2 ) T2 T 1+ 1 T2

化工仪表及自动化课件第七章__复杂控制系统

化工仪表及自动化课件第七章__复杂控制系统

4 高度动态
具有快速响应和大幅度变化的特点,在控制 中需要实时调节。
化工行业中的复杂控制系统应用案例
石油化工
发电厂控制
在炼油、化工加工等领域应用广泛,如精馏塔温度、 压力控制。
保证功率输出、温度和气体流量的稳定性和高效性。
水处理厂
用于控制投加量、能耗和废水回收,保障水质水量。
反馈控制和前馈控制的区别
复杂控制系统简介
探索复杂控制系统的特点和应用领域,了解它们的基本原理和设计方法,并 探讨优化和调节的最佳实践。
复杂控制系统的特点
1 高度集成
由多个子系统和模块交互作用形成,复杂性 高且相互依赖。
2 多变量
控制多个输入和输出,要考虑多种因素的相 互作用。
3 非线性响应
与系统输入之间存在非线性关系,需要进行 非线性建模和控制。
1
反馈控制
根据输出信号的反馈来调节控制器的输入,在实时中调整控制参数。
2
前馈控制
通过提前计算和预测来预防或纠正系统中的异常,避免震荡和控制错误。
单变量控制和多变量控制的对比
单变量控制
只控制一个特定的过程变量,如温度或流量,适用于简单的系统。
多变量控制
控制多个输入和输出,可同时监测和控制多个过程变量,用于复杂系统。
模型预测控制(MPC)的优势与应用
优势
使用数学模型对系统进行预测和优化,确保系统在发电、水处理等领域的复杂系统 控制中。
自适应控制算法的应用
基本概念
将捕捉的反馈信号与预期模型进行比较,自动调整 控制器的输入参数。
应用实例
在化工、制造和航天等领域得到广泛应用,如火箭 推进系统和异丙醇工艺过程中的控制。
系统优化的目标与方法

常见的复杂控制系统有串级均匀比值精选全文

常见的复杂控制系统有串级均匀比值精选全文

(1)两个变量在控制过程中都 应该是变化的,且变化缓慢。
(2)前后互相联系又互相矛盾 的两个变量应保持在所允许的 范围内波动。
过程控制系统
二.均匀控制系统的方案 1 .简单均匀控制
过程控制系统
如何能够满足均 匀控制的要求呢?是 通过控制器的参数 整定来实现的。
有时为了克服连续发生的同一方向干扰所造成的 过大偏差,防止液位超出规定范围,则引人积分作 用,这时比例度一般大于100%,积分时间也要放 得大一些。
主变送器:测量并转换主被控变量的变送器。 副变送器:测量并转换副被控变量的变送器。 主对象:大多为工业过程中所要控制的、由主被控 变量表 征其主要特性的生产设备或过程。 副对象:大多为工业过程中影响主被控变量的、由副被控变 量表征其特性的辅助生产设备或辅助过程。 副回路:由副变送器、副控制器、控制阀和副对象所构成的 闭环回路 , 又称为“ 副环” 或“内环”。 主回路:由主变送器、主控制器、副回路等效环节、主对象 所构成的闭环回路,又称为“主环”或“外环”。
副被控变量(Y2):大多为影响主被控变量的重要参数。 主控制器:在系统中起主导作用,按主被控变量和其设定值之差 进行控制运算,并将其输出作为副控制器给定值。 副控制器:在系统中起辅助作用,按所测得的副被控变量和主控 输出之差来进行控制运算,其输出直接作用于控制阀的控制器, 简称为“副控”。
过程控制系统
K= F2/F1 式中K为从动流量与主动流量的工艺流量比值。 F1---主动流量(其物料处于主导地位既主物料 ) F2---从动流量(其物料在控制过程中随主物料而变化 )
燃料与空气成比例,什么是主动物料?什么是从动物料?
氢氧化钠浓溶液与水成比例,什么是主动物料?什么是从动物 料?
一.比值控制系统的类型

复杂控制系统分析

复杂控制系统分析

把副回路看成是一个动态环节,这个环节的
输出为:
若采用单回路控制,在同样条件下采用同样的方法, 可以得到它的稳态输出为:
y1(∞)< y‘1 (∞),也就是说,串级控制系统 的稳态偏差比单回路控制系统的稳态误差要小得多, 其原因就在于前者具有一定的自适应能力。
串级控制系统主副回路和主副调节器选择: 一、主副回路的选择原则 (1)副回路应该把生产系统中尽量多的干扰、变

(4)前馈控制系统只能用来克服生产过程中主要的、 可测的扰动。 实际工业生产中使被调量发生变化的原因(扰动) 是很多的,对每一种扰动都需要一个独立的前馈控 制,这就会使控制系统变得非常复杂;而且有的扰 动往往是难于测量的,对于这些扰动就无法实现前 馈控制。 (5)前馈控制系统一般只能实现局部补偿而不能保 证被调量的完全不变。

(4)动态前馈比静态前馈复杂,参数的整定也比较麻烦。 因此,在静态前馈能够满足工艺要求的时候,尽量不采 用动态前馈。实际工程中,通常控制通道和扰动通道的 惯性时间和纯滞后时间接近,往往采用静态前馈就能获 得良好的控制效果。 (5)扰动通道的时间常数远大于控制通道的时间常数, 反馈控制已能获得良好的控制性能,只有控制性能要求 很高时,才有必要引入前馈控制。 (6)扰动通道的时间常数远远小于控制通道的时间常数, 由于扰动的影响十分快速,前馈调节器的输出迅速达到 最大或最小,以至难于补偿扰动的影响,这时不宜采用 前馈控制。

预估补偿控制
Smith(史密斯)预估补偿是针对具有纯迟延
的过程,在PID反馈控制的基础上,引入预补 偿环节,从而使控制品质大大提高的方法。
Smith(史密斯)预估补偿原理
被控变量的闭环传递函数是
扰动作用至被控变量的闭环传递函数是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)了解串级控制系统的应用背景,熟悉串级控制系统 的典型结构与特点;
2)掌握串级控制系统的设计方法,熟悉串级控制系统 的参数整定方法;
3)了解前馈控制的原理及使用场合; 4)掌握前馈补偿器的设计方法,熟悉前馈-反馈复合
控制的特点及工业应用。
6.1 串级控制系统 6.1.1 串级控制的基本概念
连续反应釜温度控制示意图
问题:过渡过程时间长,调节不及时
将两个调节器串联在一起工作,各自完成不同任务的系统 结构,就是串级控制的基本思想。根据这一构思,反应釜温度 串级控制示意图为
串级控制系统的一般结构框图
副回路
主回路
主回路 --定值控制
副回路 --随动控制
6.1.2 串级控制系统的特点 对于同一对象 G 0(s)G 0(1 s)G 0(2 s)
T ' T 则
ቤተ መጻሕፍቲ ባይዱ
G 0 '2(s)K c2K vK 0 2
1K c2K vK m 2K 0 2
T 0 2
s 1
K 0 2' T 0 2's 1
02
02
1K c2K vK m 2K 0 2
(2)提高了系统的工作频率
串级系统的特征方程为: 1 G c 1 s G 0 2 's G 0 1 s G m 1 s 0
假设
G Y Y C 1 (1s)s s K X F C ,2 1 G V s s(s ) K G VcsG 则vsYY11ss
X1s F2s
KcKv
一般情况下有 KC1KC2 KC
结论:由于副回路的存在, 能迅速克服二次干扰。
2.能改善控制通道的动态特性,提高工作频率
(1)等效时间常数减小,响应速度加快
工艺要求:
物料自顶部连续进入釜中, 经反应后由底部排出。反 应产生的热量由夹套中的 冷却水带走。为保证产品 质量,对反应温度T1要进 行严格控制。
选取冷却水流量为调节参数,构成单回路控制系统
被控过程有三个热容积,即夹套中的冷却水、釜壁和釜中物料。
引起温度T1变化的干扰因素有: 进料方面有进料流量、进料入口温度和化学组成,用F1表示; 冷却水方面有水的入口温度和阀前压力,用F2表示。
将各环节传函代入,化简得
s2TT 0101 TT 020 '2' s1K c1 T K 01c T 20 '2 K ' 01K m 10
2 0
T01 T02 ' T01T02 '
0
2
1
K c1K 02' K 01K m1 T01T02 '
标准形式: s220s020
串级控制系统的工作频率为:
《过程控制与自动化仪表》
西安理工大学 潘永湘 杨延西 赵跃 制作
教学理念:
教书育人要义 传道授业释疑; 师生同心协力, 共探过控真谛 。
熟悉仪表原理, 统领系统设计; 理论实践结合,思维创新第一。
第6章 常用复杂控制系统
第6章 常用复杂控制系统
6.1 串级控制系统 6.2 前馈控制系统
本章要点
串 0
1212 2
T0 1T0'2 T01T0'2
(2)提高了系统的工作频率
单回路系统特征方程为 1 G c ( s ) G v ( s ) G 0 ( s 2 ) G 0 ( s 1 ) G m 1 ( s ) 0
将各环节传函代入,化简得
s2T 01T 02s1K cK vK 02K 01K m 10
T 01 T 02
T 01 T 02
2
0
'0
'2
' T01 T02 T01T02
1 Kc Kv K01K02 T01T02
K m1
单回路系统工作频率
单0 '
1'2T01T02
T01T02
1'2 2'
假定 ' 则
串T01 T0'2T0T 1021T01 /T0'2 单 T01 T02 T0T 10'2 1T01 /T02
X Y 1 1 s s 1 G G cc s s G G vv s s G G 00 2 s 2 s G G 00 1 s 1 s G m 1 s F Y 1 2 s s 1 G cs G G 0v 2 s s G G 0 0 1 s 2 s G m 1 s
控制能力和抗干扰能力综合指标为:
单回路控制
串级控制
1.能迅速克服进入副回路的干扰
串级控制等效方框图
等效副对象为 G 0 2 *s Y F 2 2 s s 1 G c 2sG v G 0 s 2 G s0 2sG m 2s
在给定信号X1作用下 X Y 1 1 s s 1 G c G 1 c 1 ss G c G 2c2 ss G v G v ss G 0 G 2 0 2 ss G 0 G 10 1 ss G m 1s
在干扰F2作用下
Y 1s
G 0 2 *sG 0 1s
F 2s 1 G c1sG c2sG vsG 0 2 *sG 0 1sG m 1s
控制能力和抗干扰能力综合指标:
Y Y 1 1s sX F 2 1s sG c1sG c2sG vs
比值越大,系统的控制 能力和抗干扰能力越强
控制能力和抗干扰能力综合指标:
Y Y 1 1s sX F 2 1s sG c1sG c2sG vs
假设 G c 1 ( s ) K c 1 ,G C 2 (s ) K C 2 ,G V (s ) K V

Y1s Y1s
X1s F2s
Kc1Kc2Kv
结论:主、副调节器放大系数的乘积越大, 抗干扰能力越强,控制质量越好。
与单回路控制系统的比较:
T 0 1 /T 0 2 ' T 0 1 /T 0 2 串 单
3.能适应负荷和操作条件的剧烈变化
副回路的等效放大系数为 一般 Kc2KvK02Km21
K02'
Kc2KvK02 1Kc2KvK02Km2
K 02'
1 Km2
当K02或KV随操作条件或负荷变化时,K02’几乎不变.
当采用串级控制时,主环是一个定值系统,而副环 却是一个随动系统。主调节器能够根据操作条件和负荷 变化的情况,不断修改副调节器的给定值,以适应操作 条件和负荷的变化。
等效副回路 G 0 '2 s X Y 2 2 s s 1 G c G 2 c 2 s s G v G s v s G 0 G 2 0 2 s s G m 2 s G c 2 ( s ) G v ( s ) G 0 2 ( s )
假设 G 0 2 ( s ) K 0 2 T 0 2 s 1 , G c 2 ( s ) K c 2 , G v ( s ) K v , G m 2 ( s ) K m 2
相关文档
最新文档